EC1110: Intermediate Microeconomics

Fall 2009

Math Exercise

Mongoljin Batsaikhan

- 1. Derivative:
 - A. Take the first derivative of the following functions:

a)
$$Y = a + bX$$

b)
$$Y = aX^b$$

c)
$$Y = a + bX + cX^2$$

d)
$$Y = lnX + \sqrt{X}$$

e)
$$Y = log X^2$$

B. Take the first and second derivatives of the following functions:

a)
$$Y = a + bx + cx^2$$

b)
$$Y = log x$$

c)
$$Y = e^{x}x^{2}$$

C. Take all partial derivates of the following functions:

a)
$$f(x, y, z) = xyz + x^2y + z^3$$

b)
$$f(x, y) = xy(x^2 + y^2)$$

c)
$$f(x,y) = x \log y$$

2. Inverse Function: find the inverse function of the following functions. (if Y=f(X), then inverse function is X=f(Y).)

a)
$$Y = 4 + 5x$$

b)
$$C = \frac{5}{9}(F - 32)$$

- 3. Chain Rule:
 - a) y=f(z), z=g(x) Use the chain rule to calculate $\frac{dy}{dx}$
 - b) $P = (150 0.2q)^{0.5}$. Use the chain rule to calculate $\frac{dp}{dq}$
- 4. Cobb-Douglass Function: $x^{\alpha}y^{\beta}$ is generally called Cobb-Douglass functions.
 - a) Compute the first and second partial derivatives.
 - b) 3x + 2y = 6, x > 0, y > 0. Then what is the maximum value of xy?
 - c) 3x + 2y = 6, x > 0, y > 0. What is the maximum value of (1 y)x?