
2 Lecture 2

2.1 Span, Basis and Dimensions

Related to the concept of a linear combination is that of the span. The span of a collection of

objects is the set of all linear combinations of those objects

Definition 5 Let (+ •) be a linear space. The span of  ⊂  is defined as follows:

() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X
=1

|
 ∈ N

1   ∈ R
1   ∈ 

⎫⎪⎪⎪⎬⎪⎪⎪⎭
It should be obvious that the span of any set  ⊂  forms a linear subspace of  . What might

be less obvious is that it is the smallest linear subspace that contains , but this should be obvious

from the fact that any subspace is closed under addition and scalar multiplication.

In R2, the span of any single vector is the line that goes through the origin and that vector.2

The span of any two vectors in R2 is generally equal to R2 itself. This is only not true if the two

vectors lie on the same line - i.e. they are linearly dependent, in which case the span is still just

a line. This is a demonstration of an important property: adding linearly dependent elements to

a set does not increase its span. In fact, more generally all objects that are linear combinations of

that set will already be in its span.

Proposition 1 Let   ⊂  where  is a linear space. If every element of  is a linear combi-

nation of elements of  then

1.  ∈ ()

2. ( ∪  ) = ()

Proof. Part one follows obviously from the definition (check). To prove part two, we need to show

both that ( ∪  ) ⊆ () and ( ∪  ) ⊇ (). The second part is obvious (check).

2This brings up the question: what is the span of the vector (0 0)? The answer is that, by convention, we set the

span of the zero element to equal only that element in any linear space.
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To see the first part, let  ∈ ( ∪  ). This means that

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X
=1

|
 ∈ 

1   ∈ R
1   ∈  ∪ 

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Note that there exists a finite collection of objects {1  } ∈  such that for every  we can

find a set of real numbers
©
1  




ª ∈ R such that

 =

X
=1



This is because either  ∈ , in which case we can include  in the set {1  }, or  ∈  ,

and so is a linear combination of elements in .

Thus

 =

X
=1



⎛⎝ X
=1



⎞⎠
=

X
=1

Ã
X
=1



!


∈ ()

You should check that you agree with the second line here.

An obvious corollary to this is that if a set  is linearly dependent, then there is a subset of 

which has the same span. In fact, this result is if and only if:

Corollary 1 Let  ⊂  be a subset of the linear space  . Then there exists a strict subset  ⊂ 

such that () = ( ) if and only if  is linearly dependent.

Proof. Left as exercise.

One obvious question is: what do we know about sets of objects that span the entire linear

space  ? In particular, how many objects do we need to span  ? A minimal spanning set for a

linear space  is called a basis
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Definition 6 A basis for a linear space  is a ⊇-minimal subset of  that spans  . In other

words,  is a basis of  if

1. () = 

2. If ( ) =  then  ⊂  is false

Thus, in some sense, a basis of  is the smallest possible set that spans  .

This implies that any basis for  must be linearly independent:

Corollary 2 A subset  of a linear space  is a basis for  if and only if  is linearly independent,

and () = 

In fact, the relationship between the span and linear dependence goes deeper than that.

Theorem 2 If a collection of objects  = {1 2  } is a basis of  , and {1  } are linearly
independent vectors in  , then it must be the case that  ≤ 

Proof. As  is a basis of  , we know that, for some collection of scalars {1  }

1 =

X
=1



WLOG assume that 1 6= 0 (why can we assume this?). Then

1 =
1

1
1 −

X
=2



1


Which implies that {1 2  } = 

Now, we know that {1 2} are linearly independent. We also know that there exists a set of
scalars {1  } such that

2 = 11 +

X
=2



Again, we can assume that 2 6= 0 (why), so repeating the above trick we know that {1 2  } =
 . Iterating, we get that {1 2  } =  .
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By contradiction, assume that   . Then {1 2   +1} is linearly independent, but we
know that {1 2  } =  , so +1 can be expressed as a linear combination of {1 2  },
a contradiction.

An immediate corollary to this is the following

Corollary 3 Any two bases of a linear space  must have the same number of elements.

Of course, a basis is not generally unique. In R2 any two linearly independent vectors span R2.

By convention, we call (1 0), (0 1) to be the standard basis of R2. More generally, let the  length

vector  take the value 0 in every position apart from , where it takes the value 1. The collection

1   is the standard basis for R (you should check that this is actually basis).

The size of the bases of a linear space is one of its important properties - we call it the dimension

of the space.

Definition 7 If a linear space  has a finite basis  then we say that  is finite dimensional, and

has dimension dim( ) = ||. If  has no finite basis, then we say that it is infinitely dimensional,

and dim( ) = +∞

The idea of dimensionality is well defined by corollary 3. The dimension of a linear space

tells us something about its size, in the sense that the dimension is the largest number of linearly

independent objects that one can find in that linear space. In fact, any linearly independent subset

of a linear space of size equal to the dimension of that space is a basis.

Thus, it is clear that dim(R) = . There are lots of examples of infinite dimensional spaces

(and in some ways this is where the mechanics that we are building here become useful). One

obvious infinite dimensional space is  = R[01]. Another is the family of bounded functions on

some space  where | | =∞

Drawing together the previous results we have on spans and linear independence, we can make

the following claim:

Claim 3 Let  be a linear space, {1  } ∈  and dim( ) = . The following statements are

equivalent:

10



1. {1  } is linearly independent

2. ({1  }) = 

3. {1  } is a basis for 

One final important property of a basis of a linear space is that it allows a unique representation

of that space, as defined by the following theorem:

Theorem 4 Let  be a linear space and {1  } be a basis for  . Then every  ∈  has a

unique representation of the form

 = 11 + + 

{1  } ∈ R

Proof. That every  can be represented in this way follows from the definition of a basis. The

uniqueness part can be shown by contradiction. Say there exist two vectors

{1  } {1  } ∈ R such that

 = 11+ +

 = 11+ +

This implies that

∅

= − 

=

X
=1

( − )

But as {1  } is a basis, it must be linearly independent, and so the only way for this to be
true is for ( − ) = 0 ∀ , implying  =  ∀ 

2.2 Application: Arbitrage Pricing

Let’s consider a world in which there are  commodities. We can think of these commodities as

being defined by different physical characteristics, different delivery dates, or as delivering goods in
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different states of nature. A commodity bundle is an -tuple of commodities {1  }, where 
represents the amount of good  in the bundle. If we allow for negative as well as positive quantities

of each good, then the commodity space  (i.e. the set of commodity bundles) is a linear space.

A security is a claim on a commodity bundle (equivalently, we can just think of them as

commodity bundles that can be traded). Thus, we can represent a security as an −length vector.
Let’s say that there are  securities. A portfolio is represented by a vector  ∈ {1  } ∈ R

representing the amount of each security owned (note that these can be either positive or negative).

Thus, a portfolio is a claim to a commodity bundle

 =

X
=1



Remark 2 The set of feasible commodity bundles generated by a set of securities  = {1 }
is the span of  . Thus, in order for a set of securities to span the commodity space, it must be the

case that  contains a basis for This in turn implies that ‘complete markets’ (i.e the possibility

to construct any commodity bundle) require there to be  linearly independent securities.

Say that these securities can be bought and sold on the market. The price of security  is  ,

and let  = {1  } ∈ R be the set of security prices. Thus, the value of a portfolio is given byP
=1  . We say that an arbitrage exists at the price vector  if there exists a portfolio  such

that

X
=1

  0

X
=1

 = 0

In other words, an arbitrage means that there is a portfolio that gives a net payoff of 0 of each

commodity, but has positive value. Obviously, if such a portfolio existed, then one could make an

infinite amount of risk free profit. If no such commodity exists, then we say that the price vector

 satisfies the no arbitrage condition

Remark 3 An arbitrage opportunity can only exist if the set of securities is linearly dependent - in

other words there exist some redundant securities that are linear combinations of other securities
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