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Fixed point theory serves as an essential tool for various branches of mathematical analysis and

its applications. Loosely speaking, there are three main approaches in this theory: the metric, the

topological and the order-theoretic approach, where representative examples of these are: Banach's,

Brouwer's and Tarski's theorems respectively.

1 Metric Approach

De�nition 1 (Fixed point property) A metric space X is said to have the �xed point property if
every continuous self-map on X has a �xed point.

1.1 Banach Fixed Point Theorem

As it was stated and proved in the class notes, we have that in a complete metric space a

contraction must map a point to itself, that is it must have a �xed point, and even more, it is

unique.

Theorem 2 (Banach's Fixed Point Theorem) Let X be a complete metric space, and f be a
contraction on X. Then there exists a unique x∗ such that f(x∗) = x∗.

De�nition 3 (Contraction) Let X be a metric space, and f : X → X. We will say that f is a
contraction if there exists some 0 < k < 1 such that d (f (x) , f (x∗)) 6 kd(x, y) for all x, y ∈ X.
The inf of such k's is called the contraction coe�cient.

The Banach Fixed Point theorem is also called the contraction mapping theorem, and it is in

general use to prove that an unique solution to a given equation exists. There are several examples

of where Banach Fixed Point theorem can be used in Economics for more detail you can check Ok's
book, Chapter C, part 7 For concreteness purposes let focus in one of the most known applications

for Banach's theorem for economists, Bellman's functional equations.

1.1.1 Application

I.- Dynamic Optimization

We have the following problem

max
(xm)

ϕ(x0, x1) +

∞∑
i=1

δiϕ(xi, xi+1)

such that

x1 ∈ Γ(x0) and xm+1 ∈ Γ(xm) for m = 1, 2, ..

Where if we were to assume that ϕ is continuous and bounded and Γ is compact valued and

continuous, we can prove (we are not going to do it now) that if X is a nonempty convex subset of

Euclidean space then this problem has an unique solution for each initial value.
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II. Di�erential equations

One of the very important theoretical application of Banach �xed point theorem is the proof of

existence and uniqueness of solutions of di�erential equations su�ciently regular. In this application,

the complete metric space K is a set of functions, and the map F transforms a function into another

function (we often say that F is an operator ). The trick is to show that a solution of the di�erential

equation, if its exists, is a �xed point of the operator F.

Consider for example the case of

y′ = e−x
2

the solution is given by

y =

ˆ
e−x

2
dx

1.2 Caristi Fixed Point Theorem

Theorem 4 Let Φ be a self-map on a complete metric space X. If d(x,Φ(x)) 6 ϕ(x)− ϕ(Φ(x))
for all x ∈ X, for some lower semicontinuous ϕ ∈ RX that is bounded from below, then Φ has a
�xed point in X.

This theorem is a generalization of the Banach �xed point theorem, in particular if Φ ∈ XX is

a contraction with the contraction coe�cient K ∈ (0, 1) then the hypothesis of Caristi's theorem

is satis�ed for ϕ ∈ RX
+ de�ned for ϕ(x) + 1

1−K d(x,Φ(x)), where ϕ is continuous and ϕ(x) −
ϕ(Φ(x)) > d(x,Φ(x)). This is due to the fact that:

ϕ(x)− ϕ(Φ(x)) =
1

1−K
[
d(x,Φ(x))− d(Φ(x),Φ2(x))

]
>

1

1−K
[d(x,Φ(x))−Kd(x,Φ(x))]

= d(x,Φ(x))

But the generalization is substantial when we observe that Caristi doesn't require the involved

self-map to have the contraction property and not even that the self-map being continuous.

2 TOPOLOGICAL APPROACH

2.1 Brouwer's Fixed Point Theorem

Theorem 5 (Brouwer's Fixed Point Theorem for the Unit Ball) Bn has the �xed point prop-
erty, n=1,2,...

A good number of �xed point theorems that are invoked in certain parts of economic theory

can be derived by using Brouwer's �xed point theorem for the Unit Ball.

Theorem 6 (Brouwer's Fixed point Theorem) For any given n ∈ N, let S be nonempty, closed,
bounded and convex subset of Rn. If Φ is a continuous self-map on S, then there exists an x ∈ S
such that Φ(x) = x.
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2.1.1 Applications

From Brouwer's theorem we can extend to new Fixed Point theorems in the following way

Proposition 1 For any n ∈ N, any continuous Φ : Bn → Rn with Φ(Sn−1) ⊆ Bn, has a �xed
point.

In particular if we take any continuous Φ : Bn → Rn we can de�ne

r(x) ≡
x if x ∈ Bn

x
d2(x,0)

otherwise

, where roΦ is a continuous self-map on Bn, and then Brouwer's apply and we have that r(Φ(x)) = x
for some x ∈ Bn.

This application in particular is use to demonstrate the existence of a Walrasian equilibrium, in

particular Kakutani's extension that is presented in the following section.

Other application of the theorem is to prove that every strictly positive nxn matrix has a positive

eigenvalue and a positive eigenvector.

2.2 Kakutani's Fixed Point Theorem

Kakutani's theorem is a famous generalization of Brouwer theorem.

Theorem 7 For any given n ∈ N, let X be a nonempty, closed, bounded and convex subset of Rn.
If Γ is a convex-value self-correspondence on X that has a closed graph, then Γ has a �xed point,
that is, there exists an x ∈ X with x ∈ Γ(x).

Where the requirement of a closed graph can be replaced with upper hemicontinuity when Γ is

closed-valued.

2.2.1 Applications

Nash Equilibrium

De�nition 8 Let G +
{

(Xi, πi)i=1,...,m

}
be a strategic game. We say that x∗ ∈ X is a Nash

equilibrium if x∗ ∈ arg max
{
πi(xi, x

∗
−i) : xi ∈ Xi

}
for all i=1,...,m. A Nash equilibrium x∗ is said

to be symmetric if x∗1 = ... = x∗m. We denote the set of all Nash and symmetric Nash equilibria of
a game G by NE(G) and NEsym(G) respectively

De�nition 9 If each Xi is a nonempty compact subset of a Euclidean space, then we say that the

strategic game G +
{

(Xi, πi)i=1,...,m

}
is a compact Euclidean game. If in addition πi ∈ C(X)

for each i=1,..m we say that G is a continuous and compact Euclidean game. If instead, each
Xi is convex and compact, and each πi(x−i) is quasiconcave for any given x−i ∈ X−i then G is
called a convex and compact Euclidean game. Finally, a compact Euclidean game which is both
convex and continuous is called a regular Euclidean game.
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Theorem 10 ( Nash's Existence Theorem) If G +
{

(Xi, πi)i=1,...,m

}
is a regular Euclidean game,

then NE(G) 6= ∅

Where the result follows from Kakutani's theorem de�ning the best response correspondence

as bi(x−i) + arg max {πi(xi, x−i) : xi ∈ Xi} and b(x) +
m∏
i=1

bi(x−i). By Weierstrass b is well de-

�ned. Note that if x ∈ b(x), then xi ∈ b(x−i) for all i then x ∈ NE(G), so we can show existence

by Kakutani's.

Existence of Walrasian Equilibrium

Proposition 2 ( 17.C.1: (MWG)) Suppose that z(p) is a function de�ned for all strictly positive
price vectors p ∈ RL

++, and satisfying: {(i) z() is continuous, (ii) z() is homogenous of degree zero,
(iii) pz(p) = 0 for all p; (iv) ∃s > 0 s.t. zl(p) > −s for all l, p; and (v) if pn → p, where p 6= 0
and pl = 0 for some l, then max {z1(pn), ..., zL(pn)} → ∞} then the system of equations z(p) = 0
has a solution. Hence a Walrasian equilibrium exists in any pure exchange economy in which∑
ωi >> 0 and very consumer has continuous, strictly convex and strongly monotone

preferences.

I am not going to go into the details of the demonstration since you are going to do it in Microe-

conomics class. Just note that given homogeneity of degree zero (condition ii) of z, we can normalize

prices and restrict the problem to the following simplex ∆ =
{
p ∈ RL

+ :
∑

l pl = 1
}
, but the func-

tion is well de�ned only for prices in the following set Interior∆ = {p ∈ ∆ : pl > 0 for all l} . The
idea of the proof is to construct a correspondence f from ∆ to ∆, argue that the �xed point of this

correspondence is when p∗ ∈ f(p∗) which in turn implies that z(p∗). In this proof

f(p) +
p+ z+(p)

α(p)

where

z+l (p) + max {0, zl(p)}

α(p) +
∑
l

[
pl + z+l (p)

]
Therefore if we prove that f is convex valued and upper hemicontinuous (or closed graph) we can

apply Kakutani's to show that p∗ exists.

2.3 ORDER THEORETICAL APPROACH

2.4 Tarsi's Fixed Point Theorem

First, some introductory de�nitions regarding Order theory.

De�nition 11 ( Classes of preference relations) (I) If R is re�exive, symmetric and transitive it
is an equivalence relation

(II) If R is re�exive and transitive then R is a preorder [ preference relation]
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(III) If R is re�exive, transitive and antisymmetric then R is a partial order

(IV) A complete partial order is a linear order

De�nition 12 ( Poset/Loset) We call (X,R) a poset if R is a partial order, and a loset if R is a
linear order.

De�nition 13 (Maximal Element) Let < be a binary relation on X, the maximal elements of X
according to < are de�ned as Max(X,<) = {x ∈ X/y � x for no y ∈ X}

De�nition 14 (Conditional complete poset) Let (X,<) be a poset. We say that (X,<) is a
conditionally complete if < − sup exists for every nonempty subset S of X such that x < S holds
for at least one x in X. That is a poset (X,<) is conditionally complete i� any nonempty subset S
of X with an < −upper bound in X has a <-supremum in X.

De�nition 15 (Lattice) Let (X,<) be a poset. If x
∨
y and x

∧
y exists for every x, y ∈ X, we

say that (X,<) is a lattice. If
∨
S and

∧
S exist for every subset S of X, we then say that (X,<)

is a complete lattice.

Theorem 16 (Tarski's FPT) Let (X,<) be a conditionally complete poset with a < − minimum
and < −maximum. Then for every < −preserving self-map f on X, Fix(f) contains a <-minimum
and <-maximum element.

The following is a consequence of Tarski's �xed point theorem, which says that the �xed point

set of an order preserving self-map on a complete lattice, inherits the lattice structure of that poset,

that is, it is a complete lattice itself under the original partial order.

Theorem 17 (Knaster-Tarski's Theorem) Let (X,<) be a complete lattice and f a Let < −
preserving self-map on X. Then (Fix(f),<) is a complete lattice.

2.4.1 Applications

Example 18 For any positive integer n, let a and b be two n-vector with a 6 b and de�ne I +
[a1, b1] × ... × [an, bn] . Let fi : I → R be an increasing function and the set f : + (f1, ..., fn). As
(I,>) is a complete lattice and f is obviously > −preserving the Knaster-Tarski theorem says that
f is sure to have a �xed point, provided that a 6 f(a) 6 f(b) 6 b

Corollary 19 A corollary of the theorem is that every increasing self-map on [0, 1] has a �xed point.
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