
4 Lecture 4

4.1 Affinity

We are now going to move on to a discussion of affinity. This is going to be closely related to the

concept of linearity, but is more general. What I mean by this can be demonstrated in the following

example. Consider the set

{ ∈ R|1 + 2 = 1}

Is this a linear subspace? No - because it doesn’t contain the zero element. However it looks

like a lot like a linear subspace. In fact, it is the linear subspace { ∈ R|1 + 2 = 0} translated
(or shifted in a parallel way) by adding a vector (say (0 1)) to each of its elements. This is how we

are going to define a concept called an affine manifold.

In order to define this concept formally, we are going to first need to define the notation of the

addition of subsets

Definition 17 For any two subsets   of a linear space  , we define + in the following way:

 +  = {+ | ∈   ∈ }

if  = {}, we use the shorthand +  rather than {}+ 

We can now define an affine manifold, and the related concept of a hyperplane

Definition 18 A subset  of a linear space  is an affine manifold of  if  =  + ∗ for some

linear subspace  of  and some ∗ ∈  . If  is a ⊇ −maximal proper subspace of  then we call

 a hyperplane

So what I mean by affinity being more general than linearity is something like the following:

affinity=linearity+translation

So what do manifolds and hyperplanes look like in R2? Well, firstly, remember that there are

two classes of linear subspace in R2 : 0, and any line through the origin. Thus, we have two classes
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of affine manifold: any point, and any line. The latter is clearly the class of hyperplanes in R2.

Similarly, in R3 we have three classes of affine manifolds: points, lines and planes, with planes being

the hyperplanes.

This means that in R2, any hyperplane can be defined by a function of the form 11+22 = 

(as any line can be written in this form). In other words, they are described by the set

{|   = }

for some  ∈ R2 and  ∈ R. In fact, it turns out that this is a general characterization of hyperplanes
in R

Proposition 2 A set  ∈ R is a hyperplane if and only if  = { ∈ R|   = } for some
 ∈ R∅,  ∈ R.

Proof. Beyond the scope of the course. See Ok F.2.4. if you are keen.

In R2 this proposition formalizes the idea that a hyperplane is a line, and so defined by its slope

() and intercept ().

This definition allows us to think of dividing R into two sets that we call half-spaces:

Definition 19 Any hyperplane in R generates two closed half-spaces

≥( ) = {|    ≥ }

≤( ) = {|    ≤ }

Open half-spaces are defined analogously.

Hyperplanes and half spaces are going to turn out to be very important, because it turns out

that hyperplanes can be used to separate and support convex sets. This important property is

going to be the basis of the optimization results that we will prove later on.

What are some of the properties of affine manifolds and hyperplanes? Well first of all, note that

all linear subspaces are affine manifolds (yes?), though the converse is clearly not true. However,

the following is true
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Remark 5 An affine manifold  of a linear space  is a linear subspace of  if and only if ∅ ∈ 

Proof. If  is a linear space, then clearly ∅ must be in . To go the other way, start with the fact

that  =  + ∗ for some linear subspace  of  and some ∗ ∈  . If ∅ ∈  then it must be the

case that ∅ =  + ∗ for some  ∈ , and so −∗ ∈ . As  is closed under addition, this implies

that ∗ ∈ , and so (again by the fact that  is closed under addition)  =  + ∗ = 

If we translate an affine manifold  by subtracting any  ∈  we will get a linear subspace.

Moreover, we will get the same linear subspace regardless of which element in  we use for the

translation. Thus, any affine manifold is closely linked to a particular subspace.

Remark 6 Let  be an affine manifold of a linear space  and   ∈ . Then  −  =  −  and

both are linear subspaces.

Proof. To show that  −  is a linear space, note first that it is an affine manifold, as for some

subspace  and ∗ ∈   =  + ∗, then

 − 

= {+ (−)| ∈ }

= {+ (−)| ∈ { + ∗| ∈ }}

= { + (∗ + (−))| ∈ }

Next note that it contains ∅ as  ∈  so ∅ = (+ (−)) ∈  − , and so by remark 5,  −  is

a linear subspace

To show that any two elements produce the same subspace, take some element  ∈ − and we
will show that it is also in  − . First note that  −  ∈  − , and as  −  is a linear subspace,

this means that  +  −  ∈  − . This means that there is some  ∈  such that

 +  −  = − 

 +  = 

 = − 
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We can extend the concept of a dimension to affine manifolds by using the dimension of the

linear subspace that generated the affine manifold.

Definition 20 Let  be a linear space and  be an affine manifold in  then we define the di-

mension of  as

dim() = dim( − )  ∈ 

Note that this definition is independent of the choice of  by remark 6. Note also that this

implies that, for a linear space  of dimension , the dimension of any hyperplane is − 1.

One extremely nice property of affine manifolds is the following.

Proposition 3 Let  be a linear space, and ∅ 6=  ⊂  . Then  is an affine manifold if and only

if

+ (1− ) ∈  for all   ∈ ,  ∈ R

Proof. Exercise

This is not the same as saying that affine manifolds are closed under addition and scalar mul-

tiplication (the above results tell us that, right?), but it has a similar flavor.
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5 Lecture 5

5.1 Linear Operators and Linear Functionals

We are now going to move on to talk about an extremely important class of operators. These are

linear operators (or linear transformation) - operators that map one linear space into another

in a way that preserves linearity

Definition 21 Let  and be two linear spaces. A function  :  → is called a linear operator

(or linear transformation) if

(+ 0) = () + (0) ∀  0 ∈ ,  ∈ R

A real valued linear operation is called a linear functional

Note that the addition and scalar multiplication on the left hand side of the above equation are

not necessarily the same as those on the right.

Definition 22 L( ) is the set of all linear functionals that map  to 

As usual, we can gain intuition by thinking about what linear operators look like in R. It turns

out that any linear operator that maps R to R can be written as a an  ×  matrix. (This,

finally, may answer the question as to how the ‘linear algebra’ that we have been studying relates

to the ‘linear algebra’ that you have done in high school or college

Remark 7 The function  : R → R is a linear operator if and only if ∃  ∈ R× such that

() =  ∀  ∈ R, defined as

 =

⎛⎝ X
=1

1  

X
=1



⎞⎠
Proof. The fact that such a function is a linear operator is easy to check. To show that any

 ∈ L(RR) can be written this way, take such a function, and define  : R → R as the

function that maps each  ∈ R to the th component of (). Check that you agree that  has
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to be a linear functional on R Now, let {1  } be the standard basis for R. Then, for any

 ∈ R

 =

X
=1




meaning that

() = 

⎛⎝ X
=1




⎞⎠
=

X
=1

(
)

Thus, we can obtain the desired result by setting  := [(
)]×

Note that this implies we can write any linear functional on R as  =   for some  ∈ R

Of course, we have other examples of linear operators

Example 4 Let 1[0 1] be the linear space of all continuously differentiable functions on [0 1] (with

addition and scalar multiplication defined in the standard way), and define  : 1[0 1] → [0 1]

as () = 
0
. Then ( + ) =  0+ 0 (as, if () = ()+ () then

()


= 
()


+
()

),

and so  is a linear operator.

5.2 Null Space

Definition 23 The null space of a linear operator  that maps  to  is the subset of  that

maps to the zero element in 

() := { ∈  |() = ∅}

Some properties of linear operators and the null-space which are going to come in useful are as

follows

Remark 8 The following hold true for any arbitrary linear spaces  and  and any  ∈ L( )

1. ∅ ∈ ()
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2.  is injective if and only if () = {∅}

3. () is a linear subspace of 

4. ( ) is a linear subspace of 

Proof. The proofs for these claims are as follows

1. By the definition of a linear operator, () = ( + ∅) = () + (∅). for any  ∈  . Add

 + (−()) to either side of this equation gives  =  + (∅) for any arbitrary  ∈ 

2. Say ∅ 6=  ∈ (). Then (+ ) = () + () = () for any  ∈  , so the function is

not injective. Now, say that () = {∅}. Then, for   ∈ 

() = ()

⇒ ()− () = ∅

⇒ (− ) = ∅

⇒  = 

3. Here we have to show that () is closed under addition and scalar multiplication (we know

it is non-empty by point 1 above). Say that   ∈ () Then, for any  ∈ R

(+ )

= () + ()

= ∅

so +  ∈ ()

4. Again, we have to show that ( ) is closed under addition and scalar multiplication. Say

that   ∈ ( ) Then there exists   ∈  such that () =  and () = . Then, for any

 ∈ R

(+ )

= () + ()

= + 

so +  ∈ ( )
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5.3 The Fundamental Theorem of Linear Algebra

We are next going to prove a result so important that it goes by the name of the Fundamental

Theorem of Linear Algebra (actually this is just one version of it - we will come back to it - and

explain why it is so important - later on).

Theorem 13 Given any two linear spaces  and 

dim(()) + dim(( )) = dim( )

∀  ∈ L( )

Proof. This proof is going to rely on the result that any linearly independent subset of a linear

space can be extended to a basis for that space. You have proved this for the finite dimension case

for homework, but it is in fact also true for the infinite dimension case. Thus, let  be a basis for

(). Now extend  to be a basis for  , . I claim that () is a basis for ( ). First, we

need to show that () spans ( ). To see this, say that  ∈ ( ). Then there must a  ∈ 

such that  = () As  is a basis for  , we know that there is some finite collection 1  ∈ 

and 1   ∈ R such that
X
=1

 = 

WLOG, assume    ∈  and +1   ∈ . Then

 = ()

= 

Ã
X
=1



!

=

X
=1

()

=

X
=1

() +

X
=+1

()

But by definition of  (and ()), () = ∅ ∀  ≤ , so we have

 =

X
=+1

()
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and so () spans (). All that remains to be shown is that () is a linearly indepen-

dent set. This is left as an exercise

Thus, we have

|| = ||+ ||

⇒ dim( ) = dim(()) + dim(( ))
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6 Lecture 6

6.1 Linear Algebra on R

One thing that might be puzzling you (it certainly puzzled me for a long time) is what the concepts

of linear algebra that we have discussed here have to do with the concepts that are taught in

standard undergraduate classes, which are generally to do with matrices, and finding solutions to

systems of equations. We have already had one answer: that linear operators mapping R to R

can be thought of as matrices. However, there is a deeper link as we will see.

This section is going to deal with × matrices

 =

11  1
...

...

1  

Remember, we can think of  as a linear function mapping R to R, which we write as .

We can think of this matrix as consisting of a set of  vectors in R which we denote as

{1 }. i.e. we can think of

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
...



⎫⎪⎪⎪⎬⎪⎪⎪⎭
Where  = {1  }. By doing so, we can define the row space of  as the subspace of R

spanned by {1 }.
row() = {1 }

Now, remember that an elementary row operation is one of the following

1. interchange two rows of a matrix

2. change a row by adding to it a multiple of another row

3. multiplying each element in a row by a non-zero number

Also remember that a matrix  is in row echelon form of  if  can be obtained from
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 using elementary row operations, and every row of  has more leading zeros than the one

proceeding it.

The following facts should now be self evident (if they are not, make sure you prove them)

Remark 9 Let  be a row echelon form of  then

1. row() = row()

2. The non-zero row vectors of  are a basis for row()

3. dim(row()) is the rank of 

Next, we move on to the column space attached to . This is entirely analogous to the row

space: the columns {1  } of  are a collection of vectors in R. i.e. we can rewrite  as

 =
n
1 · · · 

o

where  =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
...



⎫⎪⎪⎪⎬⎪⎪⎪⎭. So we can define the column space of  as the subspace of R spanned by

{1  } :
col() = (1  )

Now, remember that a pivot is the first non-zero entry of any row in the row echelon form of

a matrix. We can define a column of  as basic if the corresponding column of a row echelon form

of the matrix contains a pivot. It is less obvious but true (you can read it in Simon and Blume pp

775) that the basic columns of  form a basis of col(). This gives the following result:

Remark 10 dim(row()) = dim(col()) = ()

The column space of a matrix is important for solving systems of equations. Think of the

system represented by

 = 
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or in other words

111 + + 1 = 1

211 + + 2 = 2

...

11 + +  = 

or, but another way

11 + +  = 

In other words, denoting  as (), we can see that (R) = col()

This gives us the following theorem

Theorem 14 Let  be an × matrix

1. A system of equations  =  has a solution if and only if  ∈ col()

2. A system of equations only has a solution for any  if col() spans R, and so dim(col()) =

 = ()

3. If this is the case, then  = () ≤ 

4. The space of solutions to any system of equations is an affine manifold

1. The dimention of that set of solutions is equal to − ()

Finally, note that, for the linear function represented by , the nullspace is the set of solutions

{ ∈ R| = 0}
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6.2 Isomorphisms

We are now going to move on to talk about isomorphisms, a class of linear functionals that are

important in determining the relationship between two linear spaces

Definition 24 For two linear spaces  and  , a function  ∈ L( ) is an isomorphism if it is

bijective - i.e. it is one-to one and onto - i.e. for every element  ∈  there is one and only one

 ∈  such that () = . If there exists an isomorphism between  and  we call the two spaces

isomorphic.

It should be clear that there cannot be an isomorphism between a finite dimension and an

infinite dimensional space, so here we are going to focus on finite dimensional space. Here, we get

a nice result

Proposition 4 Two finite dimensional spaces are isomorphic if and only if they have the same

dimension

Proof. First we are going to prove that the dimension of any two isomorphic linear spaces 

and  , must be the same. The case where dim() = 0 is trivial, so let () ∈ N. Let

{1 } be a basis for  and let  ∈ L( ) be an isomorphism We are going to show that

{(1)  ()} is a basis for  . First, we show that they are linearly independent. Assume not,
then ∃ {1 } ∈ R∅ such that

X
=1

() = ∅

implying



Ã
X
=1



!
= ∅

But, as for injective functions () = ∅ (yes?), this implies
X
=1

 = ∅

a contradiction, as {1  } was a basis for 

Furthermore, we need to show that {(1)  ()} spans  . But this is clear, as we know
that for every  ∈  there exists an  ∈  such that  = (). As {1 } is a basis for  then
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we can find {1 } ∈ R such that  =
P

=1 . Thus

 = ()

= 

Ã
X
=1



!

=

X
=1

()

Showing that {(1)  ()} is indeed a basis for 

The proof of the other direction we will omit for now

This is a phenomenally useful result. One main reason is an obvious corollary is that any finite

dimensional space is isomorphic to R for some . Thus, for many purposes, we can show things to

hold true in R, then use the isomorphic result to show that they hold true in all finite dimensional

linear spaces. Hurrah!

35


