Derivatives

Mark Dean

Lecture Notes for Fall 2014 PhD Class - Brown University

I would guess that it would be almost impossible for you to get this far in your economics education without having a good intuitive (and probably quite good technical) understanding of how derivatives work, so this section will be very quick. First, a reminder of what a derivative is, and what we mean by a differentiable function on some open interval of \mathbb{R}

Definition 1 Let $f : (a, b) \to \mathbb{R}$. Define the quotient function $\phi(t)$ as

$$\phi(t) = \frac{f(t) - f(x)}{t - x}$$

We say that f is differentiable at $x \in (a, b)$, if $\lim_{t\to x} \phi(t)$ exists - in other words there exists some y such that, for every $\varepsilon > 0$ there exists some $\delta > 0$ such that $|t - x| < \delta$ implies that $|y - \phi(t)| < \varepsilon$. If this is the case, we define the derivative as $f'(x) = \lim_{t\to x} \phi(t)$

We say that a function is differentiable on (a, b) if it is differentiable at any $x \in (a, b)$. We say it is continuously differentiable if the function $f' : (a, b) \to \mathbb{R}$ is continuous. Such functions are belong to the class C^1 . A function is twice (continuously) differentiable if $f' : (a, b) \to \mathbb{R}$ is (continuously) differentiable. Such functions belong to the class C^2

If $f: X \to \mathbb{R}$ where X is an open cube in \mathbb{R}^n , then, at any $x = (x_1, x_2, ..., x_n)$ we define the partial derivative with respect to x_i as

$$\frac{\partial f(x)}{\partial x_i} = \lim_{\varepsilon \to 0} \frac{f(x) - f(x + \varepsilon e_i)}{\varepsilon}$$

if such a limit exists, and define

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Obviously, the reason that we are here interested in derivatives is they tell us something about the slope of a function. In particular, we are going to be interested in how the derivative of a function can help us find local maxima and minima. For brevity we will deal with local maxima here, but local minima can be treated analogously.

Definition 2 Let $f: X \to \mathbb{R}$ where $X \subset \mathbb{R}^n$. x^* is a local maximizer of f if there exists $\varepsilon > 0$ such that $f(x^*) \ge f(x) \ \forall \ x \in B(x^*, \varepsilon) \cap X$. It is a strict local maximizer if $f(x^*) > f(x) \ \forall x \in B(x^*, \varepsilon) \cap X$ s.t. $x \neq x^*$

Intuitively, we know that if x^* is a local maximizer in the interior of the domain of a function, then it must have a derivative of 0.

Lemma 1 Let $f:(a,b) \to \mathbb{R}$ and $x^* \in (a,b)$ be a local maximizer, then $f'(x^*) = 0$

Proof. Note that, for any $\varepsilon > 0$,

$$\phi(x+\varepsilon) = \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$

$$\Rightarrow f(x+\varepsilon) = \varepsilon \phi(x+\varepsilon) + f(x)$$

$$= f(x) + \varepsilon f'(x) + \varepsilon \left(\phi(x+\varepsilon) - f'(x)\right)$$

As $f(x^*)$ is a local maximizer, $f(x + \varepsilon) \leq f(x^*)$ for ε small enough and so

$$\begin{aligned} f(x^*) + \varepsilon f'(x^*) + \varepsilon \left(\phi(x^* + \varepsilon) - f'(x^*) \right) &\leq f(x^*) \\ \Rightarrow f'(x^*) \leq - \left(\phi(x^* + \varepsilon) - f'(x^*) \right) \end{aligned}$$

but as $-(\phi(x^* + \varepsilon) - f'(x^*)) \to 0$ as $\varepsilon \to 0$, this implies $f'(x^*) \le 0$

A similar argument gives

$$f(x - \varepsilon) = -\varepsilon \phi(x - \varepsilon) + f(x)$$

= $f(x) - \varepsilon f'(x) + \varepsilon (f'(x) - \phi(x + \varepsilon))$

and so

$$f(x^*) - \varepsilon f'(x^*) + \varepsilon \left(f'(x^*) - \phi(x^* - \varepsilon) \right) \leq f(x^*)$$

$$\Rightarrow f'(x^*) \geq \left(f'(x^*) - \phi(x^* - \varepsilon) \right)$$

giving $f'(x^*) \ge 0$ and so $f'(x^*) = 0$

We can use this result to derive Rolle's theorem.

Theorem 1 (Rolle) Let $f : [a, b] \to \mathbb{R}$ be differentiable, and say f(a) = f(b). Then f'(c) = 0 for some $c \in (a, b)$

Proof. As f is differentiable, it is continuous (see homework). This implies (by Weierstrass theorem) that there exists an $a \le x, y \le b$ such that $f(x) \le f(t) \le f(y) \forall t \in [a, b]$. If $\{x, y\} = \{a, b\}$ then f must be constant, and so $f'(t) = 0 \forall t \in [a, b]$. Otherwise, either $x \in (a, b)$ or $y \in (a, b)$, and by lemma 1 f'(x) = 0 or f'(y) = 0

Another useful thing we can do with derivatives is use them to approximate function: as the derivative gives us the slope of a function at a particular point x, then we can approximate $f(x + \varepsilon)$ by $f(x) + \varepsilon f(x)$. This is a Taylor series approximation. To make this precise, we are going to formally define the idea of an error being small:

Definition 3 $h : \mathbb{R}^n \to \mathbb{R}$ is 'little oh' of order k, which we denote as $h(x) = o(||x||^k)$ if

$$\lim_{x \to 0} \frac{h(x)}{||x||^k} = 0$$

Thus, if a function h(x) is $o(||x||^k)$, then h(x) gets small 'quickly', in the sense that it does so quicker than $\frac{1}{||x||^k}$ gets big.

Theorem 2 Let $f : [a,b] \to \mathbb{R}$ be \mathcal{C}^2 . Then for any $x, x + \varepsilon \in (a,b)$

$$f(x+\varepsilon) = f(x) + f'(x)\varepsilon + o(\varepsilon)$$

Proof. Note that this can be proved relatively easily from the definition of the derivative. Rearranging the above expression gives

$$\frac{f(x+\varepsilon) - f(x)}{\varepsilon} - f'(x) = \frac{o(\varepsilon)}{\varepsilon}$$

The limit of the left hand side equals zero, and therefore so does the limit of the right hand side.

A more long winded proof, which is useful as it can be generalized to prove higher order approximations, is as follows:

Let

$$g(t) = f(t) - [f(x) + f'(x)(t-x)] - M(t-x)^2$$

Where

$$M = \frac{1}{\varepsilon^2} \left[f(x+\varepsilon) - f(x) - f'(x)\varepsilon \right]$$

Note that

$$g(x+\varepsilon) = 0$$
$$g(x) = 0$$

Also note that

$$g'(t) = f'(t) - f'(x) - 2M(t - x)$$

and so g'(x) = 0

Applying Rolle's theorem tells us that there exists a $c_1 \in (x, x+\varepsilon)$ such that $g'(c_1) = 0$. Applying Rolle's theorem again tells us that there is a $c \in (x, c_1)$ such that g''(c) = 0,

As

$$g''(t) = f''(t) - 2M$$

This tells us that f''(c) = 2M and so

$$f''(c) = \frac{2}{\varepsilon^2} \left[f(x+\varepsilon) - f(x) - f'(x)\varepsilon \right]$$

$$\Rightarrow \quad f(x+\varepsilon) = f(x) + f'(x)\varepsilon + \frac{\varepsilon^2}{2} f''(c)$$

Note here that c here is really a function of the ε we initially chose. But, as f''(c) is bounded (as it is continuous on [a, b]), then

$$\frac{\frac{\varepsilon^2}{2}f''(c(\varepsilon))}{\varepsilon} = \frac{\varepsilon}{2}f''(c(\varepsilon))$$

tends to zero, giving the necessary result \blacksquare

An extension, which we will state but not prove, tells us that we can get an even better approximation if we also use a second derivative.

Theorem 3 Let $f : [a, b] \to \mathbb{R}$ be \mathcal{C}^3 . Then for any $x, x + \varepsilon \in (a, b)$

$$f(x+\varepsilon) = f(x) + f'(x)\varepsilon + \frac{1}{2}f''(x)\varepsilon^2 + o(\varepsilon^2)$$