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1 Introduction

Next, we have an extremely rapid introduction to measure theory. Given the short time that we

have to spend on this, we are really only going to be able to introduce the relevant concepts, and try

to give an idea of why they are important. For more information, Efe Ok has an as-yet unpublished

book available online here https://files.nyu.edu/eo1/public/ that covers the basics, and points the

way to many other classic texts. For those of you who are thinking of taking decision theory more

seriously, then a taking a course in measure theory is probably advisable.

Take some underlying set . Measure theory is the study of functions that map subsets of 

into the real line, with the interpretation that this number is the ’measure’ or the ’size’ or the

’volume’ of that set. Of course, not every function  defined on a subset of 2 is going to fit into

our intuitive notion of how a measure should behave. In particular, we would like a measure to

have at least the following two properties:

1. ()\ ≥ 0

2. (∪∞=1) =
P∞

=1 For any pairwise disjoint sets 

The first property says that we can’t have negatively measured sets, the second says, if we look

at the measure of the union of disjoint sets should be equal to the sum of the measure of those

sets. Both these properties should seem appealing if we think about what we intuitively mean by

’measure’.
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Primarily, we are going to be interested in measure theory as a basis for probability. We will

think of  as describing the states of the world, and the ’measure’ of a set as the probability of an

event in this set occuring. However, measure theory is much more general than that. For example,

if we think about intervals on the real line, the natural measure is the length of those intervals

(i.e. , for [ ], the measure is − .). The measure that results from this proposition is called the

Lesbesgue measure, and is one of the ways we can make formal concepts such as integration.

2 −Algebras

The first question we need to ask is the following: what domain do we want to apply our measures

to? In other words, what subsets of 2 would we like to allow into the domain of our function

 . In the case of probability measures, then we might find an arbitrary collection of 2 a bit

unsatisfactory. In particular, we might want the following properties to hold (where  is some non

empty set, and ∅ ∈ Σ ⊂ 2)

1. if  ∈ Σ, then  ∈ 2

2. if  ∈ Σ then  ∪ ∈ Σ

The first property allows us to say that, for any event  to which we will assign a measure, we

can also assign the probability of NOT . The second says that, for any two events  and  to

which we can assign a measure, we can assign a measure to  and .

Any collection Σ that obeys these properties is called an algebra. In fact, we are going to

require slightly more, specifically that, for any countable collection {}∞=1 ∈
P∞, we would like

∪∞=1 ∈ Σ. In other words, we would like Σ to be closed under countable unions. If Σ has this
property, then we call it a −algebra.

This may sound a little too much like unnecessary hard work: Why don’t we just demand that

our measure is defined on 2 for any set? It turns out that this can lead us into difficulties. For

example, it is not possible to apply the Lesbegue measure to every subset of the real line: that is,

there is no function that satisfies the properties listed above, is defined on 2R and is equal to the

length of intervals. Given that we have to give up on something, the most natural thing is to allow
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for the possibility of non-measureable sets - i.e. to have our measure defined on something smaller

than the power set.1

Two properties that s
N
em immediately from the definition of a −algebra Σ on a set  are

as follows:

1. ∅ ∈ Σ and  ∈ Σ. The latter property comes from the fact that Σ is non empty, so contains

some set , and therefore contains , and so . This in turn implies that ∅ ∈P
2. Σ is closed under countable interstections. This follows from the fact that 1 ∩ 2 =

(1 ∪2)

−Algebras are tricky beasts when one is dealing with infinite base sets (you should convince
yourself that for finite base sets they are the same as algebras). In fact, it is generally not possible

to precicely characterise what sets are in an algebra, and which are not. For this reason, we tend to

start by thinking about the events that we would like to measure, and simply define the  algebra

generated by these events in the following sense:

Definition 1 Let  be a non-empty set, and A be a non-empty subset of 2 . We call Σ the

−algebra generated by A if

1. A ⊂Σ

2. For any other −algebra Σ0 such that A ⊂Σ0, we have Σ0 ⊂ Σ

we write Σ(A) to denote such an algebra

It is not obvious that every collection A should generate a −algebra, but in fact it is true. You
can prove this yourself using tricks that we have seen before (hint - is an arbitrary intersection of

−algebras itself a −algebra?)

One very common −algebra for us to work with is that generated by all the open sets in some
metric space. This is called the Borel −algebra. Let  be some metric space and O be all the

1The Banach-Tarski Paradox that we discussed before is actually an example of the impossibility of measuring

every set in three dimensional Euclidian spaces.
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open sets on , we denote the Borel −algebra on  as B() = Σ(O). Note, that, if we are

working the real line, there are many alternative ways of characterizing the the Borel sets. The

following collections of 2R all generate the same −algebras

1. OR

2. All closed and bounded intervals on R

3. The set of all closed sets on R

4. The set of all open and bounded intervals on R

These equivalences also point out the difference between an algebra and a -algebra: If we think

of all the right-closed intervals on R, then ( ) would have to be contained in any −algerbra that
contains these sets, but not necessarily in an algebra that contains them.

Given our previous discussion, it should come as no suprise that, while the Borel −algebra on
R is ’large’, it is not equivalent to 2R. This means that there are some subsets of R that are not

Borel sets. (there are examples, but without taking a lot more time, they won’t give you much

intuition) Notice that any measure that is defined on the Borel sets would not take a value for

sets that are not included in the Borel −algebra. For this reason, these sets are called non-Borel-
measureable (under the Borel −algebra) More generally, note that the property of measurability
or otherwise is defined relative to an underlying −algebra.

3 Probability Measures

Now that we have defined our domain, we are in position to define what we mean by a probabil-

ity measure: this is a function that is going to assign probabilities to each of the events in our

−algebra. Let  be a non-empty set, Σ be a −algebra on  and  : Σ → R. Here are some

definitions:

Definition 2 Here are the definitions of some properties of 

1. If, for any {}=1 ∈ Σ that is pairwise disjoint, (∪=1) =
P

=1 () then we say  is

finitely additive
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2. If, for any {}∞=1 ∈ Σ∞ that is pairwise disjoint, (∪∞=1) =
P∞

=1 () then we say  is

−additive

Definition 3 If  : Σ→ R̄+ is −additive, and (∅) then it is called a measure.

1. If  is a measure such that () ∞, then it is a finite measure

2. If () = 1 then it is a probability measure

You should convince yourself that the properties of a probability measure are enough to make

it behave like we would like a probability measure to behave. For example, you should convince

yourself of the fact that that a probability measure has the property of monotonicity:

Claim 1 Let {Σ } be a probability space and  ∈ Σ, such that  ⊆ . Then () ≤ ()

Does this imply that, if  is a strict subset of  that ()  ()? Does it imply that the the

probability of the subset of a zero probability event is necessarily zero?

You will play around with some of the properties of probability measures for homework. How-

ever, one result that you should know is that probability measures satisfy Boole’s inequality

Boole’s Inequality For any probability space {Σ }

 {∪∞=1} ≤
∞X
=1

() for any {} ∈ Σ∞

4 Constructing Probability Spaces

As we mentioned above, -algebras are tricky things to work with, while algebras are much sim-

pler. Luckily there is an extremely powerful result that allows us to use algebras to construct our

probability measures, then assume the existance of an extenision to that probability measure to

the −algebra generated by that algebra. This is Carathedory’s Extension Theorem.

Theorem 2 (Carathedory) Let A be an algebra on some non-empty  and  : A → R+ IF

 is −additive on A, then there exists a measure  on Σ(A) such that () = () for all A.
Moreover, if  is finite, then  is unique
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Thus, we can uniquely identify a probability measure on a −algebra by describing behavior
on an algebra that generates that -algebra.

We can see the power of these result when defining the Lebesgue-Stieltjes Probability measure

on R. In order to do so, we first need to define a distribution function:

Definition 4 A map  : R → [0 1] is said to be a distribution function if it is increasing, right

continuous and  (−∞) = 0 = 1−  (∞)

You have been dealing with distribution functions for a long time: these are just the CDF

functions standard in statistics. One question we might want to know is: what is the relationship

between distribution functions and probability measures? In fact, it turns out that, using Carathe-

dory, we can show that each distribution function induces a unique probability measure on the

Borel -algebra of R. To see this, let  be a distribution function, A be the algebra generated by

the right-closed intervals on R and define the following  on A:

if −∞ ≤  ≤  ∞, then (( ]) =  ()−  ()

if −∞ ≤ , then ((∞)) = 1−  ()

if 1 are finitely many disjoint intervals in A then

 (∪=1) =

X
=1

()

Thus we can use  to define a probability measure on A. But what if we want to extend this
measure to the Borel sets of R. How do we know that such an extension exist? And if there exists

more than one extension, how do we know which one to choose? Luckily, Carathedory means that

we don’t have to worry about these things: a unique extension exists as long as we can show that

 is −additive on A. Luckily it is, which you can show for homework.

So any distribution function defines a unique probability measure on the borel sets of R. Inter-

estingly, the converse is true: any probabilitty measure  on the borel sets of R defines a probability

measure as () = ((−∞ ]). Thus, there is a tight relationship between probability measures

and distribution functions.

We can use this method (with a few technical tweeks) to define the Lesbegue measure on the real

lines. This is a measure  that assigns to each interval the length of that interval, so (( ]) = −.
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This is the standard way of measuring the real line. It is worth noting that the lesbegue measure

has some potentially surprising properties. First, (unsurprsingly), the measure of any singleton is

zero, as

({}) = 

µ
∩∞=1(−

1


]

¶
= lim

→∞ ((− 1


]) = lim

→∞
1


= 0

Perhaps more surprisingly, the -additivity of  therefore implies that any countable set has

measure zero (as any countable set is the countable union of singletons). Thus, for example, Q is

measure-zero. (Note, this doesn’t mean that there is a 1-1 relationship between countability and

non-zero measure-ness: there are measure zero uncountable sets as well, though they are weird).

5 Random Variables and Expectations

Next, we define the concept of a random variable, and through it, the concept of an expectation.

Consider the experiment of rolling two dice. Imagine further that what you are interested in

is the sum of the numbers on the two dice. How could we talk about the probabilities of various

different sums? One way would be to construct a probability space {Σ }, wher  is the natural

number between 2 and 12 and  is the probabilities of events in this probability space generated

by rolling the two die. However, it seems that this is somewhat ineffcient. After all, the underlying

event here is rolling the two dice. Surely it would be nicer to use this underlying probability space

which then generates probabilites over the numbers {2 12}. Apart from anything else, this would
save us from having to generate a new probability space for every different way that we would like

to combine the numbers on the two dice (for example, the product of the two numbers, or the

number on die 1 minus the number on die 2). It is this excerice that leads us to the concept of a

random variable.

Definition 5 Let (Σ) be a measure space, and  be a metric space. Let  be a map from 

to  such that −1() ∈ Σ for any Borel set  in  . Then we say that  is a −valued random
function.

We also describe  as a Σ-measurable function Note the requirement that is being made here:

If we look at any event  in the Borel sets in  (for example, any open set in  ) then the set of
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elements in  that map to  must be measurable according to Σ. In fact, it turns out that there

are some short cuts that can help us check measurability

Remark 1 Let (Σ) be a measure space and  :  →  for some metric space  . Then  is a

 -valued random variable if and only if

1. −1() ∈ Σ for any open set 

2. −1() ∈ Σ for any closed set 

3. If  = R, then { ∈ |() ≤ } ∈ Σ for any  ∈ R

Before going further we need the following definition:

Definition 6 Let  be a metric space. A −valued random variable is called discrete if its range

is a countable set, and simple if its range is finite

As an example, consider the family of indicator functions.

Example 1 Let (Σ) be a measurable space. For any event  ∈ Σ, we define the indicator
function 1 as

1() = 1 if  ∈ 

= 0 otherwise

Clearly any indicator function is measurable (why?). Moreover, the set of simple random vari-

ables on (Σ ) is identicle to the set of functions defined by

111 + + 1

for sequences {}=1 ∈ R and {}=1 ∈ Σ

It is worth noting that there is a one way relationship between measurability and continuity, in

that continuous functions are measureable, but not necessarily visa versa:
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Lemma 1 Let  and  be two metric spaces, and  :  →  be continuous at all but countably

many points. The  is a Y-valued random variable on the borel sets of . However, there are also

functions that are continuous nowhere which are also measurable

One further useful property of measurability is that it is preserved by the act of continuously

combining random variables

Remark 2 Let  be a seperable metric space,  be a metric space and  and  to −valued
random variables on (Σ). then, if  :  × →  is a continuous map, then the function defined

by

̄ :  → 

such that ̄() = (() ())

is a random variable on (Σ).

Thus, the sum, product, max and min of random variables are also themselves random variables.

With these interesting asides out of the way, we can now define the distribution of a random

variable  on (Σ). By the distribution, we mean the probability that a random variable falls

in a particular range  Obviously, what we would like to do is to assign the probability of the

underlying events that give rise to , i.e. (−1()). The fact that we demand that the random

variable be measurable is exactly the condition that we can do this for any Borel set .

Definition 7 Let  be a a metric space.. A −valued random variable on a probability space

(Σ ) induces a Borel probability measure on  as follows:

() = (−1() for every  ∈ ( )

This is the distribution of . If =R, then we call this the distribution function of .

It is easy to check that (( ) ) form a probability space

We can now extend the equivalence result that we stated earlier:
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Remark 3 There is a one to one correspondance between the following concepts

1. Borel probability measures on R

2. Distribution functions

3. random variables on ((0 1) (0 1) )

One further useful definition is the concept of two random variables being ’almost surely’ equal.

Consider an experiment  that has three outcomes:

1. A coin lands heads

2. A coin lands tails

3. The coin rolls in a pattern which, if recorded, would be a proof of the Reimann hypothesis in

ancient Aramaic.

and conider the random variables

() = 1 if  = 1

= 2 if  = 2

= 3 if  = 3

and

() = 1 if  = 1

= 2 if  = 2

= 3 if  = 100

These two variables are clearly not identical, but, if we think the probability of 3 is zero, then

they are clearly not importantly different in some sense. This is the concept of almost sure equality:

Definition 8 Two random variables  and  on a probability space (Σ ) are said to be equal

almost surely if

 { ∈ |() = ()} = 1
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We write  = . The concept of  ≥  is defined analogously - i.e. the sets for which

 () ≥ () are measure 1.

Next we will define the concept of an expectation. Formally, this is just the weighted average of

a random variable, with the weights determined by its probabilities. While we want to describe the

expectation operator for any random variable, we will start simply, with simple random variables.

As we have already shown, if (Σ ) is a simple random variable, we can define any simple random

variable as X
∈()

1−1()

In such cases, we can define the idea of expectation relatively simply

() =
X

∈()
(1−1())

You should check, but the expectations operator defined in this way has all the nice properties

that we would expect, such as:

1. Linearity, i.e.(+ ) = () +()

2. () ≥ () if  ≥  almost surely

Of course, this is not particularly helpful on its own. In order to extend this definition to

non-negative random variables, we do the following:

Definition 9 Let  be an R̄ valued random variable on (Σ ) such that  ≥ 0. The expectation
of  is defined

() = sup {()| = L()}

where L() is the set of all simple random variables on  such that  ≤ 

This notion is clearly similar to that of an integral, where the weights put on any rectangle is

not the length of that rectangle, but its probability. This is actually how the Lesbegue interval is

defined Z


 = ()
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Note that we can say something about the relative expectations of random variables by knowing

about their almost sure properties:

Remark 4 Let  and  be two random variables on (Σ )

1. If  ≥  then () ≥ ()

2. If  =  then () = ()

It is also true, but not easy to show, that the linearity properties of simple random variables

extend to arbitrary positive random variables.

One final order of business is to extend these results to arbitrary random variables. To do

this, we essentially use a trick. Let  be some arbitrary random variable, and define the following

random variables

+ = max( 0)

− = max(− 0)

These are now two positive random variables, so the following is well defined

() = (+)−(−)

6 Weak Convergence

The aim of this final section is to discuss how to put a metric structure on probability measures.

This is going to be very important when it comes to decision making under uncertainty. Why?

Well, effectively choosing a lottery (which is the bread and butter of expected utility theory)

is equivalent to choosing a random variable on some mother space, whcih (as we have seen) is

equivalent to choosing amongst probability measures. Thus, if we want to (say) have a model in

which people choose the random variable with the highest expected utility, we better make sure

that this concept is well defined. We know that, to guarantee this, we need a continuous function

on a compact set. But in order to define continuity and compactness, we need metrics. This is what

we now do.
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For simplicity, we will think about metricizing probability measures on the borel sets on a metric

space , which we will denote as ∆(). If  is a metric space, then at least we know how we

would like to metricize to degenerate probability measures: one that assigns all its probability to

 ∈  and the other to  ∈ : we would simply use the distance between  and . To go beyond

this, we are going to reverse the order of events that we learned in the first year. There, you began

with the notion of a metric, used this to define a topology, and thence convergence and continuity.

Here we are going to begin by thinking about what functions we would like to be continuous, then

use this to define convergence, and use this to generate a metric and then a topology.

Thus, the starting point that we are going to take is that we would like the expectation of all

continuous and bounded functions2 to be contininuous with respect to our probability measures.

Think of this the following way: Let  be the real line and let  be some continuous and bounded

untility function. We are going to be interested in the expectations of this utilty function with

respect to ’s defined on the borel sets of . In particular, we are going to want to find the  in

some subset  ∈  ⊂ ∆() that maximizes utility. For this we are going to need the expectation of
utility to be continuous, and  to be compact. The route we are going to take is do define a metric

on ∆() such that the expectations operator is continuous on continuous and bounded functions

First, let  be a random variable, and note that the mapping  : ∆()→ R defined by

() = ()

defines a mapping from the space of all Borel probability measures to the real numbers. The

discussion above suggests that we would like to define convergence in ∆() is such a way that

 →  implies ()→ (), if  is a continuous and bounded function

Definition 10 Let  be a metric space and {} be a sequence in ∆(). for any  ∈ ∆(), we
say that {} converges weakly to  is Z



 →
Z




2Note that by ’continuous random variable’ we mean a random variable whose distribution function is continuous.

This is distinct from a random variable defined by a function that happens to be continuous. Let  be a finite metric

space with the discrete metric. Any real map on  is a contnuous function, but the resulting random varaible will

not be continuous.
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for every continuous, bounded function on . Equivalently, we have

()→ ()

for every random variable on  that is continuous and bounded.

Note that, because we have not started with a metric, we do not know that any sequence  has

a unique weak limit, but this in fact the case. A corrolary of this is that any two borel probabilty

measures   ∈ ∆() are distinct if and only ifZ


 6=
Z




for some continuous bounded .

Here are some examples

Example 2 Consider the probability space ({0 1} 2{01}) defined as

{0} = 1− 1



Then, for any real function  on (0 1) we haveZ


 = (0)

µ
1− 1



¶
+ (1)

1


→ (0)

Thus, it must be the case that  →  where  puts probability 1 on {0}

Example 3 Define a Dirac measure on a metric space in the following way: for some  ∈ ,

() = 1 if  ∈ 

= 0 otherwise

for any borel set . Intuitively, we would like a sequence of dirac measures  to converge to

 if and only if  → . Is this the case? Let  be a continuous bounded map, and note thatZ


 = ()→ () =

Z
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by the convergence properties of continuous functions. Note also that if  6→ , then 

does not converge weakly to . To see this, define () as  {1 ()}. This is a continuou
sand bounded function, so if  converges weakly to , it must be the case that

 {1 ( )} =
Z


 →
Z


 = 0

which in turn implies that it must be the case that ( )→ 0

It is useful to have some equivalence results for weak convergence

Theorem 3 (Portmanteau) For and metric space  and 1 2 ∈ ∆(), the following are
equivalent

1.  → 

2. lim sup () ≤ () for every closed set 

3. lim inf () ≥ () for every open set 

4. lim () = () for every  ∈ () with () = 0 (i.e. the measure of the boundary of

 is zero - these are sometimes called continuity sets)
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