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I would guess that it would be almost impossible for you to get this far in your economics
education without having a good intuitive (and probably quite good technical) understanding of
how derivatives work, so this section will be very quick. First, a reminder of what a derivative is,

and what we mean by a differentiable function on some open interval of R

Definition 1 Let f : (a,b) — R. Define the quotient function ¢(t) as

f(t) = f(=z)
t) = ———=
o(t) = 9=
We say that f is differentiable at x € (a,b), if limy_., ¢(t) exists - in other words there exists some
y such that, for every e > 0 there exists some 6 > 0 such that |t — x| < & implies that |y — (t)| < €.

If this is the case, we define the derivative as f'(x) = limy_,, ¢(t)

We say that a function is differentiable on (a,b) if it is differentiable at any x € (a,b). We
say it is continuously differentiable if the function f' : (a,b) — R is continuous. Such functions
are belong to the class Ct. A function is twice (continuously) differentiable if f' : (a,b) — R is

(continuously) differentiable. Such functions belong to the class C?

If f: X — R where X is an open cube in R™, then, at any x = (x1,x2,...Ty) we define the

partial derivative with respect to x; as

0f(@) _ . f(@) = fla+ze)

8.%' e—0 £




if such a limit exists, and define

Vi(z) =

O0xn

Obviously, the reason that we are here interested in derivatives is they tell us something about
the slope of a function. In particular, we are going to be interested in how the derivative of a
function can help us find local maxima and minima. For brevity we will deal with local maxima

here, but local minima can be treated analagously.

Definition 2 Let f : X — R where X C R™. z* is a local mazximizer of f if there exists € > 0
such that f(z*) > f(z) V € B(a*,e) N X. It is a strict local mazimizer if f(z*) > f(z) V
x € B(z*,e)NX s.t. x#x*

Intuitively, we know that if z* is a local maximizer in the interior of the domain of a function,

then it must have a derivative of 0.

Lemma 1 Let f : (a,b) — R and z* € (a,b) be a local mazimizer, then f'(x*) =0

Proof. Note that, for any € > 0,
flt+e) - fl=)

9
= flz+e)=ed(z+e)+ f(z)

f@)+ef (@) +e(d(z+e) — f(z))

o(x+e)

As f(x*) is a local mazimizer, f(x +¢) < f(z*) for € small enough and so
fa®) +ef' (@) +e (o +¢) = f'(=") < fla)
= fl(a*) < — (o +¢) - f'(a"))
but as — (¢p(x* +¢) — f'(z*)) — 0 as € — 0, this implies f'(z*) <0
A similar argument gives

fle—e) = —ed(z—e)+ f(z)
= fl@)—ef'(z) +e(f(2) — bz +2))



and so

fl@) —ef' (@) +e(f(@") —o(a" —¢)) < f(a")
= f(@") = (f(&") — ¢(a" —2))

gwing f'(z*) >0 and so f'(z*) =0 m
We can use this result to derive Rolle’s theorem.

Theorem 1 (Rolle) Let f : [a,b] — R be differentiable, and say f(a) = f(b). Then f'(c) =0 for

some ¢ € (a,b)

Proof. As f is differentiable, it is continuous (see homework). This implies (by Weierstrass theo-
rem) that there ezists an a < x,y < b such that f(zx) < f(t) < f(y) Y t € [a,b]. If {z,y} = {a,b}
then f must be constant, and so f'(t) = 0V t € [a,b]. Otherwise, either x € (a,b) ory € (a,b),
and by lemma 1 f'(x) =0 or f'(y) =0 m

Another useful thing we can do with derivatives is use them to approximate function: as the
derivative gives us the slope of a function at a particular point x, then we can approximate f(z+¢)
by f(x)+ ef(x). This is a Taylor series approximation. To make this precise, we are going to

formally define the idea of an error being small:

Definition 3 h:R™ — R is little oh’ of order k, which we denote as h(x) = o(||z||¥) if

lim &x‘?ﬁ =0
2—0 ||z|

Thus, if a function h(z) is o(||z||*), then h(x) gets small ‘quickly’, in the sense that it does so
quicker than W gets big.
Theorem 2 Let f : [a,b] — R be C2. Then for any x,x + ¢ € (a,b)

flz+e) = f(z)+ f()e + o)

Proof. Note that this can be proved relatively easily from the definition of the derivative. Rear-

ranging the above expression gives

flz+e) = f(z)




The limit of the left hand side equals zero, and therefore so does the limit of the right hand side.

A more long winded proof, which is useful as it can be generalized to prove higher order approx-

imations, is as follows:

Let
ol1) = 110) ~ [£(0) + J'(@)(t — )] ~ M1 — 2
Where
M=% 1w+ e) - 1)~ @)
Note that
ge+e) = 0
glz) = 0

Also note that

and so ¢'(x) =0

Applying Rolle’s theorem tells us that there exists a ¢c1 € (x,x+¢€) such that ¢'(c1) = 0. Applying

Rolle’s theorem again tells us that there is a ¢ € (x,¢1) such that g"(c) =0,

As

This tells us that f"(c) = 2M and so

@) = Sl +e) - f@) - )]

= fla+e) = f@)+ f@)e+ 5170

Note here that ¢ here is really a function of the € we initially chose. But, as f"(c) is bounded

(as it is continuous on [a,b]), then

= 5f"(c(e))

S1'ce) e
€ 2

tends to zero, giving the necessary result M



An extension, which we will state but not prove, tells us that we can get an even better

approximation if we also use a second derivative.

Theorem 3 Let f : [a,b] — R be C3. Then for any x,x + ¢ € (a,b)

Fla ) = F&) + £ @)e + 51" (2) + ole?)



