
2 Lecture 2

2.1 Closed Sets

Along with the notion of openness, we get the notion of closedness.

Definition 6 Let  be a metric space, then a set  ⊂ is closed if  is open

In R, closed intervals are closed (as we might hope). To see this, note that

R[ ]

(−∞ ) ∪ (∞)

which is the union of two open sets (and therefore open).

It is also true that, in any metric space , a singleton {} ⊂  is closed. to see this, we

need to show that{} is open. But to show this, take any  ∈{}, define  = ( ), which

is greater than zero by the definition of a metric and note that  ∈ ( ), showing that {} is
open.

A direct corollary of the definition of a topology and the definition of closed sets (which you

should check) is the following properties of closed sets

Corollary 1 Let  be an arbitrary set with some topology 

1. The empty set and  are closed

2. If {} is a collection of closed sets, then ∩ is closed

3. If {} is a finite collection of closed sets, then ∪ is closed

Note that the empty set and  are both closed and open, a property we call clopen.

A closure point of a set  is a point  that is ‘close’ to the set, in the sense that for every

open ball ( ), there is some element of  in that ball.
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Definition 7 For any set , a closure point of  is a point  such that, for any   0

( ) ∩  6= ∅

This leads to another characterization of closed sets:

Lemma 2 A set  is closed in a space  if and only if it contains all its closure points

Proof. Assume  is closed. Let  be a closure point. Then there is no  such that ( ) ∈ .

Thus, if  ∈ , then  is not open, so  would not be closed.

Now say that  contains all its closure points Let  ∈  . Then there must exist some 

such that ( )∩ = ∅ (otherwise  is a closure point). Thus,  is open, and so  is closed.

Another characterization of closed sets that is going to come in very handy involves the concept

of convergent sequences. In order to explain this, we need to explain what we mean by a convergent

sequence. First of all, we should remember that a sequence in a particular set is just a mapping from

the natural numbers to elements of that set, which we write {1 2  } or {}∞=1. A convergent
sequence is a sequence that gets closer and closer to a particular point in a metric space

Definition 8 A sequence {}∞=1 in a metric space  converges to a point  ∈  if, ∀   0, ∃
 such that  ∈ ( ) ∀  ≥  . In this case, we write {}∞=1 → , and call  the limit of

{}∞=1 , which we also write as lim→∞  = 

Thus, for  to be the limit of {}∞=1 it has to be the case that for any ball around , we can

find a point such that, after that point, the sequence never leaves that ball.

Just to get a handle on the concept of convergence, let’s consider a couple of examples

Example 3 Any constant sequence converges. Moreover, any sequence that finally becomes con-

stant converges

Example 4 Under the Euclidian metric, a sequence {1  } ∈ R converges if and only if

{() } ∈ R converges
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We will come back to some of the properties of sequences and limits later. For now, what we

need to know is that, a set is closed if and only if any convergent sequence in that set converges to

a limit in that set. This is going to come in very handy

Lemma 3 A set  is closed in some metric space  if and only if {}∞=1 ⊂  and {}∞=1 → 

implies that  ∈ 

Proof. Assume  is closed, {}∞=1 ⊂  and {}∞=1 → . This implies that, for any   0, ∃ 
such that  ∈ ( ). As  ∈  ,  is a closure point  , and by lemma 2  ∈  . Next, assume

that every convergent sequence converges to a point in  . Let  be a closure point of  , then, for

every   0, ( ) ∩  6= ∅. But this means that we can construct a sequence {}∞=1 and a
sequence of balls ( 1


) such that  ∈ ( 1


).1 Clearly, lim→∞  = , thus  ∈  . This tells

us that  contains all its closure points, so again by lemma 2 is closed.

Related to the idea of closed and open sets are the concepts of the closure and interior points

of a set

Definition 9 The closure of a set  (denoted ( ) = ̄ ) is the smallest closed set that contains



̄ = ∩ {| ⊂  and  is closed}

The interior of a set  (denoted ( ) = ̊ ) is the union of all open sets that are contained

by 

̊ = ∪ {| ⊂  and  is open}

The boundary of a set  (denoted ( )) is the intersection of the closure of  and its

compliment

( ) = ( ) ∩ ( )

It should be immediately obvious that a set  is closed if and only if  = ( ) and open if and

only if ( ) =  . Less obvious properties that you will prove for homework are given as follows

Proposition 1 Properties of closures and interior points

1For those of you that are worried about such things, I am using the axiom of choice here
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1. () = { ∈ | is a closure point of }

2. () = { ∈ |∃   0 such that ( ) ⊂ }

3. If  ⊂  then () ⊆ (). However, if () ⊆ () then it is not necessarily the case

that  ⊆ 

4. For , ⊂  , then ( ∪ ) = () ∪ () and ( ∩ ) ⊆ () ∩ () but it is not
necessarily the case that ( ∩) = () ∩ ()

To fix ideas, consider the following example

Example 5 Consider the set  = [0 1] ∩Q then

1. () = [0 1]

2. () = {}

3. () = [0 1]

Proof. All of this follows from the fact that, for any real number  and   0, ( ) ∩ Q 6= {}
and ( ) ∩RQ 6= {}. (If you don’t understand why this is true, we should go through it). This
implies that, for every  ∈ [0 1] and   0, ( ) ∩  6= {}, and so  ∈ (). Similarly, for

every  ∈ ,   0, ( ) ∩ RQ 6= {}, and so  6= (). Finally, this also implies that

( ) ∩R 6= {}, and so  ∈ (R), implying  ∈ ()
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