
4 Lecture 4

4.1 Constrained Optimization with Inequality Constraints

We are now going to move on to a discussion of Inequality constraints. Our canonical problem now

looks as

Problem 11 (Constrained Optimization with Inequality Constraints) Let  : R → R.

A constrained optimization problem is the following:

• Find  ∈ R

• In order to maximize ()

• Subject to

() = 0

() ≤ 0

where  : R → R and  : R → R

Our canonical problem therefore has  equality constraints and  inequality constraints.

When dealing with equality constraints, we solved this problem by characterizing the tangent

plane. This was useful because it characterized all the feasible directions that one could move in

from a particular point, and so we knew that for a local optimum it must be impossible to improve

the objective function while moving in the direction of the tangent plane. Here it turns out we

need to generalize the concept of the tangent plane. To see this, consider the constraint set in R2

1 = 1 − 2

2 = −1 − 2

and the point (0 0). These are two continuously differentiable functions, and yet, at (0 0), the

tangent plane is given by (0 0), as the only continuously differentiable curve that goes through (0 0)
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is constant. We could characterize the tangent plane as the set {|h∇(0 0)i = 0,  = 1 2)}, and
as

∇1(0 0) =
⎛⎝ 1

−1

⎞⎠
and

∇2(0 0) =
⎛⎝ −1
−1

⎞⎠
This would give us back the tangent plane (0 0). Thus, for this point, it true that for any

objective function, the system

0(∗) = 0

h∇(∗) i  0

has no solution. So while it is true that any local maxima would have this property, it is also

true for other points that are neither local maxima nor local minima of the problem. For example,

consider the case of () = 1. We can find a pair of LeGrange multipliers 1, 2 such that

()

1
+ 1

1()

1
+ 2

2()

1
= 0

()

2
+ 1

1()

2
+ 2

2()

2
= 0

at (0 0), as

()

1
+ 1

1()

1
+ 2

2()

1
= 1 + 1 − 2

()

2
+ 1

1()

2
+ 2

2()

2
= −1 − 2

so, setting 1 = −12 and 1 =
1
2
will do the trick.

The problem here is that the tangent plane is no longer a good description of the feasible

directions that one can go from ∗ (in the above case, one could go in any direction in the upwards

cone from (0 0)) We therefore need to define the concept of a tangent cone

Definition 5 A Tangent cone at ∗ is

 = {̇(∗)| : ( )→ R, (∗) = ∗ and  ([∗ ) ⊂ )}
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In other words, a tangent cone is the derivative of all smooth parametric curves for which at

least half the curve is in  (question - what is the tangent cone in the above example?)

So what we want to do is characterize the set  in terms of the gradients of the constraint

functions. In order to do so, we are going to need some ‘constraint qualifications’, akin to the

regularity conditions we used in the quality constraints case. The one we are going to use is in

fact an extension of the concept of regularity. It should be noted that this condition is actually

stronger than we need. There are other, weaker regularity conditions that do the job - for example

the Mangasarian-Fromwitz CQ (wikipedia actually has a nice list of constraint qualifications).

We now need to define regularity at a point ∗ in the case for inequality constraints. Basically,

we still want the gradients of our constraints to be linearly independent, but we only care about

constraints that bind - i.e. ones for which (
∗) = 0. Thus, we define regularity as follows

Definition 6 Let ∗ ∈  for some constrained problem with slackness variables. Define ∗ =

(−(∗))2. We say that ∗ is regular if⎧⎨⎩
⎛⎝ ∇(∗)

0

⎞⎠ | = 1  
⎫⎬⎭ ∪

⎧⎨⎩
⎛⎝ ∇(∗)

2∗ 

⎞⎠ | = 1  
⎫⎬⎭

is linearly independent, where  is a  length zero vector with a zero everywhere except in the

th position

Put another way, if we define

(∗) = {|(∗) = 0}

Then the regularity condition demands that

{(∇(∗)) | = 1  } ∪ {(∇(∗)) | ∈ }

is linearly independent.

We will state, but not prove, that under regularity, we can nicely characterize the tangent cone

using the gradients of the constraints

Theorem 12 if ∗ is regular, then

(∗) = ̄ =
©
 ∈ R|0(∗) = 0 and ∇(∗) ≤ 0,  ∈ (∗)

ª
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Proof. Exercise

So, in the previous example, the tangent cone is characterizes as 

⎡⎣ 

1

⎤⎦for  ∈ [−1  1].
As before this allows us to determine that a particular series of equations does not have a

solution

Lemma 2 Suppose ∗ is a local max and satisfies regularity. Then the system of equations

0(∗) = 0

0(
∗) ≤ 0

 0(∗)  0

Has no solution

Proof. Assume by contradiction that  solves the above system. Then there exists an  : ( )→ R

such that ∗ = (∗) ̇ (∗) =  and  ([∗ ) ⊂ ). Then

(()) = ((∗)) +



(())|=∗(− ∗) + (− ∗)

= (∗) + h∇(∗) ̇ (∗)i(− ∗) + (− ∗)

= (∗) + h∇(∗) i(− ∗) + (− ∗)

⇒ ()− (∗)
(− ∗)

= h∇(∗) i+ (− ∗)
(− ∗)

so if h∇(∗) i  0, there exists an  such that, for  ∈ (∗ ∗ + ) such that ()− (∗)  0

Now we are in a position to use Farkas’ lemma to prove the KKT conditions for the case with

inequality constraints

Theorem 13 Assume ∗ is a local maximizer and satisfies regularity. Then there exists  ∈ R

and  ∈ R such that

∇(∗) +
X
=1

∇(∗) +
X

=1

∇(∗)

 ≤ 0

and  (
∗) = 0 all  ∈ (1)
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(we call these the KKT conditions)

Proof. Again, this can be proved using Farkas’ Lemma. We know from the previous lemma that if

∗ is a local maxima, then the system

0(∗) = 0

0(
∗) ≤ 0

 0(∗)  0

does not have a solution. This can be rewritten as can be written as

 ≤ 0

  0

where

 = ∇ (∗)

 =
h
∇ (∗) −∇ (∗) ∇0 (∗)

i
Using Farkas lemma, this tells us that

 = 

 ≥ 0

has a solution, and so, letting  =
¡
+ −−¢, this gives

h
∇ (∗) −∇ (∗) ∇0 (∗)

i⎡⎢⎢⎢⎣
+

−

−

⎤⎥⎥⎥⎦ = ∇ (∗)

and ⎡⎢⎢⎢⎣
+

−

−

⎤⎥⎥⎥⎦ ≥ 0
Setting  = 0 for all  ∈  , this gives us

∇ (∗) +
X
=1

∇ (∗)
¡
+ − −

¢
+

X
=1

∇ (∗) = 0
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And, as  ≤ 0, and  = 0 for all  ∈  (and so for  such that (
∗)  0 we have the KKT

conditions

In class we will draw a picture that will give some intuition to this result.

As you might expect, there are related second order necessary and sufficient conditions for the

problem with inequality constraints. In order to do so, we need to define the concept of a second

order test vector

Definition 7 A vector  ∈ R is a second-order test vector at ∗ if

1. 0
(∗)(

∗) ≤ 0

2. 0(∗) = 0

Thus, a second order test vector is basically a feasible direction from ∗. Second order conditions

are based on the idea that a particular matrix is negative semi-definite if we consider only test

vectors.

Theorem 14 Let ∗ be a local maximizer, and regular. Then there exists  ∈ R and  ∈ R such

that (∗  ) satisfy the KKT conditions, and

Ψ(∗  ) ≤ 0

for all second order test vectors , where Ψ(∗  ) is the Hessian matrix of

(∗  ) =  (∗) +
X
=1

 (
∗) +

X
=1

 (
∗)

Similarly we can derive second order sufficient conditions.

Theorem 15 Let ∗ ∈ R such that there exists  ∈ R and  ∈ R that satisfy the KKT

conditions, and such that

Ψ(∗  )  0
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for all second order test vectors , where Ψ(∗  ) is the Hessian matrix of

(∗  ) =  (∗) +
X
=1

 (
∗) +

X
=1

 (
∗)

then ∗ is a local maximizer
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