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Axiomatic methods, dopamine and reward prediction error
Andrew Caplin and Mark Dean
The phasic firing rate of midbrain dopamine neurons has been

shown to respond both to the receipt of rewarding stimuli, and

the degree to which such stimuli are anticipated by the

recipient. This has led to the hypothesis that these neurons

encode reward prediction error (RPE)—the difference between

how rewarding an event is, and how rewarding it was expected

to be. However, the RPE model is one of a number of

competing explanations for dopamine activity that have proved

hard to disentangle, mainly because they are couched in terms

of latent, or unobservable, variables. This article describes

techniques for dealing with latent variables common in

economics and decision theory, and reviews work that uses

these techniques to provide simple, non-parametric tests of the

RPE hypothesis, allowing clear differentiation between

competing explanations.
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Introduction
The reward prediction error (RPE) model has become the

dominant paradigm for explaining the behavior of the

neurotransmitter dopamine. It asserts that the phasic

firing rate of midbrain dopamine neurons encodes the

difference between the predicted and experienced

‘reward’ of an event [1,2�,3]. This signal is then used

as a component of a reinforcement learning system that

attaches values to different actions and thus guides choice

behavior [4��–6]. Yet the RPE hypothesis remains con-

troversial: Other explanations of dopamine activity in-

clude the ‘salience’ hypothesis (dopamine responds to

how salient an event is) [7,8], the ‘incentive salience’

hypothesis (which differentiates between how much

something is ‘wanted’ and how much something is

‘liked’) [9], and the ‘agency’ hypothesis (sensory predic-
www.sciencedirect.com
tion errors (with crude valence information) are used to

reinforce the discovery of agency and novel actions) [10].

One reason that these hypotheses have proved difficult to

disentangle is the current treatment of their ‘latent’

model elements, or variables that are not directly obser-

vable. Concepts such as ‘rewards’, ‘predictions’, ‘incen-

tive salience’, ‘salience’, and ‘valence’ cannot be

measured directly; they can only be identified through

a relationship to something we can observe. This makes it

difficult to test models that make use of such variables.

Most current experimental analyses of the RPE hypoth-

esis [11–18] get round this problem by adding to the RPE

hypothesis specific assumptions about the nature of

rewards and prediction that combine to give the RPE

model testable implications. Typically, realized reward is

assumed to be linearly related to some stimulus (such as

money or fruit juice), while predictions are assumed to be

driven by the temporal difference reinforcement learning

model from computer science [19]. The time path of the

RPE for a particular experiment can then be specified,

and one can identify the extent to which this time series is

correlated with activity in relevant regions of the brain.

Strong correlation is taken as evidence in support of the

RPE model.

There are five interrelated problems with this type of test

[20]. First, they test both the broad RPE hypothesis and

the auxiliary assumptions about the nature of rewards and

predictions. Second, because of the flexibility of these

auxiliary assumptions, it is difficult to provide a categori-

cal rejection of any particular model of dopamine activity,

or even to know whether different theories do make

different predictions. Third, in practice, the various

alternative models tend to produce predictions that are

highly correlated, making it difficult to differentiate be-

tween them using regression techniques. Fourth, even if

one does use statistical techniques to pick a ‘winner’ from

the above models, this only tells us that this model is the

best of the ones considered, not that it is a ‘good’

description of the data in a global sense. Fifth, the

approach does little to guide model development in

the face of a rejection by the data.

These problems do not derive from the use of latent

variables per se, which are a valuable part of the modelers

toolkit. Rather they stem from use of highly parameter-

ized auxiliary assumptions, coupled with regressions, to

test the resulting models. In order to address this, a new

methodology has recently been proposed for testing the

RPE hypothesis [21��,22�] derived from techniques com-

monly used in economics and decision theory for the
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modelling of latent variables. This approach largely over-

comes the problems discussed above by discarding the

need for auxiliary assumptions that link latent, or unob-

servable, concepts (such as reward) to observable vari-

ables (such as amount of fruit juice). Instead, it asks the

question ‘‘if ‘experienced’ and ‘predicted’ rewards are

completely unobservable, how can we test whether dopa-

mine is encoding an RPE signal?’’. The latent variables in

the RPE model are defined only in relation to our variable

of interest —dopamine activity. In this manner, the entire

class of RPE models can be characterized by a small

number of empirical rules, or ‘axioms’. These axioms are

easily testable and provide stark and simple qualitative

predictions that must hold for the RPE theory to be true

for any definition of rewards and predictions. In other

words, they provide a guide as to whether the latent

concepts inherent in the RPE model provide a useful

way of thinking about dopamine activity. Moreover, they

provide a clear guide to how the RPE model differs from

other explanations for dopamine activity.

This paper reviews the way in which these axiomatic

techniques can be used to test the RPE model. Through-

out, we refer to the variable of interest as dopamine.

However, this technique can be used to test whether

any candidate data series encodes an RPE signal, be it

direct observations of dopamine spike rates, fMRI

measurement of activity in the ventral striatum, or some-

thing else entirely. Thus, the thrust of this review is not to

provide evidence for or against the RPE model of dopa-

mine but to provide techniques for determining whether or

not a particular signal can be thought of as an RPE encoder.

This ‘axiomatic’ approach to modelling latent variables

has proved valuable within economics. We argue that it

may be of general value to neurobiologists, not just with

respect to dopamine activity. In particular, it has the

potential to enhance the interaction between experiment

and theory, thereby speeding up the process of scientific

discovery.

The axiomatic approach to reward prediction
error
In its most basic form, the RPE hypothesis states that

dopamine activity encodes the difference between the

experienced and predicted reward of an event. Unfortu-

nately, ‘reward’ itself is inherently unobservable; the

amount of fruit juice you give a monkey is observable,

the amount of money you give someone is observable.

But these are not ‘reward’; they are things that one might

assume would lead to the feeling of ‘reward’. Therefore,

without a working definition of how ‘experienced’ or

‘predicted’ reward relate to things we can observe, this

theory is incomplete. One way round this problem is to

add to the theory a definition of rewards and predictions,

which links them to something that we can directly

measure. However, any test of the hypothesis is then a
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joint test of both the original RPE hypothesis and the

(often strict, parametric) assumptions that operationalize

the relevant latent, or unobservable, variables.

A typical methodology for this class of test [14,18] is to

observe subjects (either monkey or human) making

repeated choices between various options that lead to

prizes (fruit juice, or money) according to some stochastic

schedule. Reward is assumed to be linearly related to

prize magnitude (i.e. how much fruit juice or money the

subject receives) while predictions are assumed to follow

some sort of reinforcement learning rule, such as the

temporal difference (TD) algorithm, possibly calibrated

using behavior. Under these assumptions, RPE is ‘obser-

vable’ (the difference between the magnitude of received

prize, and expected prize as determined by the TD

model) and can be correlated with brain activity in order

to test the RPE model.

An alternative approach is to treat reward and predictions

of subjects as completely unobservable and ask whether

the theory still has any testable predictions. The only

thing that the RPE theory claims about reward is that

dopamine is positively related to experienced and nega-

tively related to predicted reward. It makes no claim

about how reward is related to fruit juice, or how predic-

tions are formed. The question is therefore whether the

theory’s central claims are enough to put testable restric-

tions on dopaminergic activity. If the answer is ‘yes’, then

we can construct tests of the RPE theory that are com-

pletely non-parametric, and do not rely on any auxiliary

assumptions.

Figure 1 describes a set of three such rules for the RPE

model in the simplest possible environment [21��]. The

idealized data set that we consider comprises observations

of dopamine activity when a subject receives various

prizes drawn from well defined probability distributions,

or ‘lotteries’, over such prizes. In a typical example, the

subject will either win or lose $5 depending on the flip of a

fair coin. This environment has the advantage of abstract-

ing from the need to model learning, making the resulting

model very simple. In such an environment, the RPE

hypothesis can be characterized by three broad state-

ments, or axioms. First, the ranking of different prizes
in terms of dopamine activity must be independent of the

lottery those prizes are received from—for a fixed lottery,

better prizes should always lead to higher dopamine

release (Axiom A1). Second, the ranking of different

lotteries in terms of dopamine activity must be indepen-

dent of the prizes received from those lotteries - for a fixed

prize, better lotteries should always lead to lower dopa-

mine release (Axiom A2). Third, if a prize is fully anticip-

ated, then dopamine activity has to be independent of

what the prize actually is (Axiom A3). These three

conditions are necessary and sufficient for the RPE model;

if they do not hold, then there is no possible definition of
www.sciencedirect.com
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Figure 1

The axioms that characterize the RPE model can be illustrated

graphically in the case in which the experiment has only two possible

prizes. In this case, the set of all possible lotteries can be represented by

a single number: The probability of winning prize 1 (the probability of

winning prize 2 must be 1 minus the probability of winning prize 1). This

forms the x-axis of these figures. We represent dopamine activity using

two lines—the dashed line indicates the amount of dopamine released

when prize 1 is obtained from each of these lotteries, while the solid line

represents the amount of dopamine released when prize 2 is obtained
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experienced and predicted reward that can make the RPE

model fit the data. If they do hold, then we can find some
way of assigning experienced and predicted reward such

that dopamine encodes RPE with respect to these defi-

nitions.

This does not imply that the RPE model is the only one

that satisfies these three axioms; it could be that some

other potential explanation for dopamine activity also

implies these properties (though, for example, the sal-

ience hypothesis would not, as we discuss below). In fact,

one of the advantages of the axiomatic approach is that it

allows one to determine the extent to which different

models have different implications for a particular data

set. Were one to find another model that implied A1–A3,

the above result tells us that it would be impossible to

falsify the RPE model at the expense of this new model,

as any falsification of RPE would imply a violation of one

of A1–A3, and so would also falsify the new model.

Again, it should be noted that while we describe these

tests as being carried out on ‘dopamine activity’, they can

be applied to any data series that is purported to encode

an RPE signal, be it fMRI data of activity in the ventral

striatum [15] or single unit recording from midbrain

dopamine neurons in primates [12].

Advantages of the axiomatic approach
The axiomatic approach to testing the RPE model has a

number of advantages over the more traditional

regression-based tests. First and foremost, because it

defines ‘experienced’ and ‘predicted’ reward only non-

parametrically, and only by their relation to the variable of

interest, we provide a test of the entire class of RPE models

—if these axioms are violated, then it is not because of

some incorrect parametric assumption, or an incorrect

model of reward, or how predictions are made. It means

that there is something fundamentally wrong with the

entire basis of the RPE model. In this sense, these tests

are weaker than existing tests of the RPE hypothesis that

impose a specific functional form for reward, and an

explicit model for learning.

Second, this approach provides an easily testable set of

conditions that divide the universe of possible obser-

vations into those that are in line with the RPE model
from each lottery. (Panel a) A violation of A1: When received from lottery

p, prize 1 leads to higher dopamine release than does prize 2, indicating

that prize 1 has higher experienced reward. This order is reversed when

the prizes are realized from lottery p0, suggesting prize 2 has higher

experienced reward. Thus a DRPE representation is impossible. (Panel

b) A violation of A2: Looking at prize 1, more dopamine is released when

this prize is obtained from p0 than when obtained from p, suggesting that

p has a higher predicted reward than p0. The reverse is true for prize 2,

making a DRPE representation impossible. (Panel c) A violation of A3:

The dopamine released when prize 1 is obtained from its sure thing

lottery is higher than that when prize 2 is obtained from its sure thing

lottery.

Current Opinion in Neurobiology 2008, 18:197–202
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and those that are not. This allows the model to be tested

in a global sense—either the model is an accurate descrip-

tion of the data, or it is not, rather than a relative sense—

the model is a better description of the data than others

we have considered. Furthermore, it forces the modeler to

be explicit about exactly what it is their model says for a

particular data set.

Third, by characterizing theories in this way we can draw

clear demarcations between different models, allowing us

to understand how one might test between them. For

example, the RPE hypothesis states that the ranking of

prizes in terms of dopamine release must be independent

of the lottery that they are received from. Thus, if we

consider two lotteries—one that has a 1% chance of

winning $5 (and 99% chance of losing $5) and another

that gives a 99% chance of winning $5 (and a 1% chance of

losing $5), then the observation that more dopamine is

released when $5 is won than when $5 is lost from the

former implies that the same must be true in the latter.

This would clearly not be true for any model of ‘salience’,

since the salience of an event is related to its rarity [7].

This advantage is notable in comparison to the ‘regression-

based’ approach described above, in which auxiliary

assumptions are used to operationalize a theory. In such

an approach, because these auxiliary assumptions are not

central to the theory, researchers can try ever more elab-

orate relations between observable and latent variables in

order to best fit the data (for example, could reward be a

quadratic function of prize magnitude? Or a power func-

tion?). This flexibility can make differentiating between

different models by statistical means very difficult.

A fourth advantage is that the axiomatic approach allows

easily for a hierarchical testing structure for a particular

model. For example, the above model can be refined to

include the hypothesis that dopamine responds to the

difference between experienced and predicted reward in

the strict sense (i.e. experienced minus predicted reward),

or that predicted reward is the mathematical expectation

of the experienced reward of a lottery [21��]. Axiomatic

representations exist for these nested models, and one

can therefore test how far the RPE hypothesis can be

extended.

Finally, the outlined approach offers guidance on what to

do in the face of a rejection by the data. As one knows which

particular axiom has been violated, one can adjust the

model in precisely the right way to accommodate the data.

Examples of this type of interaction between data and

theory abound in economics and are discussed more below.

An axiomatic approach to behavioral
neurobiology
The axiomatic approach provides an alternative way of

characterizing models couched in terms of latent vari-
Current Opinion in Neurobiology 2008, 18:197–202
ables, and one that has proved popular within economics

and decision theory [23,24]. As neurobiology begins to

model the processes that underlie choice and decision-

making, we believe the same techniques may prove to be

equally useful. To understand why, it is instructive to

consider examples from economics in which the precision

that axioms offer has spurred the joint development of

theory and experimentation.

The classic example is the theory of ‘utility maximiza-

tion’, which has been benchmark model of economic

behavior almost since the inception of the field. Yet it

was left to Paul Samuelson in 1938 to ask the question:

‘‘Given that we do not observe ‘utility’, how can we test

whether people are utility maximizers?’’ [25]. The answer

to this question is that their choices must obey the so-

called ‘Weak Axiom of Revealed Preference’ (WARP),

which basically states that if one chooses some option x
over y, then one cannot at some other point choose y over

x. Simple as this is, it turns out that WARP is the only

testable prediction of utility maximization. In the wake of

this pivotal insight, the axiomatic approach has been

successfully used within economics to characterize and

test other theories that share with utility maximization

that they involve ‘latent’ variables.

Von Neumann and Morgensten [26] and Savage [27],

extended the utility maximization hypothesis to the

realm of risk and uncertainty, axiomatically modelling

the behavior of agents who maximize expected utility. The

failure of these axioms, demonstrated in famous exper-

iments by Allais [28] and Ellsberg [29] led to the de-

velopment of more sophisticated models of behavior,

such as rank-dependent expected utility [30] and ambi-

guity aversion. [31], that are now used in analyzing

economic policy [32,33].

Behavioral neurobiology shares with economics the

assumption that variables of interest are influenced by

latent variables that are not subject to direct empirical

identification, such as rewards, beliefs, emotions, and

motivations. While preliminary data analysis and

research may be well guided by such intuitive constructs,

when time for formalizing models comes, axiomatic

methods have much to add. In particular, they discipline

the introduction of new constructs into the theoretical

canon. The axiomatic method calls for consideration of

precisely how inclusion of these new concepts impacts

observations of some idealized data set. If their inclusion

does not expand the range of predicted behaviors, they

are not seen as ‘earning their keep’. If they do increase

the range of predictions, then questions can be posed

concerning whether such observations are commonly

observed. Thus, the axiomatic method can be employed

to ensure that any new latent variable adds new empirical

predictions that had proven hard to rationalize in its

absence.
www.sciencedirect.com
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Another reason that the axiomatic approach has proven

so fruitful in economics is that our theories are very far

from complete in their predictive power. There is little

or no hope of constructing a simple theory that will

adequately summarize all relevant phenomena: sys-

tematic errors are all but inevitable. The axiomatic

method adds particular discipline to the process of sort-

ing between such poorly fitting theories. In essence, the

key to a successful axiomatic agenda involves maintain-

ing a close connection between theoretical constructs

and empirically observable phenomena. We believe that

much of behavioral neurobiology may be similar in this

respect.

Unfortunately, axiomatic methods have in the past

earned something of a bad name in psychological theory,

in which their use has not been associated with a pro-

gressive interaction between theory and data. We see no

need for this pattern to continue. As we illustrate in the

case of dopamine, we see use of axiomatic methods not as

an end in and of itself, but rather as a guide to drive

experimentation in the most progressive possible direc-

tions. Used in this manner, axiomatic modelling tech-

niques strike us as an intensely practical weapon in the

neuroscientific arsenal.
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