Intermediate Microeconomics - Spring 2016

Mark Dean

Homework 4

Due Wednesday 24th February

Question 1 (Edgeworth Box and Equilibrium) Geoff (consumer 1) and Stelling (consumer

- 2) live on a desert island. The only goods on the island are cod (c) and tanning oil (t). Geoff's initial endowment is $w_c^1 = 5$ and $w_t^1 = 1$. Stelling's initial endowment is $w_c^2 = 7$ and $w_t^2 = 6$
 - 1. Draw the Edgeworth box for this economy, along with the point that indicates the initial endowment of Geoff and Stelling
 - 2. Draw the budget sets for both Geoff and Stelling if $p_c = 2$ (normalizing the price of tanning oil to 1)
 - 3. Assume that Geoff has preferences given by $u^1(x_c^1, x_t^1) = x_c^1 x_t^1$ and Stelling has preferences given by $u^2(x_c^2, x_t^2) = (x_c^2)^2 x_t^2$. Solve the consumer problems for Geoff and Stelling when $p_c = 2$. Illustrate their optimal bundles in your Edgeworth box diagram.
 - 4. Can the economy be in equilibrium when $p_c = 1$? Explain why or why not.
 - 5. If you think $p_c = 1$ cannot support an equilibrium, calculate the equilibrium prices and demands for the economy. Illustrate them in the Edgeworth box
 - 6. Let p_c^* be the equilibrium price that you calculated in part 5. show that the economy would also be in equilibrium if the price of cod was $2p_c^*$, while the price of tanning oil was 2
 - 7. Rather than assuming we know the initial endowments of each person, calculate the equilibrium price as a function of w_c^1 , w_t^1 , w_c^2 , w_t^2

- 8. Does p_c increase or decrease as the **total** amount of cod in the economy increases (i.e. $w_c^1 + w_c^2$). Is the effect different depending on who gets the cod? (i.e. does a change in w_c^1 have a different impact on equilibrium prices than w_c^2)? If so, why do you think this is?
- 9. **(HARD so you have to think!).** What would the equilibrium prices and quantities be if the preferences for Geoff and Stelling were given by $u^1(x_c^1, x_t^1) = \min\{x_c^1, x_t^1\}$ and $u^1(x_c^2, x_t^2) = \min\{x_c^2, x_t^2\}$