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The neurotransmitter dopamine has been found to play a crucial role in choice,
learning, and belief formation. The best-developed current theory of dopaminergic
function is the “reward prediction error” hypothesis—that dopamine encodes the
difference between the experienced and predicted “reward” of an event. We provide
axiomatic foundations for this hypothesis to help bridge the current conceptual gap
between neuroscience and economics. Continued research in this area of overlap
between social and natural science promises to overhaul our understanding of how
beliefs and preferences are formed, how they evolve, and how they play out in the
act of choice.

I. INTRODUCTION

Dopamine is a neurotransmitter—a substance that transmits
information from one nerve cell of the brain to another. A long
line of neurobiological studies have shown that dopamine plays
a crucial role in many aspects of behavior that are important to
economic decision-making (see Section II).1 The goal of this pa-
per is to characterize the “dopaminergic reward prediction error”
(DRPE) hypothesis, which has become the standard model within
neuroscience. This model asserts that neurons that contain this
neurotransmitter release dopamine in proportion to the difference
between the “predicted reward” and the “experienced reward” of a
particular event. The model was developed following experimen-
tal work on monkeys by Schultz, Apicella, and Ljungberg (1993)
and Mirenowicz and Schultz (1994). They established that the ex-
tent to which dopamine is released in response to a juice “reward”
depends critically on whether or not receipt of the reward has
already been signaled. In the presence of a clear prior cue, the
release of dopamine shifts forward in time to coincide with the
cue rather than with receipt of the reward.

Recent theoretical and experimental work on dopamine re-
lease has focused on the role this neurotransmitter plays in
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1. There are many excellent review articles, including Berridge and Robinson
(1998), Schultz (2002), and Montague, Hyman, and Cohen (2004). Bernheim and
Rangel (2004) discuss related material from the economic point of view.
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learning and the resulting choice behavior. Schultz, Dayan, and
Montague (1997) noted that the shift forward in time of dopamine
release in response to information about a future reward sug-
gests that it plays a role in reinforcement learning (Bush and
Mosteller 1951; Rescorla and Wagner 1972). A quantitative sig-
nal analogous to the level of dopamine release turns out to be
needed in reinforcement learning algorithms to drive convergence
toward a standard dynamic programming value function (Barto
and Sutton 1982). Combining these insights, neuroscientists have
hypothesized that the role of dopamine is to update the “value”
that humans and animals attach to different actions and stim-
uli, which in turn affects the probability that such actions will be
chosen. If true, this theory suggests that deeper understanding of
dopamine will expand economists’ understanding of how beliefs
and preferences are formed, how they evolve, and how they play
out in the act of choice. Even if the theory turns out to be in need
of refinement, the findings to date are striking, given their in-
teraction with the core concepts of economics. Deeper qualitative
and quantitative understanding of dopamine release represents
one of the most promising areas of neuroeconomics, a field that
is itself one of the most vital areas of convergence between social
and natural science (Glimcher 2003; Camerer, Loewenstein, and
Prelec 2005).

In the current paper we begin the process of integrating the
study of dopamine with economic understanding. One factor pre-
venting such convergence is that experimental findings are consis-
tent with alternative theories of dopaminergic function, such as
the “incentive salience” theory of Berridge and Robinson (1998)
and the “attention switching” theory of Redgrave and Gurney
(2006). A second and related factor is that the current DRPE
hypothesis is analogous to early economic theory, with an unob-
servable “reward” posited to mediate the relationship between
dopamine, choice, and external stimuli. Samuelson (1938) pio-
neered the use of axiomatic techniques with his insistence that
possible existence of a utility function be inferred only on the ba-
sis of observable choice data. Following his example, we formulate
the DRPE hypothesis in axiomatic terms. Our treatment has pre-
cisely the “revealed preference” characteristic of identifying any
possible reward function directly from the observables. This ax-
iomatic approach solves the language barrier between economics
and neuroscience by being explicit in its definition of the term
“reward.” It also guides the design of definitive neuroeconomic
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testing of the underlying model, which is currently going on in
conjunction with the Center for Neural Science at NYU (Caplin
et al. 2008).

We outline three economic applications of our model. First,
we discuss the potential for measured dopamine release to pro-
vide insight into belief formation in repeated games, a topic of
great interest in experimental economics (Nyarko and Schotter
2002). The second application relates directly to learning theory,
in which Erev and Roth (1998) and Camerer and Ho (1999) pi-
oneered experimental application of the reinforcement model of
animal learning. Finally, we outline an application to addiction,
strongly related to the work of Bernheim and Rangel (2004).2

II. DOPAMINE AND ECONOMIC DECISION MAKING

II.A. Neuroscientific Foundations

A connection between nerve cells (neurons) across which com-
munication can take place is called a synapse. Such connections
allow (in general) one-way communication, with a presynaptic
neuron communicating information to one, or possibly many,
postsynaptic cells. When a presynaptic neuron releases a neu-
rotransmitter, that chemical travels across the synaptic cleft, the
physical gap across which the synaptic connection is made, and
attaches itself to receptors in the postsynaptic cell. Thus, the post-
synaptic neuron “knows” that the presynaptic neuron has released
a neurostransmitter, a form of information transfer. This may, in
turn, lead to further communication with neurons to which the
“newly informed” neuron is connected. Dopamine is one such neu-
rotransmitter and the term dopamine (or dopaminergic) neuron
refers to any neuron that uses dopamine as a neurotransmitter.

Although dopamine neurons exist in several different parts
of the brain, the ones that we are interested in form two dopamin-
ergic pathways, long thin bundles of cells that connect areas
in the midbrain to areas in the forebrain. These pathways are
evolutionarily very old and exist in all mammals, reptiles, and
birds, as well as humans. The mesostriatal pathway links the

2. The current research forms part of a broader agenda designed to establish
rigorous methods for introducing nonstandard data into economic analysis. Caplin
and Dean (2008) provide an entirely separate example focused around the ques-
tion of how long a subject takes to make a decision and the light this sheds on
search and the decision-making process. Caplin (2008) provides a general state-
ment concerning the methodology being employed in these various studies.



666 QUARTERLY JOURNAL OF ECONOMICS

substantia nigra in the midbrain to the striatum (caudate nucleus
and putamen) in the forebrain. The mesolimbic pathway connects
the ventral tegmental area in the midbrain to the to the amygdala,
the nucleus accumbens, and the medial prefrontal cortex, again
located in the forebrain. All the studies we discuss below measure
dopamine activity within one of these brain structures. Although
these pathways consist of many individual dopaminergic cells,
there is evidence that activity within these groups of cells tends
to be highly correlated (see Schultz [2002] for evidence that
dopamine neurons all tend to behave in the same way, and Grace
and Bunney [1983] for evidence on the electrical connection
between dopaminergic neurons). This has led neuroscientists to
hypothesize that dopamine neurons have a single, coherent, and
important message to send to several different areas of the brain.

There are two broadly popular techniques for measuring ac-
tivity in dopaminergic neurons. Single-cell “recordings” in animals
measure nerve cell activity directly, using electrodes inserted into
the animals’ brains. This technique gives excellent spatial and
temporal resolution, but is not feasible in humans for obvious
reasons. Instead, human studies use functional magnetic reso-
nance imaging (fMRI), which measures the amount of oxygenated
blood present in a particular brain area at a given time, providing
an indirect measure of brain activity in real time. This technique
produces noisy data and has poor temporal resolution, but it is
an improvement on previous techniques. All the observational
studies described below use either single-unit recording or fMRI
technology.

In addition to gathering information by observing how
dopamine neurons respond to different stimuli, researchers can
also use biological or pharmacological interventions to alter
dopamine release. These include direct stimulation of dopamine
neurons, lesions (destruction) of dopaminergic areas (in animals),
genetic alteration to reduce or enhance dopamine production
(again in animals), and drug-induced reduction or enhancement
of dopamine activity (in both animals and humans). Many of the
studies described below make use of one of these techniques.

II.B. From Reward to Information

A sequence of early experiments led neuroscientists to the
conclusion that dopamine played a crucial role in behavior by me-
diating “reward.” Essentially the idea was that dopamine con-
verted experiences into a common scale of “reward” and that
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animals (and by extension, people) made choices in order to max-
imize this reward.

The seminal study in this literature was that of Olds and
Milner (1954), who showed that rats would repeatedly return to
locations in which they were given direct electrical stimulation of
brain regions that included many dopamine neurons. Later stud-
ies showed that, when given the opportunity to self-administer
such stimulation, rats would do so rather than feed, drink, or
mate with attractive female rats (Gallistel, Shizgal, and Yeomans
1981). Moreover, they would choose to do so even if this stimula-
tion was coupled with painful electrical shocks (see Gardner and
David [1999] for a review). Further evidence relating dopamine to
choice comes from Berridge (1999), who showed that when they
are deprived of dopamine, rats stop responding to “rewarding”
stimuli in their environment, such as food.

A second set of findings that seemingly support the hedonia
theory relates activity levels of dopamine neurons to the receipt
of “rewards.” These rewards include food (Kiyatkin and Gratton
1994), liquid (Apicella et al. 1991), and access to sexual partners
(Fiorino, Coury, and Phillips 1997). Studies using fMRI in humans
have shown that dopamine areas also respond positively to the
receipt of more abstract rewards, such as money (Montague and
Berns 2002; Knutson and Peterson 2005). More recent work has
shown that dopamine response correlates with stated subjective
preferences over types of fruit juice (O’Doherty et al. 2006).

The simple hypothesis of “dopamine as reward” was spectac-
ularly disproved by a sequence of experiments highlighting the
role of beliefs in modulating dopamine activity: whether or not
dopamine responds to a particular reward depends on whether
or not this reward was expected. This result was first shown
by Schultz, Apicella, and Ljungberg (1993) and Mirenowicz and
Schultz (1994). Mirenowicz and Schultz (1994) measured the ac-
tivity of dopaminergic neurons in a thirsty monkey as it learned
to associate a tone with the receipt of fruit juice a small amount of
time later. Initially (i.e., before the animal had learned to associate
the tone with the juice), dopamine neurons fired in response to the
juice but not the tone. However, once the monkey had learned that
the tone predicted the arrival of juice, dopamine responded to the
tone, but now did not respond to the juice. Moreover, once learning
had taken place, if the tone was played but the monkey did not
receive the juice, then there was a “pause” or drop in the back-
ground level of dopamine activity when the juice was expected.
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These findings made it clear that expectations play a key role in
the response of dopaminergic neurons to stimuli. This finding has
been supported by fMRI studies in humans (e.g., Montague and
Berns [2002]).

The dramatic findings concerning the apparent role of infor-
mation about rewards in mediating the release of dopamine led
many neuroscientists to abandon the hedonic theory of dopamine
in favor of the DRPE hypothesis: that dopamine responds to the
difference between how “rewarding” an event is and how reward-
ing it was expected to be.3 One reason that this theory has gener-
ated so much interest is that a reward prediction error of this type
is a key algorithmic component of reinforcement models of learn-
ing: such a signal is used to update the value attached to different
actions. This has led to the further hypothesis that dopamine
forms part of a reinforcement learning system that drives be-
havior. Several studies have successfully correlated dopaminergic
activity with the error signal from calibrated reinforcement learn-
ing models (e.g., Montague and Berns [2002]; Bayer and Glimcher
[2005]; Bayer, Lau, and Glimcher [2007]; O’Doherty et al. [2003,
2004]; Daw et al. [2006]; and Li et al. [2007]).

That there is a link between dopamine and learning has been
confirmed in humans in a recent study by Pessiglione et al. (2006),
which builds on earlier work in animals by, for example, Wise
(2004). Pessiglione et al. examined learning behavior as people
were asked to choose between an option that stochastically pro-
vided a reward and one that never provided a reward. Participants
in the study were divided into three groups, one of which was given
a dopamine agonist (a drug that enhances dopamine levels), one
a dopamine antagonist (a drug that diminishes dopamine levels),
and one a placebo. The rate of learning (measured by the pro-
portion of “correct” choices of the stochastically rewarding option)
was highest for the group with enhanced dopamine, and lowest
for the group with reduced dopamine.

In addition to the interaction with learning, dopamine has
long been associated with addiction and addictive behavior. Evi-
dence for this comes principally from the observation that many

3. The above discussion makes it clear that reward is used in a somewhat
unusual way. In fact, what dopamine is hypothesized to respond to is effectively
unexpected changes in lifetime “reward”: dopamine responds to the bell not be-
cause the bell itself is rewarding, but because it indicates increased probability of
future reward. We will return to this issue in Section IV.
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drugs of addiction, such as cocaine and amphetamines, act directly
on the dopamine system. Even those drugs of addiction that do
not affect the dopamine system directly seem to do so indirectly.

II.C. Dopamine and Economics

Validity of the DRPE hypothesis and the related hypothesis
concerning the role of dopamine in learning would open the door
to fundamental economic insights:

1. Dopamine and the construction of utility: According to the
DRPE hypothesis, dopamine contains information on “re-
ward,” which in turn acts as an input into choice. As such,
we can see dopamine as a key input into the construction
of “utility,” or a building block in determining the choices
people make.

2. Dopamine as a carrier of information on expectations:
The DRPE hypothesis states that dopamine responds
to the difference between experienced and anticipated
rewards. As such, it should be possible to use observation
of dopamine to back out a measure of what was expected
in different circumstances, allowing a new window into
decision-making under uncertainty (see Section IV).

3. Dopamine as a building block for learning: The importance
of learning theory in economics is apparent from the effort
that has been dedicated to it both within macroeconomic
theory (e.g., Marcet and Sargent [1989] and Evans and
Honkapohia [2001]) and within microeconomic theory
(e.g., Fudenberg and Levine [1998]). The DPRE hypothesis
suggests that dopamine forms one of the building blocks
of learning within the brain. Understanding the DRPE
can therefore be thought of as the first step in developing
a “neuroeconomic theory of learning.” Again, we return to
this theme in Section IV.

There are many intriguing economic questions that may be
better understood as we drive forward with neuroeconomic re-
search related to dopamine. If dopamine participates in the “con-
struction of utility,” we can begin to explore the mechanisms by
which external stimuli affect choice. If dopamine can be linked
to beliefs, then researchers have an additional window through
which to explore the belief formation process. The relationship
between dopamine and learning raises a particularly rich set of
questions: When is the dopaminergically intermediated reinforce-
ment learning system active? Is reinforcement a process that can
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take place at different speeds depending on internal and exter-
nal cues? To what extent do the speed of learning and the per-
sistence of past reinforcement provide an adequate behavioral
model of habituation? Can we use neuroscientific techniques to
understand when and where these various speeds and styles of
learning are engaged? Can the relative influence on behavior of
past and present experiences be impacted by specific neurological
interventions? Can neuroeconomic research be designed to iden-
tify appropriate metrics on the state and action spaces to identify
how far reinforcement learning is generalized to subjectively sim-
ilar settings? How does reinforcement learning operate in the case
of delayed rewards? What role do emotions such as anxiety and
disappointment play in the process of reinforcement? Are partic-
ular choices concerning the future likely to be poorly made, due to
the lack of direct reinforcement inputs on the path? Of course, be-
fore we can take wing and address these interesting questions, we
need first to settle on some ground rules for the underlying neu-
roeconomic investigations. It is just such rules that our current
paper aims to provide.

II.D. Why Neuroeconomics Needs Axioms

The goal in what follows is to specify in a simple, parsimo-
nious, and nonparametric way the properties that the dopamine
system must have in order to be characterized as encoding a re-
ward prediction error. This is intended to enable us to design a
definitive experimental test of the hypothesis. Our axiomatic ap-
proach is intended also to reduce barriers between economic and
neuroscientific disciplines. In economics, reward concepts are in-
ferred from observed choices, whereas neuroscientists interpret
them in relation to intuitions concerning the flow of experience
(e.g., a squirt of juice is assumed to be rewarding to a thirsty
monkey). Samuelson (1938) pioneered the use of axiomatic tech-
niques within economics in an effort to rid utility theory of un-
observable constructs. The revealed preference program that re-
sulted from this effort constitutes one of the major methodological
achievements in social science. The idea is to define constructs
such as utility directly in terms of what they imply for observables.

The axiomatic approach has the added virtue of pinning down
the range of available transformations of these constructs that
are equivalent in terms of the observables. In fact, our central
result justifies only an ordinal version of the DRPE hypothesis.
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Although anticipated and realized rewards are well defined in
this characterization, the literal “reward prediction error,” or
arithmetic difference between experienced and predicted rewards,
is not. The reward function in our DRPE representation is defined
only up to strictly increasing monotone transformations. Hence
our basic representation does not allow one to treat dopamine as
an invariant measure of the reward difference or “error,” just as
the notion of marginal utility is ill-defined for standard ordinal
utility functions. We provide additional assumptions that do ani-
mate this prediction error yet know of no neuroscientific research
that validates these assumptions. This calls into question the most
prevalent current methodology for testing the DRPE hypothesis,
which is to correlate an estimated error signal from a calibrated re-
inforcement learning model with brain activity (see, for example,
Montague and Berns [2002]; Haruno et al. [2004]; O’Doherty et al.
[2003, 2004]; Bayer and Glimcher [2005]). Not only is there little
theoretical support for the assumed functional forms, but also the
calculated reward prediction error is very highly correlated with,
and could therefore be similarly explained by, other relevant
measures such as the magnitude of the reward itself and surprise.
Althoughonemightusestatisticalmethods to discriminate among
the various models, these will at best produce a ranking of the con-
sidered alternatives, rather than a global statement on model va-
lidity. Furthermore, these tests require parametric specifications
of reward and learning. In contrast, our axiomatic approach char-
acterizes the DRPE hypothesis in a parsimonious, nonparametric,
and easily testable manner and guides the design of protocols
that effectively differentiate among these various theories.

The broader point is that neuroeconomic research needs to fol-
low the lead of utility theory and internalize the perils of treating
an ordinal reward function as if it were cardinal. Just as the ordi-
nal revolution in economics reshaped understanding of marginal
utility, so the axiomatic approach to neuroeconomics may reshape
the understanding of reward prediction errors. Current neuro-
scientific testing protocols are vulnerable to criticism on these
grounds because cardinality plays an unjustified and largely un-
justifiable role. Because of this, the axiomatic method is needed to
guide design of definitive protocols for establishing the validity of
the underlying model. Such definitive protocols are particularly
important, as the DRPE hypothesis is not the only active theory
of dopamine function. Though largely discredited due to the ex-
periments of Schultz, the “dopamine as hedonia” theory still has
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its adherents. The “incentive salience” hypothesis of Berridge and
Robinson (1998) holds that dopamine responds to how “wanted” a
stimulus is, which is separate from how much a stimulus is “liked.”
Redgrave and Gurney (2006) suggest that dopamine plays a role
in “switching attention” between different activities. Moreover,
the qualitative fMRI studies of Zink et al. (2003), Delgado et al.
(2005), and Knutson and Peterson (2005) suggest that dopamine
responses may be modulated not only by a reward prediction error
but also by less reward-specific “surprise.”

III. THE MODEL

III.A. The DRPE Hypothesis

We develop the DRPE model in the simplest environment in
which the concept of a reward prediction error makes sense. The
agent either is endowed with or chooses a lottery from which a
prize is realized. We observe both any initial act of choice among
lotteries, and the dopaminergic response when each possible prize
z is realized from lottery p, as measured by the dopamine release
function (DRF). Many of the subtleties of the theory that follow
derive from the fact one cannot observe dopaminergic responses
to prizes that are ex ante impossible.

DEFINITION 1. The set of prizes is a metric space Z with generic
element z ∈ Z. The set of all simple lotteries (lotteries with
finite support) over Z is denoted �, with generic element p ∈
�. We define ez ∈ � as the degenerate lottery that assigns
probability 1 to prize z ∈ Z and the set �(z) as all lotteries
with z in their support,

�(z) ≡ {p ∈ �|pz > 0}.
The function δ(z, p) defined on M = {(z, p)|z ∈ Z, p ∈ �(z)}
identifies the dopamine release function, δ : M → R.4

The DRPE hypothesis hinges on the existence of some
definition of “predicted reward” for lotteries and “experienced
reward” for prizes that captures all the information necessary

4. We endow � with the metric

d�(p, q) =
∑

z∈Supp(p)∪Supp(q)

(p(z) − q(z))2

and Z × � with the product metric.
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to determine dopamine output. In this paper, we make the basic
rationality assumption that the expected reward of a degenerate
lottery is equal to its experienced reward as a prize.5 Hence the
function r : � → R, which defines the expected reward associated
with each lottery, simultaneously induces the reward function on
prizes z ∈ Z as r(ez). We define r(Z) as the set of values taken by
the function r across degenerate lotteries,

r(Z) = {r(p) ∈ R|p = ez, z ∈ Z}.

Our first basic requirement for the DRPE hypothesis is that
there exist some reward function containing all information rele-
vant to dopamine release. We say that the reward function fully
summarizes the DRF if this is the case. Our second requirement
is that the dopaminergic response be strictly higher for a more
rewarding prize than for a less rewarding one. Furthermore, a
given prize should lead to a higher dopamine response when ob-
tained from a lottery with lower predicted reward. Our third and
final requirement is that, if expectations are met, the dopaminer-
gic response does not depend on what was expected. If one is told
that they will get any prize for sure, and is then given that prize,
there is no “reward prediction error,” as one has just received what
was expected. We refer to this property as “no-surprise constancy.”
These requirements are formalized in the following definition.6

DEFINITION 2. A DRF δ : M → R admits a dopaminergic reward
prediction error (DRPE) representation if there exist a reward
function r : � → R and aggregator function E : r(Z) × r(�) →
R that
1. Represent the DRF: given (z, p) ∈ M,

δ(z, p) = E(r(ez), r(p)).

2. Respect dopaminergic dominance: E is strictly increasing
in its first argument and strictly decreasing in its second
argument.

5. Dean (2007) allows the reward function to differentiate between realized
prizes and the lotteries that yield them with certainty.

6. Note that although our axioms are stated in terms of dopaminergic mea-
surements, precisely the same axiom system would characterize any neuroscien-
tific measure of a reward prediction error, whether or not solely dopaminergic
in nature. Note moreover that one possible refinement of the theory involves
dopamine itself carrying only positive reward surprises, as has been suggested
by Bayer and Glimcher (2005). See Dean (2007) for an axiomatization of this case.
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FIGURE I
A Violation of A1

Note. When received from lottery p, prize 1 leads to higher dopamine release
than does prize 2, indicating that prize 1 has higher experienced reward. This order
is reversed when the prizes are realized from lottery p′, suggesting that prize 2
has higher experienced reward. Thus a DRPE representation is impossible.

3. Satisfy no-surprise constancy: given x, y ∈ r(Z),

E(x, x) = E(y, y).

III.B. The Basic Result

We introduce three critical axioms for δ : M → R to admit a
DRPE and illustrate them graphically in Figures I–III for the two-
prize case, in which the space of lotteries � can be represented
by a single number: the probability of winning prize 1. This forms
the x axis of these figures. We represent the function δ using two
lines—the dashed line indicates the amount of dopamine released
when prize 1 is obtained from each of these lotteries (i.e., δ(z1, p)),
whereas the solid line represents the amount of dopamine re-
leased when prize 2 is obtained from each lottery (i.e., δ(z2, p)).
Note that there are no observations at δ(z1, 0) and δ(z2, 1), as prize
1 is not in the support of the former, while prize 2 is not in the
support of the latter.

Our first axiom demands that the order on the prize space in-
duced by the DRF be independent of the lottery that the prizes are
obtained from. In terms of the graph in Figure I, if dopaminergic
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FIGURE II
A Violation of A2

Note. Looking at prize 1, more dopamine is released when this prize is obtained
from p′ than when it is obtained from p, suggesting that p has a higher predicted
reward than p′. The reverse is true for prize 2, making a DRPE representation
impossible.

D
opam

ine release

FIGURE III
A Violation of A3

Note. The dopamine released when prize 1 is obtained from its sure thing
lottery is higher that that when prize 2 is obtained from its sure thing lottery.
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release based on lottery p suggests that prize 1 has a higher ex-
perienced reward than prize 2, there should be no lottery p′ to
which dopaminergic release suggests that prize 2 has a higher
experienced reward than prize 1. Figure I shows a violation of
such coherent prize dominance. It is intuitive that all such viola-
tions must be ruled out for a DRPE to be admitted. Our second
axiom ensures that the ordering of lotteries by dopamine release
is independent of the obtained prize. Figure II shows a case that
contradicts this, in which more dopamine is released when prize 1
is obtained from lottery p than when it is obtained from lottery p′,
yet the exact opposite is true for prize 2. Our final axiom deals di-
rectly with equivalence among situations in which there is no sur-
prise, a violation of which is recorded in Figure III, in which more
dopamine is released when prize 2 is obtained from its degenerate
lottery than when prize 1 is obtained from its degenerate lottery.

AXIOM 1 (A1: Coherent Prize Dominance). Given (z, p), (z′, p′),
(z′, p), (z, p′) ∈ M,

δ(z, p) > δ(z′, p) ⇒ δ(z, p′) > δ(z′, p′).

AXIOM 2 (A2: Coherent Lottery Dominance). Given (z, p), (z′,
p′), (z′, p), (z, p′) ∈ M,

δ(z, p) > δ(z, p′) ⇒ δ(z′, p) > δ(z′, p′).

AXIOM 3 (A3: No-Surprise Equivalence). Given z, z′ ∈ Z,

δ(z′, ez′ ) = δ(z, ez).

That A1–A3 are necessary for a DRPE representation is
demonstrated in Proposition 1, proven along with all other re-
sults in the Appendix. Yet there are examples that satisfy A1–A3
in which there is no DRPE representation. Theorem 1 establishes
that all such examples derive from the fact that the domain of
the dopamine function is not a Cartesian product of the prize and
lottery space: distinct prizes z, z′ ∈ Z are associated with distinct
sets �(z) �= �(z′) ⊂ �.

PROPOSITION 1. A DRF δ : M → R must satisfy A1–A3 in order to
admit a DRPE representation.

THEOREM 1. A DRF δ : M → R permits a DRPE representation if
and only if there exists a function δ̄ : Z × � → R that (a) is
an extension of δ : M → R and (b) satisfies A1*–A3* on this
extended domain:
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A1*: Given z, z′ ∈ Z and p, p′ ∈ �, δ̄(z, p) > δ̄(z′, p) ⇒ δ̄(z, p′)
> δ̄(z′, p′);

A2*: Given z, z′ ∈ Z and p, p′ ∈ �, δ̄(z, p) > δ̄(z, p′) ⇒ δ̄(z′, p)
> δ̄(z′, p′);

A3*: Given z, z′ ∈ Z, δ̄(z′, ez′ ) = δ̄(z, ez)

According to Theorem 1, existence of a DRPE representation
is equivalent to the function δ : M → R being extendible to the
domain Z × � in a manner that retains A1–A3. Lemma 1 in the
Appendix implies that � ⊂ cl(�(z)) for all z ∈ Z, suggesting that
suitable continuity conditions will allow us to extend δ appropri-
ately to the domain Z × �. In addition to continuity axiom A4, an
additional “separation” axiom is required for technical reasons.
Theorem 2 establishes that A1–A5 allow us to construct a unique,
continuous extension of δ to Z × � satisfying A1*–A3*, which we
denote as δ̄C (A4 and A5 will be assumed in what follows, so that
we can call upon this function δ̄C in stating axioms and deriving
proofs). The central existence result of the paper is obtained by
combining Theorems 1 and 2.

AXIOM 4 (A4: Uniform Continuity). The function δ : M → R is uni-
formly continuous.

AXIOM 5 (A5: Separation). Given (z, p), (z′, p) ∈ M with δ(z, p) �=
δ(z′, p),

inf
{p′∈�|(z,p′),(z′,p′)∈M}

|δ(z, p′) − δ(z′, p′)| > 0.

THEOREM 2. Given that the DRF δ : M → R satisfies A1–A5, there
exists a unique uniformly continuous function δ̄C : Z × � → R

that is an extension of δ and satisfies A1*–A3*.

THEOREM 3. A DRF δ : M → R that satisfies A4 and A5 admits a
DRPE representation if and only if it satisfies A1–A3.

Although A1–A3 form crucial underpinnings for the DRPE
hypothesis, they appear inconsistent with alternative hypothe-
ses relating to salience and to experienced reward. Consider two
prizes, z and z′, and two lotteries, p, which give a 1% chance of
winning z and a 99% chance of winning z′, and p′, which reverses
these two probabilities. It is intuitive that receiving z from p
would be a very “salient” or surprising event, whereas receiving z′

would be very unsurprising. Thus a system responding to salience
should give higher readings when z is obtained from p than when
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z′ is obtained from p. However, this situation is reversed when the
two prizes are obtained from p′. Thus we would expect A1 to fail if
dopamine responded to salience. A similar argument shows that
A2 would also fail, while A3 would hold, as the salience of getting
a prize from a sure thing lottery should be the same in all cases.
With regard to the older and somewhat discredited theory that
dopamine responds only to “experienced reward,” this would lead
A3 to be violated—different prizes with different reward values
would give rise to different dopaminergic responses, even when
received from degenerate lotteries.

III.C. Dopamine and Choice

Although the approach we are taking is intellectually aligned
with the revealed preference approach to choice theory, it will
be of little interest to economists unless the reward function is
somehow related to choice behavior. One such relation would be
if choices among lotteries could be modeled as deriving from max-
imization of the DRPE reward function. It is this simplest of
cases that we characterize below. While this case is of obvious
interest to economists, it represents an extreme form of the DRPE
hypothesis. A more standard scenario involves dopamine as sim-
ply one component of a richer overall process of learning and of
choice.

DEFINITION 3. The choice correspondence C is defined on Q, the
set of all nonempty compact subsets of �, with C(X) ⊆ X ∈
Q denoting the nonempty set of lotteries chosen from X. A
DRF δ : M → R and a choice correspondence C admit a choice-
consistent DRPE representation if there exist r : � → R, E :
r(Z) × r(�) −→ R that form a DRPE of δ : M → R, and for all
X ∈ Q,

C(X) = arg max
p∈X

r(p).

To make the connection between dopamine and the standard
theory of utility maximization requires us first to ensure that this
theory applies, by invoking the weak axiom of revealed preference.
We then ensure that what the axiom says is chosen in any given
pair accords with the dopaminergic responses.

AXIOM 6 (A6: WARP). The choice correspondence C satisfies the
weak axiom of revealed preference.
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AXIOM 7 (A7: Dopamine and Choice Consistency). Given p, q
∈ � and z ∈ Z,

δ̄C(z, p) ≤ δ̄C(z, q) ⇐⇒ p ∈ C({p, q}).
THEOREM 4. A DRF δ : M → R that satisfies A4 and A5 admits a

choice-consistent DRPE representation, with r : � −→ R con-
tinuous, if and only if it satisfies axioms A1–A3, A6, and A7.

III.D. The Reward Error

Lemma 2 in the Appendix shows that if r : � → R forms part
of a DRPE representation of a DRF δ : M → R, then so does any
function r∗ : � → R that is a strictly increasing monotone trans-
form of r. We develop a more restrictive additive formulation that
represents the minimum requirement for using dopaminergic re-
sponse to animate the notion of reward difference/error.

DEFINITION 4. A DRF δ : M → R admits a dopaminergic additive
reward prediction error (DARPE) representation if there exist
a function r : � → R and a strictly increasing function G :
r(Z) − r(�) → R such that, given (z, p) ∈ M,

δ(z, p) = G(r(ez) − r(p)).

In the DARPE representation, the term “error” is interpreted
additively—the reward prediction error is literally the arithmetic
difference between experienced and predicted reward. It is this
version of the theory that (implicitly) forms the basis of many of
the models currently in use within neuroscience. The conditions
required for the DRPE are equivalent to those required for an
additive representation of the ordering generated by the DRF
δ : M → R on M.

PROPOSITION 2. The DRF δ : M → R admits a DARPE represen-
tation if it satisfies A3 and there exist functions u : Z → R,
v : � → R such that, given z, z′ ∈ Z and p, p′ ∈ �,

δ̄(z, p) ≥ δ̄(z′, p′) if and only if u(z) + v(p) ≥ u(z′) + v(p′).

The conditions under which a binary relation can be repre-
sented additively have been extensively studied both in economics
and in mathematical psychology. Necessary and sufficient condi-
tion for the case of countable domains have been provided by
Tversky (1964), Scott (1964), Adams (1965), and Fishburn (1970)
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and for uncountable domains by Debreu (1960), Luce and Tukey
(1964), Jaffray (1974), Wakker (1989), and Gonzales (2000). We
make a technical assumption to rule out trivial problems and to
ensure that we can establish a DARPE representation based on
the existing conditions for additivity due to Wakker (1989).

AXIOM 8 (A8: No Triviality). There exist z, z′ ∈ Z and p, p′ ∈ �

such that δ̄C(z, p) �= δ̄C(z′, p) and δ̄C(z, p) �= δ̄C(z, p′).

Although our technical approach to additivity derives from a
prior literature, the supporting axioms in that literature, such as
the “hexagon condition,” have little intuitive meaning. We provide
a characterization with a more intuitive interpretation. Suppose
that lotteries p and p′ display dopaminergic responses to some
prize z that are precisely equivalent to those that q and q′ display
with respect to some prize w. If reward differences are to be well
defined, we would like to conclude from this that “the reward dif-
ference between lottery p and p′ is equivalent to that between q
and q′.” Hence if there are any two other prizes z′ and w′ such that
the dopaminergic response to realization of z′ from p′ is equiva-
lent to that of w′ to q′, then it must equally be the case that the
dopaminergic response to realization of z′ from p is equivalent to
that of w′ to q. Analogously, if prizes z and z′ display dopaminergic
responses from lottery p′ that are precisely equivalent to those
that w and w′ display from lottery q′, we would like to conclude
that “the reward difference between lottery p and p′ is equivalent
to that between q and q′.” Hence, if there are any two other lot-
teries p and q such that the dopaminergic response to realization
of z from p is equivalent to that of w to q, it must be the case that
the dopaminergic response to realization of z from p′ is equiva-
lent to that of w to q′. Despite the apparent conceptual difference
between the reward difference statements above as applied to lot-
teries and to prizes, a careful reading shows them to reduce to the
following common assumption.

AXIOM 9 (A9: Equivalent Differences). The extended DRF δ̄C :
Z × � → R is such that, given z, z′, w,w′ ∈ Z and p, p′, q, q′ ∈
� with δ̄C(z, p) = δ̄C(w, q), δ̄C(z′, p′) = δ̄C(w′, q′) and δ̄C(z′, p) =
δ̄C(w′, q), it follows that

δ̄C(z, p′) = δ̄C(w, q′).

THEOREM 5. Let Z be a connected metric space and assume that
the DRF δ : M → R satisfies A4 and A5. Then the DRF
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satisfies A1–A3, A8, and A9 if and only if ∃ functions r : � → R

and G : r(Z) − r(�) −→ R, with r nonconstant and continuous
on both Z and � and with G continuous and strictly increas-
ing, that form a DARPE representation of the DRF.

Whereas for the DRPE representation we could say that
any strictly monotone transformation of a given reward func-
tion r : � → R would also form part of a DRPE, this is not the
case for the DARPE representation. Here we can only guarantee
that any positive affine transformation will preserve the DARPE
structure.

PROPOSITION 3. If r, G form a DARPE representation of δ : M → R,
and r∗ : � → R is a positive affine transformation of r, then
there exists G∗ : r∗(Z) − r∗(�) → R such that r∗, G∗ define also
a DARPE representation. Moreover, if Z is connected and
A4, A5, and A8 are satisfied, the class of r functions that
additively represent the extended function δ̄C is unique up to
a positive affine transformation.

III.E. Expected Reward Prediction Error

An extreme strengthening of the DRPE hypothesis is to de-
mand that the predicted reward be computable as the mathemati-
cal expectation of the rewards associated with these prizes. Given
the strong analogy with expected utility theory, we refer to this
as an expected reward representation. Note again that this is a
specialization of the DRPE representation. However, it neither
implies nor is implied by the DARPE representation.

DEFINITION 5. A DRF δ : M → R admits a dopaminergic expected
reward prediction error (DERPE) representation if there exist
r : � → R, E : r(Z) × r(�) → R that form a DRPE representa-
tion of the DRF in which

r(p) ≡ µp[u] all p ∈ �,

for some function u : Z → R, where µp[u] denotes the expected
value of u : Z → R with respect to the lottery p.

As might be expected, given the close relationship between
the DEPRE representation and standard expected utility, the con-
dition we require is very similar to the independence axiom from
choice theory.
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AXIOM 10 (A10 : Independence). Given z ∈ Z, p, p′ ∈ �(z), q ∈ �

and λ ∈ (0, 1],

δ̄C(z, p) > δ̄C(z, p′)
⇒ δ̄C(z, λp + (1 − λ)q) > δ̄C(z, λp′ + (1 − λ)q).

THEOREM 6. A DRF δ : M → R that satisfies A4 and A5 admits a
DERPE representation if and only if it satisfies axioms A1–A3
and A10.

IV. THREE APPLICATIONS

In this section we outline three possible economic applications
of the DRPE built upon our axiomatic foundations. The first is
a direct application of the information inherent in the DRPE,
whereas the second and third represent more ambitious agendas
that involve building upon the current foundations.

IV.A. Belief Elicitation

Belief formation lies at the center of many game-theoretic so-
lution concepts. Furthermore, many behavioral models of game
play also place large explanatory burdens on beliefs that subjects
may construct through introspection, experience, or both (Stahl
and Wilson 1995; Cheung and Friedman 1997; Fudenberg and
Levine 1998). One method for understanding beliefs is to infer
them based solely on observed actions of players and an appro-
priate structural econometric model of the updating processes
and decisions (e.g., Cheung and Friedman [1997]). Yet Nyarko
and Schotter (2002) showed that they can explain play in vari-
ous games far better using beliefs estimated from an incentive-
compatible mechanism that directly elicit subjects’ beliefs about
partner play during the course of game.

Although this represents a powerful new form of evidence
on beliefs, stated beliefs have their own potentially serious draw-
back. In the context of a repeated asymmetric matching pennies
game, Rutström and Wilcox (2006) provide an example in which
model-estimated beliefs predict game play better than stated be-
liefs, contrary to the results of Nyarko and Schotter (2002). They
provide evidence suggesting that one of the reasons for this is that
the act of belief elicitation itself can alter paths of play. Belief elic-
itation procedures require nontrivial instruction of subjects and
interrupt the typical flow of subject attention and game play in
a potentially significant way. Belief elicitation procedures could
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move such subjects toward belief-based thinking and play, away
from naturalistic play of the form suggested by such belief-free
models as that of reinforcement learning (Erev and Roth 1998;
Sarin and Vahid 2001). Rutström and Wilcox conjecture that be-
lief elicitation moves subjects away from relatively automatic emo-
tional or “affective” predispositions that favor particular choices
to more conscious ones where beliefs are estimated. They argue
that cognitive processes that construct and update effective be-
liefs, as well as processes that combine them with payoff or value
information to determine choice probabilities, may not be wholly
conscious ones. For many subjects, the normal conscious product of
any unconscious processing may be mostly an inclination toward
a particular choice, rather than belief formation per se.

Given the continuing difficulties in evaluating subjective be-
liefs, the dopaminergic measurement techniques implicit in the
DRPE hypothesis are potentially very useful tools. In particu-
lar, a subjectivist interpretation of our framework would offer
researchers access to a method of belief elicitation that would not
require deliberative interruption. To give a simple example, in a
world with only one good and one bad prize, if one can validate the
DERPE representation, the dopaminergic response will be higher
for one lottery than for another if and only if the subjective belief
in receiving the better prize is stronger. This new form of evidence
on beliefs not only would help in understanding play in games,
but also would provide vital insights into learning behavior.

IV.B. Toward a Neuroeconomic Theory of Learning

One of the reasons the DRPE hypothesis has gained so much
attention is its link to computational models of learning. Schultz,
Dayan, and Montague (1997) noted that a “prediction error” sig-
nal is precisely what is needed in reinforcement learning algo-
rithms designed by computer scientists to approximate standard
dynamic programming value functions (Barto and Sutton 1982).
This has led many researchers to conclude that this similarity is
no coincidence and that dopamine does indeed measure a reward
prediction error that is used to update an evolving value function.

Within computer science, reinforcement learning refers to a
class of algorithms designed to solve a specific type of problem,
in which an agent tries to choose actions in order to maximize a
sequence of rewards discounted at rate β. Let ω ∈ � be a set of
states, A : � ⇒ A a set of actions available in each state, and h :
A × � → R the instantaneous reward of taking a particular action
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in a particular state. States change in a possibly stochastic way,
depending both on past states and on past actions. One example of
a reinforcement learning algorithm is the “Q-learning algorithm,”
which recursively calculates the value of taking a particular action
in a particular state: Q̄t(a, ω) is the estimated value associated in
period t with taking action a ∈ A(ω) in state ω ∈ �. These value
estimates are updated using the following algorithm:

Q̄t(at−1, ωt−1) = Q̄t−1(at−1, ωt−1) + α�(at−1, ωt−1, ωt)

�(at−1, ωt−1, ωt) =
[
h(at−1, ωt−1) + β max

a∈A(ωt)
Q̄t−1(a, ωt)

]
(1)

−Q̄t−1(at−1, ωt−1).

Estimates of the value of all other action/state pairs remains
unchanged. The estimate Q̄t−1(at−1, ωt−1) is updated by ad-
justing it according to �(at−1, ωt−1, ωt), the difference between
Q̄t−1(at−1, ωt−1) (how good action at−1 was expected to be in state
ωt−1) and [h(at−1, ωt−1) + β maxa∈A(ωt) Q̄t−1(a, ωt)] (how good it ac-
tually turned out to be, according to current estimates). Such al-
gorithms can, in the right circumstances, well approximate the
optimal solution to this class of problems (see Sutton and Barto
[1998]). Schultz, Dayan, and Montague (1997) suggested that
dopaminergic firing rates encode �(at−1, ωt−1, ωt), which is then
used by other parts of the brain to update value functions asso-
ciated with different states and actions. As we have discussed,
some support for this identification has been found by the work of
Bayer and Glimcher (2005), as well as the correlation studies of,
for example, Daw et al. (2006).

Important as it is to deepen understanding of reinforce-
ment learning, it is clear that realistic learning behaviors are
multifaceted. Camerer and Ho (1999) capture deviations from re-
inforcement learning relating to payoffs on hypothetical acts that
were not taken. Selten and Stoecker (1986) and Bendor, Mookher-
jee, and Ray (2001) enrich the basic model by incorporating
aspirations. Shor (2004) finds experimentally that when payoffs
are determined by a hidden state that changes over time, agents
adapt rapidly to the unsignaled change in the environment. Char-
ness and Levine (2003) also show that changes in the environment
impact whether or not experimental subjects exhibit reinforce-
ment learning. Neuroeconomic research following up on the DRPE
hypothesis has the potential for providing economists with much
relevant information. Indeed Balleine, Killcross, and Dickinson
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(2003) and Balleine (2005) detail a series of provocative studies
that are consistent with the idea that there may be multiple modes
of learning. Balleine (2005) is currently investigating the devel-
opment of “habits” as opposed to more flexible responses, and an
associated “supervisory function” that determines the extent to
which habitual behavior is called into play in any given situation.
Ideally, development of dynamic versions of the DRPE hypothe-
sis will be a prelude to a more complete neuroeconomic theory of
learning, possibly building on such multiple process ideas.

IV.C. Application 3: Addiction

As pointed out by Bernheim and Rangel (2004), substance ad-
diction is a massive concern in the United States. They highlight a
growing consensus in neuroscience and psychology that dopamin-
ergically intermediated learning effects, rather than “hedonic” ef-
fects, provide the key to understanding addictive behavior (see
Redish [2004]). The key observation underlying this theory is that
many addictive substances share an ability to activate the firing of
dopamine with much greater intensity and persistence than other
substances (e.g., Nestler and Malenka [2004]). The result may be
a strong impulse to seek and use the substance, particularly in
similar environments that activate latent reward expectations.
To understand the role that such dopaminergic stimulation may
play, consider again the learning algorithm described by equation
(1). The idea is that, by stimulating dopaminergic activity in an
unconditional fashion, addictive substances ensure that a high re-
ward prediction error � is associated with any environmental cues
that are associated with the corresponding activity. This charac-
terizes cues as particularly important, and it is for this reason
that high cue-triggered recidivism is seen as a defining feature of
addiction.

Another critical aspect of addition that Bernheim and Rangel
highlight is that many addicts expend great resources on failed
efforts to break their habit. Understanding the neurological mech-
anisms that underlie addiction may allow interventions to be
structured deliberately to reduce cue-induced cravings that frus-
trate many such efforts. The DRPE-based approach to addiction
suggests in particular that well-designed dopaminergic manip-
ulations may be of value to those seeking to change behavior.
Although neuroscientists are currently taking the lead in explor-
ing the interaction between dopamine and addiction, we believe
that the interaction with economic reasoning is essential given
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that the ultimate goal is to impact choice. An integrative theory
such as ours is a necessary prelude to the required form of inter-
disciplinary research.

V. CONCLUDING REMARKS

The aim of this paper is to provide an axiomatic representa-
tion of the DRPE hypothesis that will both provide parsimonious,
nonparametric tests of the model and clear up the language bar-
rier that can plague neuroeconomic research. The obvious next
question is whether or not the data support such a model. Unfor-
tunately, existing experiments provide only a rough guide to this
question: the data they produce tend not to be of the simple form
that our model requires. As we have discussed above, most tests
of the DRPE hypothesis take place in environments in which sub-
jects are constantly learning the values of different options. Our
approach explicitly abstracts from a learning environment, in or-
der to provide a simple and clean characterization. Thus data
from learning environments are not readily interpretable within
our framework. Some existing experiments, such as Mirenowicz
and Schultz (1994), can to some extent be interpreted within our
framework. While these data do not contradict our axioms, they
are also not rich enough to provide a thorough test of the existence
of a consistent ordering over prizes and beliefs by the dopamine
function.

In order to address these shortcomings, we are currently
working with the Center for Neural Science at New York Uni-
versity to complete experiments that will allow us to explicitly
observe the function δ. These experiments involve taking read-
ings of brain activity using fMRI technology as subjects receive
different prizes from different lotteries. By designing our experi-
ments explicitly to test our axioms, we hope to provide a rigorous
and complete test of the DRPE hypothesis. This current work is
intended to provide firm foundations upon which future experi-
mental and theoretical neuroeconomic research can build.

APPENDIX: PROOFS AND ADDITIONAL RESULTS

A. Additional Results

LEMMA 1. For all p ∈ � and finite X ∈ 2Z, p is a limit point of
∩z∈X�(z). Furthermore, Z × � ⊂ cl(M).
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Proof. For any X ⊂ Z such that |X| < ∞, every point in � is
a limit point of ∩z∈X�(z). To see this, take the sequence pn = (1 −
1
n)p + 1

n p̄, where p̄ is the uniform lottery on X ∪ Supp(p), and note
that, as pn(z) > 0 ∀ z ∈ X, it must be the case that pn ∈ ∩z∈X�(z)
for all n. As limn→∞ d�(Z)(p, pn) = 0, p is the limit point of {pn}∞n=1.
To show that every point of Z × � is a limit point of M and thus
lies in the closure of M, consider (z, p) ∈ Z × � and construct a
sequence (z, pn) ∈ �(z) with pn ∈ �(z) and lim pn = p, so that by
construction limn→∞(zn, pn) = (z, p), completing the proof.

LEMMA 2. Let r : � → R and E : Z × � → R form a DRPE repre-
sentation of a DRF δ : M → R. Then for any function r̄ : � →
R which is a strictly increasing monotone transform of r,
there exists a function Ē : r̄(Z) × r̄(�) such that r̄, Ē form a
DRPE.

Proof. Given that r̄ is a strictly positive transform of r, the
proof of Theorem 1 tells us that, given z, z′ ∈ Z and p, p′ ∈ �,

r̄(ez) ≥ r̄(ez′ ) ⇐⇒ r(ez) ≥ r(ez′) ⇐⇒ δ̄(z, p) ≥ δ̄(z′, p); and
r̄(p) ≥ r̄(p′) ⇐⇒ r(p) ≥ r(p′) ⇐⇒ δ̄(z, p) ≤ δ̄(z, p′).

Thus the same proof tells us that r̄ together with Ē : r̄(Z) × r̄(�),
defined by

a ∈ Ē(x, y) iff ∃ z ∈ Z, p ∈ � with r̄(ez) = x, r̄(p) = y, δ̄(z, p) = a,

forms a DRPE representation.

B. Proofs—Propositions

Proof of Proposition 1. The proposition states that
A DRF δ : M → R must satisfy A1–A3 in order to admit a

DRPE representation.
Consider any DRF that admits a DRPE representation,

and let r, E correspondingly represent the DRF. Now consider
(z, p), (z′, p′), (z′, p), (z, p′) ∈ M. To establish that the DRF satisfies
A1, note that, since r and E form a DRPE,

δ(z, p) > δ(z′, p)
⇒ E(r(ez), r(p)) > E(r(ez′), r(p))
⇒ r(ez) > r(ez′)
⇒ E(r(ez), r(p′)) > E(r(ez′), r(p′))
⇒ δ(z, p′) > δ(z′, p′),
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where the first and fourth implication follow from the fact that r
fully summarizes δ, and the second and third implications follow
from the fact that r and E respect dopaminergic dominance.

An analogous argument shows us that A2 holds:

δ(z, p) > δ(z, p′)
⇒ E(r(ez), r(p)) > E(r(ez), r(p′))
⇒ r(p) < r(p′)
⇒ E(r(ez′ ), r(p)) > E(r(ez′), r(p′))
⇒ δ(z′, p) > δ(z′, p′).

Finally, we combine the fact that E and r represent the DRF with
the fact that Definition 4, no-surprise constancy, is satisfied in any
DRPE representation, to conclude that given z, z′ ∈ Z,

δ(z, ez) = E(r(ez), r(ez)) = E(r(ez′), r(ez′ )) = δ(z′, ez′ ).

Proof of Proposition 2. The proposition states that
The DRF δ : M → R admits a DARPE representation if it

satisfies A3 and there exist functions u : Z → R, v : � → R such
that, given z, z′ ∈ Z and p, p′ ∈ �,

δ̄(z, p) ≥ δ̄(z′, p′) if and only if u(z) + v(p) ≥ u(z′) + v(p′).

Suppose that there exist functions u : Z → R, v : � → R that
satisfy this condition and that A3 is satisfied. We conclude imme-
diately that given z, z′ ∈ Z,

δ̄(z, ez) = δ̄(z′, ez′ )
⇒ u(z) + v(ez) = u(z′) + v(ez′ ) ≡ K.

Hence, given z, z′ ∈ Z and p, p′ ∈ �,

δ̄(z, p) ≥ δ̄(z′, p′)
⇔ u(z) + v(p) ≥ u(z′) + v(p′)
⇔ K − v(ez) + v(p) ≥ K − v(ez′ ) + v(z′)
⇔ v(p) − v(ez) ≥ v(z′) − v(ez′ ).

This immediately implies the existence of a DARPE represen-
tation, defining r : � → R by r(p) = −v(p), and specifying G(x) on
x ∈ r(Z) − r(�) by identifying z ∈ Z and p ∈ � with r(ez) − r(p) = x
and setting

G(x) = δ̄(z, p).
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The fact that this specification G(x) is unambiguous is immediate
in light of the definition of r(p) in relation to the additive repre-
sentation of δ̄.

Proof of Proposition 3. The proposition states that
If r, G form a DARPE representation of δ : M → R, and

r∗ : � → R is a positive affine transformation of r, then there ex-
ists G∗ : r∗(Z) − r∗(�) → R such that r∗, G∗ also define a DARPE
representation. Moreover, if Z is connected and A4, A5, and A8
are satisfied, the class of r functions that additively represent the
unique continuous extension δ̄C is unique up to a positive affine
transformation.

Because r∗ is a positive affine transformation of r, we can
write r∗(p) = αr(p) + β with α, β ∈ R and α > 0. Hence, given
z, z′ ∈ Z and p, p′ ∈ �,

r∗(ez) − r∗(p) ≥ r∗(ez) − r∗(p′)
⇐⇒ α(r(ez) − r(p)) ≥ α(r(ez) − r(p′))
⇐⇒ δ̄(z, p) ≥ δ̄(z′, p′).

As the proof of Proposition 2 shows, we can thus find a function G∗ :
r∗(Z) − r∗(�) −→ R such that r∗, G∗ form a DRPE representation
of δ : M → R.

Finally we need to show that, if A4, A5, and A8 are satisfied,
and if r : � → R and s : � → R are such that, for ∀ z, z′ ∈ Z and
p, p′ ∈ �,

r(ez) − r(p) ≥ r(ez′) − r(p′) ⇐⇒ s(ez) − s(p) ≥ s(ez′ ) − s(p′)
⇐⇒ δ̄C(z, p) ≥ δ̄C(z′, p′),

then s(p) = αr(p) + β, all p ∈ �. This follows from the fact that
r and s both form additive representations of the binary relation
generated by δ̄C(z, p) ≥ δ̄C(z′, p′) on Z × � which (as demonstrated
in the proof of Theorem 4), satisfies all the assumptions of Theo-
rem III 6.6 on p. 70 of Wakker (1989). As shown by Observation
III 6.6′ on p. 71 of the same reference, the class of such represen-
tations are jointly cardinal, meaning that r and s must be positive
affine transformations of each other.

C. Proofs—Theorems

Proof of Theorem 1. The theorem states that
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A DRF δ : M → R permits a DRPE representation if and only
if there exists a function δ̄ : Z × � → R that (a) is an extension of
δ : M → R and (b) satisfies A1*–A3* on this extended domain:

A1*: Given z, z′ ∈ Z and p, p′ ∈ �, δ̄(z, p) > δ̄(z′, p) ⇒
δ̄(z, p′) > δ̄(z′, p′);

A2*: Given z, z′ ∈ Z and p, p′ ∈ �, δ̄(z, p) > δ̄(z, p′) ⇒
δ̄(z′, p) > δ̄(z′, p′);

A3*: Given z, z′ ∈ Z, δ̄(z′, ez′ ) = δ̄(z, ez).
Sufficiency: Suppose that a DRF δ : M → R permits a DRPE

representation, and let r : � → R and E : Z × � → R correspond-
ingly represent the DRF. Now define the function δ̄ : Z × � → R by

δ̄(z, p) = E(r(ez), r(p)).

By construction, this is an extension of the DRF. Consider now
z, z′ ∈ Z and p, p′ ∈ �, and note that, as in Proposition 1, the fact
that A1* and A2* hold is established by noting their respective
equivalence to the following statements. For all z, z′ ∈ Z and
p, p′ ∈ �,

E(r(ez), r(p)) > E(r(ez′), r(p)) =⇒ E(r(ez), r(p′)) > E(r(ez′), r(p′));
E(r(ez), r(p′)) > E(r(ez), r(p)) =⇒ E(r(ez′ ), r(p′)) > E(r(ez′), r(p)).

The truth of both statements is a direct result of the dopaminergic
dominance property of r : � → R and E : r(Z) × r(�) → R. Finally,
noting that ∀ z ∈ Z, {z, ez} ∈ M, direct application of Definition 4,
no-surprise constancy, implies that for any z, z′ ∈ Z,

δ̄(z, ez) = δ(z, ez) = δ(z′, ez′ ) = δ̄(z′, ez′ ),

confirming that A3* holds.
Necessity: Assume that there exists a function δ̄ : Z × � → R

that (a) is an extension of δ : M → R; and (b) satisfies A1*–A3*
on this domain. Now pick an arbitrary z̄ ∈ Z and define a function
r : � → R by r(p) = −δ̄(z̄, p), and the correspondence E : r(Z) ×
r (�) → 2R by

a ∈ E(x, y) iff ∃ z ∈ Z, p ∈ � with r(ez) = x, r(p) = y, and
δ̄(z,p) = a.

The first step in the proof that these definitions form the basis
of a DRPE representation is to note that r(ez) ≥ r(ez′) ⇐⇒ δ̄(z, p) ≥
δ̄(z′, p). To see this, note that by definition and application of A2*,
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for any p ∈ � and z, z′ ∈ Z,

r(ez) ≥ r(ez′) ⇐⇒ δ̄(z̄, ez) ≤ δ̄(z̄, ez′ ) ⇐⇒ δ̄(z, ez) ≤ δ̄(z, ez′ ).

Substitution of δ̄(z, ez) = δ̄(z′, ez′ ) in light of A3* followed by appli-
cation of A1* then yields the desired conclusion,

δ̄(z, ez) ≤ δ̄(z, ez′ ) ⇐⇒ δ̄(z′, ez′ ) ≤ δ̄(z, ez′ ) ⇐⇒ δ̄(z, p) ≥ δ̄(z′, p).

Furthermore, given p, p′ ∈ � and z ∈ Z, A2* implies

r(p) ≥ r(p′) ⇐⇒ δ̄(z̄, p) ≤ δ̄(z̄, p′) ⇐⇒ δ̄(z, p) ≤ δ̄(z, p′).

Given these connections between the functions r and δ̄, it
is immediate that E is a function, because given p, p′ ∈ � and
z, z′ ∈ Z with r(ez) = r(ez′) and r(p) = r(p′),

δ̄(z, p) = δ̄(z′, p) = δ̄(z′, p′).

It follows not only that E, r represent the DRF, but also that they
respect dopaminergic dominance. To see that E is increasing in
its first argument, note that, given any p ∈ � and z, z′ ∈ Z with
r(ez) = x and r(ez′) = y,

x > y ⇐⇒ δ̄(z, p) > δ̄(z′, p).

Thus, by definition, E(x, v) > E(y, v) for any v ∈ r(�). A similar
argument shows that E is strictly decreasing in its second argu-
ment, because given any z ∈ Z and p, p′ ∈ � with r(p) = x and
r(p′) = y,

x > y ⇐⇒ δ̄(z, p) < δ̄(z, p′).

Hence r and E respect dopaminergic dominance. Finally, A3*
directly implies that no-surprise constancy is satisfied: given
z, z′ ∈ Z with r(ez) = x and r(ez′) = y,

E(x, x) = δ̄(z, ez)
= δ̄(z, ez) (by A3)
= E(y, y).

Thus r and E as defined above form a DRPE representation of
δ : M → R, completing the proof.

Proof of Theorem 2. The theorem states that
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Given that the DRF δ : M → R satisfies A1–A5, there exists
a unique uniformly continuous function δ̄C : Z × � → R that is an
extension of δ and satisfies A1*–A3*.

Lemma 1 establishes that, for all p ∈ � and finite X ∈ 2Z, p is
a limit point of ∩z∈X�(z). Furthermore Z × � ⊂ cl(M). Hence un-
der A4, the uniformly continuous function δ : M → R has a unique
continuous extension δ̄C : Z × � → R. We show now that A1*–A3*
hold for this function.

To confirm that A1* holds for δ̄C : Z × � → R, consider z, z′ ∈
Z and p, p′ ∈ � such that δ̄C(z, p) > δ̄C(z′, p). By the continuity of
δ̄C and the fact that p is a limit point of �(z) ∩ �(z′), we can find
q ∈ �(z) ∩ �(z′) such that

δ(z, q) = δ̄C(z, q) > δ̄C(z′, q) = δ(z′, q).

Now take sequence p′
n ∈ �(z) ∩ �(z′) such that limn→∞ p′

n = p′. By
A2 we know that, for all n,

δ(z, p′
n) > δ(z′, p′

n).

With this, we know from axiom A5 that

lim
n→∞(δ(z, p′

n) − δ(z′, p′
n)) > 0.

Applying continuity once more, we conclude that δ̄C(z, p′) >

δ̄C(z′, p′).
To confirm that A2* holds for δ̄C : Z × � → R, consider z, z′ ∈

Z and p, p′ ∈ � such that δ̄C(z, p) > δ̄C(z, p′). We need to show that
as a result δ̄C(z′, p) > δ̄C(z′, p′). The first step is to note that, since
δ̄C is continuous, any point in � is a limit point of �(z) ∩ �(z′),
and δ̄C(z, p) > δ̄C(z, p′), we can find r, s ∈ �(z) ∩ �(z′) such that

δ̄C(z, p) > δ̄C(z, r) = δ(z, r) > δ(z, s) = δ̄C(z, s) > δ̄C(z, p′).

Our proof of A2* derives from showing that a similar, though
not identical, string of inequalities applies to the prize argument
z′ ∈ Z,

δ̄C(z′, p) ≥ δ̄C(z′, r) = δ(z′, r) > δ(z′, s) = δ̄C(z′, s) ≥ δ̄C(z′, p′).

The inner strict inequality, δ(z′, r) > δ(z′, s), follows from applica-
tion of A2 to δ : M → R in light of the fact that δ(z, r) > δ(z, s).
The first weak inequality, δ̄C(z′, p) ≥ δ̄C(z′, r), is established by us-
ing the continuity of δ̄C and the fact that p is a limit point of
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�(z) ∩ �(z′) to construct a sequences pn → p with (z, pn), (z′, pn) ∈
M and

δ(z, pn) > δ(z, r),

whereupon application of A2 to δ : M → R ensures that δ(z′, pn) >

δ(z′, r), while the continuity of δ̄C ensures that this survives at
least weakly in the limit, δ̄C(z′, p) ≥ δ̄C(z′, r), as required. The sec-
ond weak inequality δ̄C(z′, s) ≥ δ̄C(z′, p′) is established in identical
fashion, confirming that A2* does indeed hold for δ̄C : Z × � → R.
Finally, confirmation of A3* for δ̄C : Z × � → R follows directly
from the fact this property holds for δ : M → R.

Proof of Theorem 3. The theorem states that
A DRF δ : M → R that satisfies A4 and A5 admits a DRPE

representation if and only if it satisfies A1–A3.
Proposition 1 establishes that A1–A3 are necessary for a

DRPE representation, whereas given that the DRF satisfies A4
and A5, Theorems 1 and 2 establish that they are sufficient.

Proof of Theorem 4. The theorem states that
A DRF δ : M → R that satisfies A4 and A5 admits a choice-

consistent DRPE representation, with r : � → R continuous, if
and only if it satisfies axioms A1–A3, A6, and A7.

Axioms Imply Representation: Suppose that δ : M → R satis-
fies A1–A5, A6, and A7. Now construct the function r : � → R as
in the proof of Theorem 1. From the proof of this theorem we know
both that such an r : � → R is continuous and that there exists
an E such that r and E form a DRPE. Note that, with A7,

r(p) ≥ r(q) ⇐⇒ δ̄C(z, p) ≤ δ̄C(z, q) ⇐⇒ p ∈ C({p, q}).
Since r is continuous and any set X ∈ Q is compact, arg maxs∈X r(s)
is always nonempty. Now we show that it must be the case that
C(X) = arg maxx∈X r(x). To show that C(X) ⊆ arg maxx∈X r(x), note
that p ∈ C(X) and q ∈ X such that r(q) > r(p) would imply by A7
that C({p, q}) = q, so that choosing p from the larger set X would
contradict Axiom A6, WARP. To show that C(X) ⊇ arg maxx∈X r(x),
suppose to the contrary that p ∈ arg maxx∈X r(x), but p /∈ C(X).
Now consider some q ∈ C(X) and note that r(p) ≥ r(q), so that
p ∈ C({p, q}) by A7. This again is a violation of Axiom A6, WARP.
Overall, we conclude that C(X) = arg maxx∈X r(x), as required.

Representation Implies Axioms: Suppose that a DRF δ :
M → R satisfies A4 and A5 and admits a choice-consistent DRPE
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representation, with r : � → R continuous. We know from Propo-
sition 1 that the existence of a DRPE representation implies A1–
A3. The fact that C is representable as the maximization of a
binary relation implies that A6 holds. All that is left is to confirm
A7, whereby given p, q ∈ � and z ∈ Z,

δ̄C(z, p) ≤ δ̄C(z, q) ⇐⇒ p ∈ C({p, q}).

Given that the DRPE is choice consistent, we know that p ∈
C({p, q}) ⇐⇒ r(p) ≥ r(q), hence what we need to show is that,

δ̄C(z, p) ≤ δ̄C(z, q) ⇐⇒ r(p) ≥ r(q).

To prove this, first consider p, q ∈ �, z ∈ Z with r(p) < r(q). By the
continuity of r, this implies that we will be able to find s, t ∈ �(z)
such that

r(p) < r(s) < r(t) < r(q).

By definition of the DRPE, given that (z, s), (z, t) ∈ M,

r(s) < r(t) =⇒ δ̄C(z, s) > δ̄C(z, t).

Furthermore, we will be able to find a sequence pn within �(z) such
that limn→∞ pn = p, so that r(pn) < r(s) for high enough n, where-
upon the DRPE property again implies that δ̄C(z, pn) > δ̄C(z, s). By
continuity we conclude that δ̄C(z, p) = limn→∞ δ̄C(z, pn) ≥ δ̄C(z, s).
A similar argument shows that δ̄C(z, t) ≥ δ̄C(z, q). Finally we con-
clude that

r(p) < r(q) =⇒ δ̄C(z, p) > δ̄C(z, q).

An analogous argument shows that, given p, q ∈ �, z ∈ Z,

r(p) ≥ r(q) =⇒ δ̄C(z, p) ≤ δ̄C(z, q).

Proof of Theorem 5. The theorem states:
Let Z be a connected metric space and assume that the DRF

δ : M → R satisfies A4 and A5. Then the DRF satisfies A1–A3,
A8, and A9 if and only if ∃ functions r : � → R and G : r(Z) −
r(�) → R, with r nonconstant and continuous on both Z and �

and G continuous and strictly increasing, that form a DARPE
representation of the DRF.

Axioms Imply Representation: This proof relies on Theo-
rem III.6.6 on p. 70 of Wakker (1989) to show that we have
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sufficient conditions for the additive representation of the exten-
sion of the binary relation � to Z × � defined as (z, p) � (z′, p′) if
and only if δ̄C(z, p) ≥ δ̄C(z′, p′). To do so, we need to show that the
following conditions hold:

1. Z and � are connected topological spaces: Z is connected
by assumption, whereas � is convex with the obvious def-
initions, hence connected.

2. � is a continuous weak order: � is clearly a weak order,
as it is represented by the function δ̄C . Moreover, as δ̄C is
continuous, � is also continuous.

3. (z, p) � (z′, p) ⇐⇒ (z, p′) � (z′, p′) and (z, p) � (z, p′) ⇐⇒
(z′, p) � (z′, p′)∀ z′, z ∈ Z and p, p′ ∈ �. These equivalences
follow directly from the fact, established in theorem 1, that
δ̄C satisfies A1*–A3*.

4. � satisfies the hexagon condition: The hexagon condi-
tion follows from Assumption A9. This assumption states
that given z, z′, w,w′ ∈ Z and p, p′, q, q′ ∈ � with δ̄C(z, p) =
δ̄C(w, q), δ̄C(z′, p′) = δ̄C(w′, q′) and δ̄C(z, p′) = δ̄C(w, q′), it
follows that

δ̄C(z′, p) = δ̄C(w′, q).

To establish the result we make the following identifica-
tions:

p = l′′; p′ = q = l′; q′ = l;
z = a; z′ = w = a′; w′ = a′′.

This equivalent difference asserts that if δ̄C(a, l′′) =
δ̄C(a′, l′), δ̄C(a′, l′) = δ̄C(a′′, l) and δ̄C(a, l′) = δ̄C(a′, l), then
δ̄C(a′, l′′) = δ̄C(a′′, l′), which is precisely the hexagon con-
dition: given a, a′, a′′ ∈ Z and l, l′, l′′ ∈ �, if

δ̄C(a, l′) = δ̄C(a′, l),
δ̄C(a, l′′) = δ̄C(a′, l′) = δ̄C(a′′, l),

then δ̄C(a′, l′′) = δ̄C(a′′, l′).
5. ∃p, p′ ∈ � and z, z′ ∈ Z such that (z, p) � (z′, p) and

(z, p) � (z, p′): This follows directly from Assumption A8.

The conditions of the theorem are therefore met (separability
of Z and � are not necessary; see remark III.7.1). Thus we know
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that ∃ u : Z → R and v : � → R such that

u(z) + v(p) ≥ u(z′) + v(p′) ⇐⇒ (z, p) � (z′, p′)
⇐⇒ δ̄C(z, p′) ≥ δ̄C(z′, p′).

Thus, A3 holds, and by Proposition 2 there exists an additive
DRPE representation.

Finally, we have to show that r and G are continuous. To see
this, first note that, as u and v are continuous and nonconstant
above, it is clear that the r function constructed according to the
proof of Proposition 2 will be continuous (and nonconstant) on both
Z and �. Thus we only have to show that G is continuous. To see
this, let X be the range of δ̄C and Y = r(Z) − r(�). Note that X and
Y are intervals. To see this, note that Z × � is connected, that both
δ̄C and r are continuous functions, and that the range of any con-
tinuous function on a connected domain is connected, and there-
fore they constitute intervals in R. Next, note that G is a strictly
increasing function from X to Y , and that it is onto. To see this,
note that for any x ∈ X, ∃ (z, p) ∈ Z × � such that δ̄C(z, p) = x. Let
ȳ = r̄(z) − r(p). By definition G(ȳ) = G(r̄(z) − r(p)) = δ̄C(z, p) = x.
Finally note that any strictly increasing, onto function mapping
between intervals in R is continuous.

Representation Implies Axioms: Suppose that ∃ functions
r : � → R and G : r(Z) − r(�) → R, with r nonconstant and
continuous on both Z and � and G continuous and strictly increas-
ing, that form a DARPE representation of the DRF. As the DARPE
representation is a special case of a DRPE representation we know
that A1–A3 must hold by Proposition 1. A8 is implied by the fact
that the function r in the representation is nonconstant on both Z
and �. Finally, to prove A9 define the function G∗ : Z × � → R as
G∗(z, p) = G(r(z) − r(p)). This function is by definition continuous,
and, as G, r form a DARPE, we know that, for any (z, p) ∈ M,

G∗(z, p) = G(r(z) − r(p)) = δ(z, p).

Thus G∗ is a continuous extension of δ to Z × �. As such an ex-
tension is unique, it must be the case that ∀ z ∈ Z and p ∈ �,

G(r(z) − r(p)) = G∗(z, p) = δ̄C(z, p).
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This allows us to prove A9 based on the implied relationship
between δ̄C and r. Given z, z′, w,w′ ∈ Z and p, p′, q, q′ ∈ �,

δ̄C(z, p) = δ̄C(w, q) =⇒ r(ez) − r(p) = r(ew) − r(q);
δ̄C(z′, p′) = δ̄C(w′, q′) =⇒ r(ez′) − r(p′) = r(ew′) − r(q′);
δ̄C(z, p′) = δ̄C(w, q′) =⇒ r(ez) − r(p′) = r(ew) − r(q′).

This immediately implies that

r(ez′) − r(p) = r(ew′) − r(q) =⇒ δ̄C(z′, p) = δ̄C(w′, q),

completing the proof.

Proof of Theorem 6. The theorem states that
A DRF δ : M → R that satisfies A4 and A5 admits a DERPE

representation if and only if it satisfies axioms A1–A3 and A10.
Axioms Imply Representation: Suppose that the DRF δ :

M → R satisfies A1–A5 and A10. Now pick an arbitrary prize
z̄ ∈ Z, and define the binary relation �D on � × � by

p �D p′ ⇐⇒ δ̄C(z̄, p) ≤ δ̄C(z̄, p′).

Note that this binary relation satisfies the standard axioms of EU
theory: it is immediate that �D is complete and transitive; A10
establishes that the substitution axiom is satisfied; and continuity
of δ̄C implies that given p, p′, p′′ ∈ � with p �D p′ �D p′′, ∃ a, b
∈ (0, 1) such that

ap + (1 − a)p′′ �D p′ �D p + (1 − b)p′′,

in satisfaction of the Archimedean axiom. We conclude that there
exists u : Z → R such that

p �D p′ ⇐⇒ µp[u] ≡
∑

z∈Supp(p)

u(z)p(z) > µp′ [u].

Moreover, as axioms A1–A3 are satisfied, we know that there exist
functions s : � → R and Ē : s(Z) × s(�) → R, which form a DRPE
representation of δ. Finally, as

µp[u] > µp′ [u] ⇐⇒ δ̄C(z̄, p) < δ̄C(z̄, p′) ⇐⇒ s(p) > s(p′),

the function r(p) = ∑
z∈Supp(p) u(z)p(z) is a strictly increasing trans-

form of s, and as shown in Proposition 2, this implies that there
exists a function E such that E and r form an RPE representation.
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Representation Implies Axioms: Suppose that δ : M → R

permits a DERPE representation, and let r, E form such a repre-
sentation. Existence of the DRPE alone implies that A1–A3 are
satisfied. To see that A10 holds, note that, given z ∈ Z, p, p′ ∈ �(z),
q ∈ �, and λ ∈ (0, 1],

δ(z, p) > δ(z, p′)
⇐⇒ E(r(ez), r(p)) > E(r(ez), r(p′))
⇐⇒ r(p) < r(p′)

⇐⇒
∑

z∈Supp(p)

u(z)p(z) <
∑

z∈Supp(p′)

u(z)p′(z)

⇐⇒
∑

z∈Supp(p)∪Supp(q)

[
λp(z) + (1 − λ)q(z)

]
u(z)

<
∑

z∈Supp(p′)∪Supp(q)

[
λp′(z) + (1 − λ)q(z)

]
u(z)

⇐⇒ r(λp + (1 − λ)q)) < r(λp′ + (1 − λ)q)
⇐⇒ E(r(ez), r(λp + (1 − λ)q)) > E(r(ez), r(λp′ + (1 − λ)q))
⇐⇒ δ(z, λp + (1 − λ)q) > δ(z, λp′ + (1 − λ)q).

The proof that this result extends, under A4, to the function δ̄C , is
straightforward but lengthy and is included in Dean (2007).
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