
2 Lecture 2

2.1 Defining Optimization with Equality Constraints

So far we have been concentrating on an arbitrary set . Because of this, we could of course

incorporate constrains directly into the set. This, however, turns out to be a bad way of dealing

with constraints. If you look at the above theorems, they all require finding out what a ’feasible

direction’ is for any  ∈ . If we are not in the interior of , this is a pain. Much better to deal

with constraints explicitly, in the form of a constrained optimization problem. We will start off

dealing with equality constraints, then move on to inequality constraints.

Problem 5 (Constrained Optimization with Equality Constraints) Let  : R → R. A

constrained optimization problem is the following:

• Find  ∈ R

• In order to maximize ()

• Subject to

1() = 0

2() = 0

...

() = 0

or

() = 0

where  : R → R

In general, we will assume that  are C1.

In other words, this is an ‘unconstrained’ optimization problem where

 = { ∈ R|() = 0}
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2.2 The Tangent Plane

In order to take on this problem, we are going to need to define two new objects:

Definition 2 A parametric curve on  is the image of a continuous function  : ( )→  The

curve is differentiable if

̇ =



()

exists for all  ∈ ( )

The curve  : ( )→  passes through ∗ if there exists a ∗ ∈ ( ) such that (∗) = ∗

Definition 3 The tangent plane to  at ∗ is

 = {̇(∗)| : ( )→ (∗) = ∗}

In other words, the tangent plane is the derivative of all parameterized curves that go through

∗. This may not seem like a very intuitive definition, but it is getting at a very intuitive concept.

Let’s first think of an example of  in R2

Example 1 Let  ⊂ R2 be defined by the constraint 2 − 21 = 0. In general, a parametric curve

that lives in this space is defined by

() =

⎛⎝ ()

()2

⎞⎠
Where () is some real valued function. For any value of , () lies inside . What is the

derivative of this function with respect to ?

 0() =

⎛⎝ 0()

20()()

⎞⎠

Now let’s consider a point ∗ =

⎛⎝ ∗

∗2

⎞⎠ that lives in . let ∗ be the value of  such that

(∗) = ∗Thus, according to the definition we have above the tangent plane to  at ∗ must contain

the points

⎛⎝ 0(∗)

20(∗)(∗)

⎞⎠ for any differentiable function . So for example, if ∗ =

⎛⎝ 0

0

⎞⎠, the
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the tangent plane contains all vectors

⎛⎝ 0(∗)

0

⎞⎠. If ∗ =
⎛⎝ 1

1

⎞⎠, then the tangent plane is all
vector of the form

⎛⎝0(∗)
1

2

⎞⎠. Note that we can find a differentiable function such that 0(∗)
is any real number (think of linear functions) But what IS this? Well, it is just the equation of

hyperplane that is tangent to  at ∗, displaced by ∗. In other words, the hyperplane that is

tangent to ∗ is defined by  + ∗

The idea of a tangent place just extends this notion to R

How do we characterize the tangent plane of ? If the constraints are well behaved, then we

have a nice characterization. By ‘well behaved’, we mean that all the constraints matter.

Definition 4 A point ∗ satisfying (∗) = 0 is regular if

{∇1(∗) ∇(∗)}

is linearly independents.

If this is the case, then the tangent space can be characterized as the set of vectors that are

orthogonal to derivatives of the constraints

Theorem 6 If ∗ is regular, then the tangent space to  at ∗ is

 =
©
 ∈ R|0(∗) = 0ª = ker(0(∗))

where

0(∗) =

∙



(∗)

¸
∈ R×

=

⎡⎢⎢⎢⎣
∇1(∗)

...

∇(∗)

⎤⎥⎥⎥⎦
Before we prove this theorem, we need to remember what the implicit function theorem states
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Theorem 7 Let  : R × R → R be such that (∗ ∗) = 0 for some ∗ ∈ R and ∗ ∈ R.

Then if (
∗ ∗) is of full rank (and therefore invertible), then there exists a function

 : (∗ 1)→ (∗ 2)

such that (() ) = 0 ∀  ∈ (∗ 2)

We are not going to prove the theorem, but to get an idea of why full rank is important, consider

the following example

Example 2 Let  : R2 ×R→ R2 be defined as

(1 2 ) =

⎧⎨⎩1 + 2 + 

1 + 2 + 

⎫⎬⎭
Clearly, (0 0 0) = 0. Now try to construct an implicit function: i.e a mapping  : (0 1)→

(0 2) such that

(() ) = 0

We can figure out what this function must look like by solving

1 + 2 +  = 0

1 + 2 +  = 0

Rearranging tells us that

2 =

¡


− 1¢

(− )


which is well defined unless  = . But notice that the matrix

(
∗ ∗) =

 

 

Which will have full rank unless 

= 


, i.e  = 

We now move on to prove the representation of the tangent space

Proof (Representation of the Tangent Space). We first need to show that

 ⊂ ker(0(∗))
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Let  : ( )→  be a tangent curve that goes through ∗. Then (()) = 0 ∀  ∈ ( ). Thus,
if  is differentiable then,by chain rule

0((∗))̇(∗) = 0 = 0(∗)̇(∗)

thus, for every ̇(∗) such that  : ( )→ (∗) = ∗, 0(∗)̇(∗) = 0

Next we need to show that

ker(0(∗)) ⊂ 

In other words, we need to show that, for any  such that 0(∗) = 0, there exists some

parametric curve  that passes through ∗ such that ̇(∗) = 

Consider the following system of equations in  and 

(∗ + + 0(∗)) = 0

This system of equations has a solution, as  = ∗ = 0, u = ∗ = 0 is one solution, The fact that

(
∗ ∗) = 0(∗)0(∗) is of full rank follows from the fact that ∗ is regular (check). Thus, by

the implicit function theorem there exists (− ) and  : (− )→ R such that

(∗ + + 0(∗)()) = 0

for all  ∈ (− ) and (0) = 0

Our candidate parametric curve is therefore

() = ∗ + + 0(∗)()

Thus,

0 =
((())

()
|=0 = 0(∗)+ 0(∗)0(∗) ̇(0)

= 0(∗)0(∗) ̇(0)

which implies ̇(0) = 0, and ̇(0) = 

Note that, if the point is not regular, then the above relationship may not hold, as the following

example demonstrates
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Example 3 Let  ⊂ R be defined by () = 32 − 61, so 0() = 322 − 651. At ∗ = (0 0),

ker(0(∗)) = { ∈ R|0(∗) = 0} = R2, which is not equal to the tangent plane at ∗

This should give a hint that regularity is not a property of sets, but of how you define the

constraints
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