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How and to what extent “neuroeconomic” 
data (broadly interpreted as data other than stan-
dard choice data) should be used in advancing 
economic theory is open to question. Several 
authors have attempted to make use of such 
nonstandard data to shed light on the process 
of economic decision making. John W. Payne, 
James R. Bettman, and Eric. J. Johnson (1993), 
Miguel Costa Gomes, Vincent P. Crawford, and 
Bruno Broseta (2001), and Xavier Gabaix et al. 
(2006) have used MouseLab software in order 
to determine the manner in which people use 
information. Joseph Wang, Michael Spezio, and 
Colin Camerer (2006) make use of eye-tracking 
data for the same purpose. More dramatically, 
researchers such as Paul William Glimcher, 
Joseph Kable, and Kenway Louie (2007) are 
using brain-scanning data in an attempt to 
constrain economic models of discounting and 
time preference. Camerer (forthcoming) pres-
ents an excellent review of economic research 
involving nonstandard data.

In opposition to this trend, Faruk Gul and 
Wolfgang Pesendorfer (forthcoming) present 
a strong critique of the use of nonchoice data 
within economics. They put forward two specific 
arguments that users of “neuroeconomic” data 
must refute if their work is to be taken seriously. 
First—economic models were designed only to 
explain choices. Thus, nonchoice data can be 
used neither to confirm nor deny a particular 
economic model. Second, it is by and large true 
that economists are interested in choice behav-
ior. Any two models will either make different 
predictions for choice, in which case they can be 
differentiated by standard choice data, or they 
will not, in which case an economist will not be 
interested in differentiating between them.

Economic Insights from “Neuroeconomic” Data

By Andrew Caplin and Mark Dean*

It is our view that there is a role for non-
standard choice data in helping us understand 
economic decision making.1 However, we see 
the Gul and Pesendorfer critiques as forming 
a crucial “litmus test” against which the value 
of such research should be judged. With regard 
to the first criticism, it is not sufficient for a 
researcher to simply use nonstandard observa-
tions to comment on standard economic mod-
els in an ad hoc way. Rather, new theoretical 
models that explicitly incorporate these new 
data must be developed. The second criticism, 
while oversimplifying the task of characteriz-
ing economic behavior, does highlight the role 
of the researcher in explaining what their non-
standard data are for. Rather than simply decid-
ing between two models, an economist who is 
interested in behavior is faced with a bewilder-
ingly large array of possible models to choose 
among, and an equally large range of environ-
ments in which these models may or may not be 
applicable. Nonstandard data can be an efficient 
way of directing search within this space, by 
allowing the researcher to model distinct parts 
of the decision-making process which are usu-
ally aggregated in choice. Moreover, identifying 
the “microfoundations” of decision theory in the 
processes which underlie choice can potentially 
lead to more robust models of decision mak-
ing, just as occurred with the microfoundation 
of macroeconomics.2 It is with these goals in 
mind that the value of nonstandard data should 
be judged.

In this paper, we illustrate our position with 
two specific examples. First, we consider the 
role of information search in choice. The stan-
dard model of economic choice has no explicit 
description of how a decision maker searches 
through a choice set for information on the 
available alternatives. In fact, we show that 
standard choice data cannot be used to examine 

1 The arguments made here are discussed in more detail 
in Caplin (forthcoming).

2 A similar point on the potential value of neuroeco-
nomic data is made by Drew Fudenberg (2006).
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the process of information search explicitly: 
any choice data can be rationalized by a simple 
model of optimal information search. We there-
fore introduce new data that allow us to model 
the search process. The resulting model can gen-
erate behavior such as random choice, framing 
effects, and status quo bias, even for a decision 
maker (DM) with fixed preferences.

Our second example examines the role of 
the neurotransmitter dopamine. Many neuro-
scientists have claimed that dopamine has a 
role in calculating the reward prediction error 
(RPE) of a particular event, or the difference 
between how good the event is, and how good 
it was expected to be. We use tools standard to 
decision theory to characterize this hypothesis, 
and therefore produce testable implications. We 
then discuss the potential of this model to pro-
vide insight into choice, belief formation, and 
learning.3

I.  Revealed Preference, Search, and Choice

Our first foray into the world of nonstandard 
data is spurred by our desire to examine the 
process by which DMs search through vari-
ous alternatives in a choice set. We consider 
a model in which DMs search sequentially 
through available objects until some stopping 
rule is triggered, at which point they choose the 
best object available according to a fixed util-
ity ranking. Unfortunately, if search is invisible, 
any standard choice data are rationalizable with 
such a model. For example, if x is chosen over 
y in one choice set, while y is chosen over x in 
another, it may be simply that the DM was not 
aware of the existence of x in the second choice 
set. Thus, standard choice data cannot be used 
to test such models of search.

In order to resolve this identification problem, 
we introduce the concept of “choice process”  
data that records not only the choice that a 
decision maker ultimately makes, but also how 
the chosen option evolves over the pre-deci-
sion period. In our data, the decision maker is 
observed selecting at each discrete time t [ N 
a subset of the choice set. The interpretation is 

3 The first of these examples is explored fully in Caplin 
and Dean (2008) (henceforth CDA), while the second comes 
from Caplin and Dean (forthcoming) (henceforth (CDB) 
and Caplin, Mark Dean, Glimcher, and Robb Rutledge 
(2008) (henceforth CDGR).

that this selection represents what the DM would 
choose if they had considered the choice problem 
for this length of time. The choice process model 
comprises the entire set of such observations for 
different values of the time index and for all 
nonempty subsets of the choice set.4

DEFINITION 1: Let X be all nonempty subsets 
of a finite set X: X 5 2X/f. Given A [ X, a 
choice process from A is a function C : A 3 N S 

X with C 1A, t 2 # A: the class of all such choice 
processes from A is denoted C A, with the union 
over X of all such sets C A being denoted C X. A 
choice process model comprises the underlying 
set X and a choice process 1  from X2 , C : X S 

C X, with C 1A2 [ C A all A [ X.

CDA formulate a simple theory of “alterna-
tive based search” (ABS) in which the decision 
maker searches through the choice set sequen-
tially, at any time choosing the most preferred 
object yet encountered.

DEFINITION 2: A choice process model 1X, C 2 
permits an alternative-based search (ABS) 
 representation 1u, S 2 if there exists a utility func-
tion u : X S R and a correspondence S : X 3 
N S X, the search process, that is, expanding 
(i.e., S 1A, s 2 # S 1A, t 2 # A for all A [ X and 
t $ s) and such that,

 C 1A, t 2 5 arg max
xPS 1A , t2

 u 1x 2 .

While we do not, by any means, consider 
ABS a universal description of search behav-
ior, it does present a parsimonious benchmark 
model with which to start a discussion of infor-
mation search. Moreover, such a simple model 
can generate a number of well-studied docu-
mented anomalies.

Any standard choice function is commen-
surate with the ABS model: it is only for our 
expanded dataset that the ABS model has any 
empirical traction. The precise characterization 
of these restrictions rests on an understanding 
of what is meant by “revealed preferred” within 
the context of the ABS model and choice pro-
cess data. This information is summarized in 

4 A similar dataset is considered in Donald Campbell 
(1978).
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the binary relations sC and , introduced below. 
Intuitively, x is revealed preferred to y if it is 
chosen after y in some choice process, as this 
implies that x is chosen over y when the DM 
knows that y is available.

DEFINITION 3: Given a choice process model 
1X, C 2 , the symmetric binary relation , on X is 
defined by x , y if there exists A [ X and t [ N 
such that x, y [ C 1A, t 2 . the binary relation sC 
on X is defined by x sC y if there exists A [ X 
and t [ N such that x [ C 1A, t 2 , y o C 1A, t 2 , but 
y [ C 1A, s 2 for some s , t. the binary relation 
s,
C on X is defined as sC < ,.

The key to being able to find an ABS repre-
sentation is for the information embodied in s,

C 
to be consistent. By this we mean that we can 
find a utility function u : X S R such that x sC 

y 1 u 1x 2 . u 1y 2 and x , y 1 u 1x 2 5 u 1y 2 . It 
turns out that the necessary condition is a vari-
ant of acylicality.

AXIOM A1 (Weak s,
C Cycles Only): Given 

x1, x2, x3, … , xn [ X with x 5 x1 s,
C x2 s,

C x3 … 
s,
C xn 5 x, there is no k with xk s

C xk11.

A1 is both necessary and sufficient for an 
ABS representation.�

THEOREM 1: A choice process model 1X,  C 2 
allows an ABS representation if and only if it 
satisfies A1.

The ABS model is silent concerning how and 
why search is terminated. One way to refine the 
model is to augment it with some form of stop-
ping rule. A particularly simple rule is based on a 
“reservation utility” strategy—search continues 
until an object is found which has utility above 
a certain level. If no such object is found, search 
continues until all objects have been examined. 
In technical terms, a reservation-based search 
(RBS) representation of a choice process model 
consists of an ABS representation together with 
a reservation level of utility. For sets in which 
there are no objects above the reservation level, 
we demand that the limit search correspondence 
be the whole set. By the same token, if there 
are objects in the set that are satisfactory in this 

� For all proofs, as well as further detail, see CDA.

sense, search must continue until one of them 
is found. Finally, once an object is found with a 
utility above the reservation level, search stops.

DEFINITION 4: A choice process model 1X, C 2 
admits of a reservation-based search (RBS) 
representation 1u, S, u*2 if it permits an ABS rep-
resentation 1u, S 2 with the property that, given 
A [ X:

(i) max{x[A} u 1x 2 , u* 1 limt S ̀  S 1A, t 2 5 A;

(ii) max{x[A} u 1x 2 $ u* 1 Et such that, for some 
x with u 1x 2 $ u*, x [ S 1A, t 2 ;

(iii) If  E x [ S 1A, t 2 with u 1x 2 $ u*, then S 1A, s 2 
5 S 1A, t 2 for all s . t.

While we do not formally characterize the 
RBS model here (see CDA for details), we can 
describe the characterization informally. In the 
context of RBS, the concept of “revealed pre-
ferred” is extended. If x is chosen from a choice 
set containing only items of below reservation 
utility, then it must be the case that x is pre-
ferred to all the other objects in the choice set. 
A RBS representation requires all such prefer-
ence information to be consistent, in the sense 
described above.

The RBS model is similar to the satisficing 
model of Herbert Simon (19��). We show also 
in CDA that the reservation strategy can be seen 
as optimal behavior for a decision maker with 
fixed search cost, specified in utility terms.

A final extension to consider is the case in 
which search order is itself a random variable 
from the point of view of the observer or experi-
menter: the order of search is, in general, invis-
ible to the outside observer, and so it is quite 
possible that it may change from experiment 
to experiment without the experimenter know-
ing. In such a case, a decision maker facing the 
same choice set on multiple occasions could 
make very different choices, due to variations 
in search order. In CDA we formalize stochastic 
versions of choice process data and the ABS and 
RBS models.

While it is clearly true that choice process 
data are necessary in order to model search, it 
could be argued that the resulting models are 
of little use to economists, as they have little to 
say about final choice. We can show, however, 
that our simple information search model can 
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generate many well-documented behavioral 
anomalies, even with a decision maker who has 
consistent preferences. These include:

•  Random Choice: Many experimental results 
(for example Glimcher, Kable, and Louie 2007) 
show that choices within an individual are 
not consistent: different choices can be made 
from the same choice set on different occa-
sions. While this is generally modelled using 
a random utility model, in which preferences 
vary stochastically, we show that it can equally 
well be modelled via search orders that vary 
stochastically, while preferences are fixed.

•  framing Effects:  Many experiments have 
shown that choices can be affected by seem-
ingly extraneous presentation choices—for 
example, the order in which options are pre-
sented on a screen. Again, this can be mod-
elled as being due to variations in search 
order affecting the choices of a DM with a 
fixed utility function.

•  Status Quo Bias: One particular class of fram-
ing effect is status quo bias, which describes 
a situation in which an object is more likely 
to be chosen simply because it is the status 
quo point. Within the RBS model, this can be 
modelled as the presence of a status quo point 
altering the search order, and increasing the 
probability that the status quo object will be 
searched early, and therefore chosen.

Our search model, therefore, provides an alter-
native explanation for various behavioral anoma-
lies, and choice process data offer a way to test 
these theories. The fact that different explana-
tions cannot be differentiated using standard data 
was first pointed out by H. D. Block and Jacob 
Marschak (1960) in an article in which they also 
suggest using enriched data in order to determine 
whether stochastic choice is driven by changes in 
search order or preferences. Choice process data 
allow us, in principle, to make such a differen-
tiation, and so help guide further theoretical and 
empirical research in this area.

It is eminently plausible that experimental 
techniques can yield information on the choice 
process. Together with Daniel Martin, we are 
developing at NYU experimental methods to 
gather information on the choice process. The 
idea of the design is to allow subjects to highlight 
their most preferred lottery at any time by clicking 
on it. They are allowed to change this selection 

as frequently as they wish. While subjects will 
be given a fixed upper time limit within which to 
examine the set and highlight whichever lottery 
they wish, they will be aware that their choice 
will be recorded at some randomly determined, 
unannounced time within this interval. The goal 
of introducing this uncertainty is to incentiv-
ize subjects to highlight whichever option they 
feel is best at any given time: if they do not, the 
currently highlighted option may be recorded as 
their “choice,” even though they would, in fact, 
prefer a different choice. This makes it plausible 
to interpret the resulting sequence of selected 
lotteries as an observation of the choice process 
for that choice set.

II.  Dopamine and Reward Prediction Error

One might argue with our designation of 
choice process data as neuroeconomic. Not so 
for our second area of research, in which the data 
that we add are purely neuroscientific. We for-
malize the idea (discussed in detail in CDB) that 
the neurotransmitter dopamine records a reward 
prediction error—the difference between how 
good an event is and how good it was expected 
to be. It takes little imagination to see how inter-
esting information of this form might be for our 
understanding of beliefs, reward, and choice 
behavior. In addition, B. Douglas Bernheim 
and Antonio Rangel (2004) point out the grow-
ing consensus that dopaminergically mediated 
learning is implicated in addictive behavior. 
Moreover, many authors (for example, Wolfram 
Schultz, Peter Dayan, and P. Read Montague 
1997) have shown that such a reward prediction 
error signal is a key algorithmic component of 
the reinforcement learning model. They have 
therefore suggested that dopamine may play a 
crucial role in learning.

CDB took the steps necessary to translate 
the Dopaminergic Reward Prediction Error 
(DRPE) hypothesis from the neuroscientific to 
a simple economic setting in which prizes are 
received from lotteries. We are now in the pro-
cess of developing appropriate neuroscientific 
tests (see CDGR). The version of the model 
that we are currently testing is based on a finite 
set of observations of dopamine release when 
prizes are obtained from a small set of simple 
lotteries. The key observable is the firing rate 
of dopamine neurons, d 1z, p 2 , resulting from a 
prize z being received from some lottery p.
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DEFINITION �: A finite dopaminergic data 
set (DDS) comprises a tuple 1Z, A, d 2 , with Z a 
set of prizes, A a finite set of prize-lottery pairs 
1z, p 2 , with z [ Z and p a probability distribu-
tion over Z with z [ Supp 1p 2 and d : A S R 
specifies the dopaminergic firing rate for each 
observation 1zn, pn 2 [ A.

Defining LA ; < 1zn, pn 2[A pn, the definition of a 
DRPE representation has three parts. First, there 
must be a “reward” function r : LA S R that is a 
sufficient statistic for recording the dopaminer-
gic response to any given lottery-outcome pair:

 d 1z, p 2 5 E 1r 1z 2 , r 1p 2 2 .
Second, defining r 1Z 2 and r 1LA2 as the ranges of 
the reward function on the respective domains, 
there must be a larger dopaminergic response to 
a more rewarding outcome and/or less reward-
ing prior anticipations: given 1a, b 2 , 1a9, b92 [ 
r 1Z 2 3 r 1LA2 ,
 a9 . a 1 E 1a9, b 2 . E 1a, b 2 ;
 b9 , b 1 E 1a, b92 . E 1a, b 2 .
Finally, all situations in which the actual out-
come was perfectly anticipated must be dopami-
nergically equivalent: given z, z9 [ Z,

 E 1r 1z 2 , r 1z 2 2 5 E 1r 1z92 , r 1z92 2 .
CDGR outline three necessary conditions for 

a DRPE: that all situations of no surprise are 
equivalent; that prizes are coherently ordered by 
dopamine; and that lotteries are also so ordered. 
When there are three or more prizes, these con-
ditions are necessary but not sufficient for a 
DRPE representation. Yet in the two-prize case, 
one can provide directly that such equivalence 
does indeed hold.

THEOREM 2: With two pure prizes, a finite 
DDS admits a DRPE if and only if d 1z9, z92 
5 d 1z, z 2 all z, z9 [ Z, and, given 1z, p 2 1z9, p), 
(z, p9), (z9, p92 [ A,

 d 1z, p 2 . d 1z9, p 2 1 d 1z, p92 . d 1z9, p92 ;
 d 1z, p 2 . d 1z, p92 1 d 1z9, p 2 . d 1z9, p92 .

We are currently in the process of using this 
formalization to organize the collection of data 

to allow us to test this hypothesis. This involves 
endowing subjects with lotteries, then realizing 
these lotteries while the subjects are within a 
functional magnetic resonance imaging (fMRI) 
machine. By using the fMRI machine to col-
lect data on brain activity in regions with many 
dopamine neurons, we can test these hypotheses 
directly.

Again, while this is of great interest to neuro-
scientists, what use is it to economists? We 
argue that validity of the DRPE hypothesis, and 
the related hypothesis concerning the role of 
dopamine in learning, would open the door to 
fundamental economic insights:

• Dopamine and the construction of utility: 
According to the DRPE hypothesis, dopamine 
contains information on “reward,” which in 
turn acts as an input into choice. As such, we 
can see dopamine as a key input into the con-
struction of “utility,” or a building block in 
determining the choices people make.

• Dopamine as a carrier of information on 
expectations:  The DRPE hypothesis states 
that dopamine responds to the difference 
between experienced and anticipated rewards. 
As such, it should be possible to use obser-
vation of dopamine to back out a measure 
of what was expected in different circum-
stances, opening a new window into decision 
making under uncertainty and in game theo-
retic settings.

• Dopamine as a building block for learn-
ing.  The importance of learning theory in 
economics is apparent from the effort that 
has been dedicated to it both within macro-
economic theory (e.g., Albert Marcet and 
Thomas Sargent 1989) and microeconomic 
theory (e.g., Fudenberg and David Levine 
1998). The DPRE hypothesis suggests that 
dopamine forms one of the building blocks of 
learning within the brain. Understanding the 
DRPE can therefore be thought of as the first 
step in developing a “neuroeconomic theory 
of learning.”
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