
Midterm Solutions Econ 2010 [Fall 2014]

December 6, 2014

Question 1

Example 1. Let f : M → Y with M = (0, 1) be given by f(x) = x. The set
A = (0, 1) is closed and bounded on M (but it is not compact) and the image
of that set f(A) = (0, 1) which is not compact. This function does not attain a
maximum in that set.

Question 2:

Consider the following problem: You are trying to decide where to sit in the bar.
There are currently two people in the bar, one of which you really like (l) and
one of which you really dislike (d). Your happiness is going to be an increasing
function of distance from the person you like and an increasing person of the
distance from te person you dislike.

1. Write this problem formally. Give conditions on the elements of the
problem to guarantee it to have a solution.

Normalize the area of the bar to the interval [0, 1]2

A utility funciton u : [0, 1]2×[0, 1]2×[0, 1]2 7→ R,u(xl, xd, x) = u(d(x, xl), d(x, xd))
with u(·, d(x, xd)) increasing in its argument and u(d(x, xl), ·) decreasing in its
argument.

The problem is to maximize
maxx∈[0,1]2u(xl, xd, x)
Assume u is continuous and by Weirestrass we conclude that the problem

has a solution.
2. First we prove that P (xl, xd) is compact valued. Assuming that B is

compact as in (1), take a sequence {yi} in P (xl, xd) that converges to a point
y ∈ B. We know, that it must be the case that u(yi) = u∗ = V (xl, xd) for all
yi.

This implies that u(yi) → y∗ and by continuity of u, u(y) = u∗ and this in
turn implies that y ∈ P (xl, xd).

Now we use the sequential characterization of upper hemicontinuity. Let
{xil, xid}i be a sequence in B that converges to (xl, xd), again let {yi} be a
sequence in P (xl, xd). This is a sequence in B that by (1) has a convergent
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subsequence in B with a limit point y. Now say the convergent subsequence {yk}
and the associated sequence of parameters {xil, xid} be the associated sequence
of parameters.

Let u(y, xl, xd) = u(d(y, xl), d(y, xd)) and note that if u is continuous.
Assume that

u(yi, xil, x
i
d) ≥ u(y, xil, x

i
d)

for all i, y ∈ B but

u(y, xl, xd) < u(y∗, xl, xd)

for some y 6= y∗ ∈ B.
By the continuity of u, limu(y∗, xil, x

i
d) = u(y∗, xl, xd) > u(y, xl, xd) =

limu(yi, xil, x
i
d).

But this implies that there exists some N such that,
n > N
u(y∗, xil, x

i
d) > u(yi, xil, x

i
d).

This is a contradiction so P (xl, xd) is closed.
3. Give an example of this problem in which a soultion is guaranteed to

exists for any xl and xd, but P is not continuous.
u(xl, xd, x) =
u(xl, xd, x) = −d(xl − x) + d(xd − x)
subject to
Γ(xl, xd) = bndry(B(0, 1)) the boundary of the closed unit ball in R2.
In this case by the theorem of the maximum we are sure P (xl, xd) is UHC.
We just have to prove it is not lower hemi-continuous. When
xl and xd are sitting together then there are two solutions at oposite sides

of the circunference. Since the solution consits in two separated singletons,
whenever they are not together there is only one solution so take a sequence

xnl = xd + 1
n then (xnl , xd)→ (xd, xd) but Γ(xd, xd) = {x∗} ∪ {y∗}

at the same time Γ(xnl , xd) = {zn,∗} different from x∗ and y∗ and zn,
∗ → z∗

different from either x∗ or y∗ so there is a pair in the graph of Γ (xl, xd, y
∗) or

(xl, xd, x
∗) such that no sequence of (xl, xd, z

∗,n) converges to it.
4. Given an example of the problem in which a solution is guaranteed to

exist, P is upper hemicontinuous, but V is not continuous.
maxx∈Bu(xl, xd, x) = −|xl − x|+ 2|xd − x|
and let B = {a} if xl = xd the barman puts all three acquaintances in a

private room.
B = [b, c] if xl 6= xd they go to the main room in the bar if they do not sit

together.
For a < b < c then the objective is discontinuous. Since, xnl = xd + 1

n and
x∗n is the solution when xl 6= xd the objective is

limn→∞−2|xd−x∗+ 1
n |+ |xd−x

∗| > 0 but xl = xd then −|xl−y∗|+2|xd−
y∗| = 0 when y∗ = xl = xd.

5. Now consider the problem of the barman who can choose where l and d
sit in the bar. The barman wants to maximize his or her revenue. The happier
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each consumer is, the longer they will stay and the more they spend. l and d
don’t care where they are in relation to other people, but both have a favorite
spot. Their happiness depends on their distance from that spot. You (as in the
problem 1) get to choose your position in the bar having seen the location of l
and d. Provide conditions on the primitive of the problem that ensure that the
barman’s problem has a solution.

I will assume this is a two stages problem, and assume common knowledge.
Keep the conditions in (1) so that P (xl, xd) exists is uppper hemicontinuos

and is compact valued and V (xl, xd) is continuous.
The barman takes this infomation as given and maximizes her profit
π(xl, xd, V (xl, xd)) = d(xl, x

∗
l ) + d(xd, x

∗
d) + V (xl, xd) when the metrics are

continuous then π is continuous since V is continuous.
Under the assumptions in (1) B is compact so the problem
max(xl,xd)∈Bπ(xl, xd, V (xl, xd))
has a solution.

Question 3.

We say a collection of sets A of some space X has the finite intersection property
if any finite collection of sets A have a non-empty intersection.

1. Let X = (0, 1]
An = (0, 1

n ] for all n ∈ N
∩Ki=1Ai 6= ∅
∩i∈NAi = ∅
2. Let X be compact, now we have to show that ∩A can be non empty.
Let X finite, then finite intersection is the same as arbitrary intersection.
Note: The intended wording of the question for part (2) was
2’) Show that if X is compact, then if a collection of closed subsets A has

the finite intersection property it must be the case that ∪A is non-empty.
Assume that X is compact, and take a collection A with the finite intere-

section property such that ∪A = ∅, then take X = ∩Ac. Also by the finite in-
tersection property ∩nA = Y ⊆ X and by complementation ∪nAc = X\Y ⊂ X
(because Y 6= ∅) so this says that there is no finite open cover of X which implies
that this is not compact. This is a contradiction.

1 Question 4.

V is a lienar space and let L and K be linear operators on V . Show that
LK(x) = L(x)K(x) is a linear operator if and only if LK(x) = 0 for all x ∈ V .

By linearity
LK(λx) = L(λx)K(λx) by definition and by linearity of K,L
LK(λx) = λ2L(x)K(x) by associativity.
λ2L(x)K(x) = λL(x)K(x) so this holds in general when L(x) = 0 and

K(x) = 0.
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If LK(x) = 0 for all x then
LK(x+ y) = 0 and because LK(x) +LK(y) = 0 it fulfills the first property
LK(λx) = λLK(x) = 0 for all λ, x ∈ V so LK is linear.
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