
5 Lecture 5

5.1 Convex Programming1

In general, the second order conditions above are a pain to test. It would be nice to know circum-

stances where we do not have to check them. In the case of unconstrained optimization, we knew

that there were various conditions regarding convexity that helped us out - for example, if a func-

tion is concave, we know that any point satisfying the first order conditions is a global minimum.

It turns out that we don’t strictly speaking need full concavity for this result. In fact, we need a

weaker property called pseudo-concavity

Definition 8 A function  is pseudoconcave if

()  (∗)⇒∇ (∗)0 (− ∗)  0

Intuitively, this concept is very closely related to that of quasiconcavity (which states that

() ≥ (∗)⇒∇ (∗)0 (− ∗) ≥ 0) as the following theorem states

Theorem 16 Let  be a convex subset or R and  :  → R be C1. Then

1. If  is pseudoconcave, it is quasiconcave

2. If  is open and ∇ () 6= 0  ∈  , then  is pseudoconcave if and only if it is quasiconcave

So, broadly speaking, pseudoconcavity is like quasiconcavity, but rules out ’flat sections’

Also intuitively, pseudoconcavity is enough to make necessary first order conditions also suffi-

cient, first for unconstrained optimization

Theorem 17 Let  be a convex subset or R and  :  → R be C1 and pseudoconcave. If

∇ (∗) = 0 then ∗ is a global max of  on 

1We do not have enough time to cover this materiel thoroughly. For more details, see Simon and Blume Chapter

21.4
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What about for constrained problems? Here, it is clearly not enough for the objective function

to be pseudoconcave, or even concave - it is easy enough to construct a constraint set and a p-

concave function such that we obtain a local minimum from the first order conditions (think of the

example in the section on equality constraints above) so what to do?

One way out of this is to make the constraint set convex. Intuitively, first order conditions

should be sufficient when maximizing a pseudo concave function on a convex set (draw a couple

of pictures to convince yourself that this is true). So how do we do this? Well, in the case of

inequality constraints, this is easy - we just have to demand that each function is q-convex, so the

lower contour sets of each function are convex. The union of convex sets is convex, so we are done.

What about equality constraints? Here, the only way to ensure convexity is for the function to

be affine (to see this, note that any equality constraint () = 0 can be written as two inequality

constraints, () ≤ 0 and −() ≤ 0. For both of these functions to be q-concave, it must be the
case that () is affine).

Putting all this together we get the following theorem:

Theorem 18 Let  be an open convex subset of R, and  :  → R be 1 and pseudoconcave.

Let 1   be a set of affine functions mapping  to R, and 1 be a set of 
1, quasi-convex

functions mapping  to R. Consider the problem

• Find  ∈ R

• In order to maximize ()

• Subject to

() = 0

() ≤ 0

Suppose SOME CONSTRAINT QUALIFICATIONS HOLD, and for some ∗ ∈  there

exists  ∈ R and  ∈ R that satisfy the KKT conditions, then ∗ is the global maximum of the

constrained problem.

So these assumptions have bought us a lot. Not only are the first order conditions now sufficient,

but the also identify global, not local maxima. Hurrah!
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To complete the theorem, we need to identify some reasonable constraint qualifications. We

could use the regularity conditions that we have assumed up to now, but in convex programming

problems there is a nicer set of qualifications which will do:

Definition 9 A set of constraints satisfy the Slater Constraint qualification if  is convex all ,

and there exists an ̄ such that (̄) = 0 and (̄)  0

5.2 Sensitivity Analysis

One nice feature of the Kuhn Tucker approach is that the leGrange multipliers  and  have a

nice, intuitive interpretation: they tell us how the value of the constrained optimization problem

changes are we change the constraints. In order to make this statement formal, we will first of all

think about equality constraints, and define a paramerterized version of the constrained problem:

Definition 10 Let P() refer to the parameterized problem of maximizing a function () relative

to a set of constraints

() = 

where  ∈ R is a vector of parameters.

Our claim is that the Lagrangian multipliers at a local solution to this problem tell us something

about how the value of that local solution changes as we change the parameter vector  (we will

concentrate on perturbations around  = 0.

Theorem 19 Suppose that, when  = 0, ∗ is a local maximizer and a regular point of ∗ = 0.

Let ∗ be a set of LaGrange multipliers such that (∗ ∗) satisfy the KKT conditions. Assume that

Ψ(∗ ) is negative definite in  = ker(0(∗)). Then there exists an   0, ( ) ∈ R and

 : ( )→ R continuous such that () is the strict local maximum for P(), and



((()) |=0 = ∗

Proof (Sketch). Consider the following system of equations⎡⎣∇ () +P()

()− 

⎤⎦ = Φ(  ) = 0
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where Φ : R×R×R → R+. Note that Φ(∗ ∗ 0) = 0. A claim, that we will not prove,

is that regularity is enough to ensure that Φ(
∗ ∗ 0) is of full rank. Therefore, by the implicit

function theorem, there exists a continuous function⎛⎝



⎞⎠ : ( )→ R+

such that (0) = ∗ (0) = ∗ and such that Φ(() () ) = 0. This means that () ()

satisfy the first order conditions for the problem P(). We can also show that Ψ(() ()) is

negative semi-definite, so () is a local maximizer of P()

Now, we know that
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• example (box)

• example (farmer)
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