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1 Basic Notation

The following is standard notation for proofs:

• A⇒ B . A implies B.

• A⇐ B. B implies A.
Note that A⇒ B does not mean B ⇒ A. Example: If (A) a person eats two hot dogs, she also
(B) eats one hot dog. However, if (B) a person eats one hot dog, that does not imply that she
also (A) eats two hot dogs.

• A⇔ B. A implies B and B implies A.
Another way of saying this is that A holds if and only if (i�) B holds, or that A is equivalent to
B.

• ¬A. Not A, or the negation of A.
Example: If A is the event that x ≤ 10, then ¬A is the event that x > 10.

It is common to use mathematical symbols for words while writing proofs in order to write faster.
The following are commonly used symbols:

∀ For all, for any

∃ There exists

∈ Is contained in, is an element of

3 Such that, contains as an element

⊂ Is a subset of

QED Latin for �quod erat demonstandum�, or �which was to be proven�. A common way to signal to
the reader that you have successfully concluded your proof.

2 Proofs

We seek for ways to prove that A⇒ B.
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2 Basic Proof Techiniques

2.1 Direct Proofs

2.1.1 Deductive Reasoning

A direct proof by deductive reasoning is a sequence of accepted axioms or theorems such that A0 ⇒
A1 ⇒ A2 ⇒ · · · ⇒ An−1 ⇒ An, where A = A0 and B = An. The di�culty is �nding a sequence of
theorems or axioms to �ll the gaps.

Example: Prove the number three is an odd number.

Proof: A number q is odd if there exists an integer m such that q = 2m + 1. Let m = 1. Then
2m+ 1 = 3. Therefore three is an odd number. QED

2.1.2 Contrapositive

A contrapositive proof is just a direct proof of the negation. It makes use of the fact that the statement
A⇒ B is equivalent to the statement ¬B ⇒ ¬A. For example, if (A) all people with driver's licenses
are (B) at least 16 years old, then if you are not (¬B) 16 years old, then you do not (¬A) have a
driver's license. So proving A⇒ B is really the same as proving ¬B ⇒ ¬A.

Example: Let x and y be two positive numbers. Prove that if xy > 9, then x > 3 or y > 3.

Proof: Suppose that both x ≤ 3 and y ≤ 3. Then xy ≤ 9. QED (Here A: xy > 9, B: x > 3 or y > 3.
In order to prove A⇒ B we proved ¬B ⇒ ¬A.)

2.2 Indirect Proofs

2.2.1 Contradiction

Suppose that we are trying to prove a proposition A, and we cannot prove it directly. However, we can
show that all other alternatives to A are impossible. Then we have indirectly proved that A must be
true. Therefore, the we can prove A⇒ B by �rst assuming that A 6⇒ B and �nding a contradiction.

In other words, we start o� by assuming that A is true but B is not. If this leads to a contradiction,
then either B was actually true all along, or A was actually false. But since we assume A is true, then
it must be that B is true, and we have a proof by contradiction.

Example: Prove that
√
2 is an irrational number.

Proof: Suppose not. Then
√
2 is a rational number, so it can be expressed in the form p

q , where p and
q are integers which are not both even. This implies that

2 =
p2

q2
⇒ 2q2 = p2,

which implies that p2 is even, which in turn implies that q2 is not even. The fact that p2 is even also
implies that p is even, so there exists a integer m such that 2m = p. This implies

4m2 = p2 = 2q2 ⇒ q2 = 2m2,

which means that q is even, a contradiction. QED

2.2.2 Induction

Induction can only be used for propositions about integers or indexed by integers. Consider a list
of statements indexed by the integers. Call the �rst statement P (1), the second P (2), and the nth
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statement P (n). If we can prove the following two statements about the sequence, then every statement
in the entire sequence must be true:

1. P (1) is true.

2. If P (k) is true, then P (k + 1) is true.

Induction works because by 1., P (1) is true. By 2., P (2) is true since P (1) is true. Then P (3) is true
by 2. again, and so is P (4) and P (5) and P (6), until we show that all the P 's are true. Notice that
the number of propositions need not be �nite.

Example: Prove that the sum of the �rst n natural numbers is 1
2n(n+ 1).

Proof: Let n = 1. Then 1
2 ·1(1+1) =

∑1
j=1 j = 1. Now let n = k, and assume that

∑k
j=1 j =

1
2k(k+1).

We add k + 1 to both sides to get

k+1∑
j=1

j =
1

2
k(k + 1) + k + 1 =

(
1

2
k + 1

)
(k + 1) =

1

2
(k + 1) ((k + 1) + 1) .

QED

2.3 Epsilon-Delta Arguments

A lot of de�nitions and proofs in real analysis use the "ε and δ" concept. For example, recall the
de�nition of the limit of a function: We write limx→p f(x) = q if for every ε > 0 we can �nd δ > 0
such that |f(x)− q| < ε for all x for which |x− p| < δ.

It is important to get the quanti�ers correct: For every ε there exists δ such that... This means that
δ will change with ε - for some value ε1 we'll be able to �nd δ1 so that the statement holds, and for
some other value ε2 we'll �nd δ2 which may di�erent from δ1. The opposite would be "there exists δ
such that for every ε it holds that...". Here there is only one δ which has to �t all di�erent values of
ε.

When we prove a statement involving an ε-δ de�nition, we start by ascribing a �xed, but unknown,
value to ε ("�x ε > 0"). Then we try to �nd value of δ that makes the statement in question come
true. This δ will usually be a function of ε. This completes the proof since ε could have been anything:
For every ε we have found a δ such that the statement holds.

When we want to show that a certain ε-δ statement does not hold, we usually choose one particular
ε for which the statement should not be true ("Let ε = 0.5"). Then we proceed by contradiction: We
pretend there exists some δ that �ts our ε and show that this leads to a contradiction. Ergo, no δ can
�t our particular ε. Therefore it is not true that for all ε we can �nd a �tting δ.

Example 1 Prove that limx→0 x
2 + 1 = 1.

Proof: Fix ε > 0. How small does δ have to be such that |(x2 + 1)− 1| = |x2| < ε for all x for which
|x| < δ? δ =

√
ε works: If |x| <

√
ε then |x|2 < (

√
ε)2. |x|2 = |x2| and (

√
ε)2 = ε, therefore |x2| < ε.

QED.

Example 2 Show that f(x) =

{
1 if x ≥ 0

−1 if x < 0
is not continuous.

Recall that f is continuous at a point p if for every ε > 0 we can �nd δ > 0 such that |f(x)−f(p)| < ε
for all x for which |x− p| < δ. f is probably not continuous is at 0. We therefore take p = 0 and show
that the above de�nition of continuity does not hold. It su�ces to show that for one particular ε we
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cannot �nd a �tting δ. We prove this by contradiction.
Proof: Let ε = 1. Suppose there exists δ such that |f(x) − f(0)| < ε for all x for which |x| < δ.
Plugging in, this means |f(x) − 1| < 1 for all x for which |x| < δ. Set x = − δ2 . Then |x| < δ but
|f(x)− 1| = | − 1− 1| = 2 which is not < 1. This contradicts |f(x)− 1| < 1 for all x for which |x| < δ.
Therefore there exists not δ such that the de�nition of continuity becomes true. f is not continuous
at 0 and therefore not a continuous function. QED.

Exercises

1. Negate the de�nition of convergence for a sequence. (The de�nition is in Real Analysis part.)

2. Negate the de�nition of continuity.

3. Let f(x) =

{
1 if x 6= 0

1.1 if x = 0
. Prove that f is not continuous at 0.

4. Prove that limx→0
1
x 6= K for any number K.

5. Let f and g be two continuous functions from R to R. Show that f + g is continuous.
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3 Homework

Prove the following by direct proof.

1. n(n+ 1) is an even number.

2. The sum of the �rst n natural numbers is 1
2n(n+ 1).

3. If 6x+ 9y = 101, then either x or y is not an integer.

Prove the following by contrapositive.

1. n(n+ 1) is an even number.

2. If x+ y > 100, then either x > 50 or y > 50.

Prove the following by contradiction.

1. n(n+ 1) is an even number.

2.
√
3 is an irrational number.

3. There are in�nitely many prime numbers.

Prove the following by induction.

1. n(n+ 1) is an even number.

2. 2n ≤ 2n.

3.
∑n
i=1 i

2 = 1
6n (n+ 1) (2n+ 1).

4. The sum of the �rst n odd integers is n2 (This is the �rst known proof by mathematical induction,
attributed to Francesco Maurolico. Just in case you were interested.)

Find the error in the following argument, supposedly by induction:

If there is only one horse, then all the horses are of the same color. Now suppose that within any
set of n horses, they are all of the same color. Now look at any set of n + 1 horses. Number them
1, 2, 3, . . . , n, n + 1. Consider the sets {1, 2, 3, . . . , n} and {2, 3, 4, . . . , n + 1}. Each set is a set of n
horses, therefore they are all of the same color. But these sets overlap, therefore all horses are the
same color.

Prove the following (solution in Analysis solution sheet):

1. Let f and g be functions from Rk to Rm which are continuous at x. Then h = f−g is continuous
at x.

2. Let f and g be functions from Rk to Rm which are continuous at x. Then h = fg is continuous
at x.

In �rst semester micro you will be introduced to preference relations. We say that x � y, (read �x
is weakly preferred to y�) if x is at least as good as y to the agent. From this, we can derive two
important relations:
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• The strict preference relation, �, de�ned by x � y ⇔ x � y but not y � x. The strict preference
relation is read �x is strictly preferred to y�.

• The indi�erence relation, ∼, de�ned by x ∼ y ⇔ x � y and y � x. The indi�erence relation is
read �x is indi�erent to y�.

We say that a preference relation is rational if:

• ∀ x, y, either x � y or y � x.

• ∀ x, y, z, if x � y and y � z, then x � z.

Prove the following two statements given that preferences are rational:

1. If x � y and y � z, then x � z.

2. If x ∼ y and y ∼ z, then x ∼ z.
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