2

4

# 1 Intermediate Microeconomics W3211 Introduction Lecture 8: Introduction Equilibrium and Efficiency 1 Introduction Columbia University, Spring 2016 Introduction

3

5

#### The Story So Far....

- We have solved the consumer's problem
   Determined what we think people will do given prices and income
- We have solved for equilibrium in an endowment economy
   Determined what we think prices and allocations will be
- This is quite impressive!
   We have our first prediction of how a simple economy works!
- Granted it is an economy that only has consumers in it
   We will get to firms soon enough

#### Today's Aims

- We are now going to talk about the welfare properties of an equilibrium
- Arguably this is one of the most interesting, but also misunderstood lectures in the entire course
- It is where economists sometimes stop being scientists and start being policy makers
   Positive economics: what will happen
  - Normative economics: What should happen

#### Today's Aims

- Begin by defining the concept of Pareto optimality
   Most economists would agree that if an allocation is 'good' it should be Pareto optimal
- Then introduce the first 'fundamental theorems of welfare economics'
- Describes the relationship between Pareto optimality and Market equilibria

Pareto Optimality

| Allocation x |                                                                           | Allocation y |        |
|--------------|---------------------------------------------------------------------------|--------------|--------|
| Kendrick     | Taylor                                                                    | Kendrick     | Taylor |
| 3            | 5                                                                         | 5            | 3      |
| 10           | 10                                                                        | 1            | 1      |
| 100          | 10                                                                        | 10           | 10     |
| 10           | 10                                                                        | 9.9          | 10000  |
|              | scribe the <mark>utility</mark> t<br>overnment could<br>o Y which would y |              | 0      |



| Allocation x |        | Allocation y |        |
|--------------|--------|--------------|--------|
| Kendrick     | Taylor | Kendrick     | Taylor |
| 3            | 5      | 5            | 3      |
| 10           | 10     | 1            | 1      |
| 100          | 10     | 10           | 10     |
| 10           | 10     | 9.9          | 10000  |
|              |        |              |        |

| Allocation x |        | Allocation y |        |  |
|--------------|--------|--------------|--------|--|
| Kendrick     | Taylor | Kendrick     | Taylor |  |
| 3            | 5      | 5            | 3      |  |
| 10           | 10     | 1            | 1      |  |
| 100          | 10     | 10           | 10     |  |
| 10           | 10     | 9.9          | 10000  |  |















#### Finding Pareto Optimal Points

- In other words
- $MRS_{a,b}^{1} = MRS_{a,b}^{2}$ Slope of the indifference curve of consumer 1 is the same as that of 2

19

- For a Pareto optimum, the rate at which consumer 1 trades off good a for b is the same as the rate at which consumer 2 trades off good a for b
- This makes sense: say consumer 1 'valued' a more than consumer 2
- i.e. consumer 1 was prepared to give up more b to get one unit of a than was consumer 2
- Could this be a Pareto optimum?
- $\hfill \ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\:\ensuremath{\lensuremath{\:\ensuremath{\lensuremath{\sle\smuremath{\sle\math{\sle\sle\smuremath{\sle\sle\sle\sle\sle\slen\sle\s$



# 21 The Contract Curve Remember the Social Planner's problem is given by CHOOSE (x<sup>1</sup><sub>a</sub>, x<sup>1</sup><sub>b</sub>), (x<sup>2</sup><sub>a</sub>, x<sup>2</sup><sub>b</sub>) IN ORDER TO MAXIMIZE u<sup>1</sup> (x<sup>1</sup><sub>a</sub>, x<sup>1</sup><sub>b</sub>) SUBJECT TO u<sup>2</sup>(x<sup>2</sup><sub>a</sub>, x<sup>2</sup><sub>b</sub>) = u Feasibility x<sup>1</sup><sub>a</sub> + x<sup>2</sup><sub>a</sub> = w<sup>1</sup><sub>a</sub> + w<sup>2</sup><sub>a</sub> and x<sup>1</sup><sub>b</sub> + x<sup>2</sup><sub>b</sub> = w<sup>1</sup><sub>b</sub> + w<sup>2</sup><sub>b</sub> There are many such problems, with different levels of u for consumer 2 I.e. different indifference curves

- Each of these problems has a different solution
- The set of solutions to all such problems is the set of Pareto optimal points
- This is sometimes also called the contract curve







# 25 A Worked Example First we will show that market equilibria are Pareto efficient Last week we calculated the equilibrium for the following economy The endowment of each agent w<sub>a</sub><sup>1</sup>=3 w<sub>b</sub><sup>2</sup>=2 w<sub>a</sub><sup>2</sup>=1 w<sub>b</sub><sup>2</sup>=5 2. The preferences of each agent u<sup>1</sup>(x<sub>a</sub><sup>1</sup>, x<sub>b</sub><sup>1</sup>) = x<sub>a</sub><sup>1</sup>x<sub>b</sub><sup>1</sup> u<sup>2</sup>(x<sub>a</sub><sup>2</sup>, x<sub>b</sub><sup>2</sup>) = x<sub>a</sub><sup>2</sup>x<sub>b</sub><sup>1</sup>









#### A Worked Example

- So this particular equilibrium is also Pareto optimal
- Why?
- Magic!
- (It's not Magic)
- The key observation is the following:
- For Pareto optima, the MRS of consumer 1 equals the MRS of consumer 2
- For a market equilibrium the MRS of consumer 1 equals the price ratio and the MRS of consumer 2 equals the price ratio
   And therefore equal each other

31

33

35



### The First Fundamental Theorem of Welfare Economics

- Now you should be asking the question: was there something special about this particular example?
- No!

The First Fundamental Theorem of Welfare Economics: If preferences are monotonic, then any competitive equilibrium is Pareto efficient

This result is so fundamental that we are going to prove it!



#### The First Fundamental Theorem of

Welfare Economics • Now, as  $(x_a^1, x_b^1)$ ,  $(x_a^2, x_b^2)$  is part of an equilibrium, and

 $u^2(y_a^2, y_b^2) > u^2(x_a^2, x_b^2)$ , it must be the case that that consumer 2 could not afford  $y_a^2, y_b^2$  given prices  $p_a$ = This follows from optimality, so

 $p_a y_a^2 + y_b^2 > p_a w_a^2 + w_b^2$ 

= Similarly, as for consumer 1  $u^1(y^1_a, y^1_b) \ge u^1(x^1_a, x^1_b)$ , it must be the case that

 $p_a y_a^1 + y_b^1 \geq p_a w_a^1 + w_b^1$ 

(Note that this is where we are using monotonicity)

## The First Fundamental Theorem of Welfare Economics

Adding these two up gives

 $p_a y_a^2 + y_b^2 + p_a y_a^1 + y_b^1 > p_a w_a^2 + w_b^2 + p_a w_a^1 + w_b^1$ 

• Or, rearranging  

$$p_a(y_a^2 + y_a^1 - w_a^2 - w_a^1) + (y_b^2 + y_b^1 - w_b^2 - w_b^1) > 0$$

Which is only possible if either

 $\begin{array}{c} y_a^2 + y_a^1 \!\!> w_a^2 + w_a^1 \; \text{or} \\ y_b^2 + y_b^1 \!\!> w_b^2 + w_b^1 \end{array}$ 

- **•** Either way,  $(y_a^1, y_b^1)$ ,  $(y_a^2, y_b^2)$  are not feasible
- Contradiction!

### The First Fundamental Theorem of Welfare Economics

This is a phenomenally powerful result

- Though see caveats in next section
- The basis of much of 'free market' economics
- To see how powerful, try to think of other ways of allocating goods to the two people in the economy that are guaranteed to be Pareto optimal
- NOT
- Making people eat their endowment
- Giving everyone the same amount of each good
- Letting the government decide what each person gets
   Fix the price, let one consumer choose how much they want to buy, then ration the other

Summary

38

#### Summary

39

37

- Today we have done the following
- Defined the concept of Pareto dominance and Pareto optimality as a measure of welfare
- 2. Introduced the first fundamental theorems of welfare economics
- 1. FFTWE: A competitive equilibrium is Pareto efficient