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Abstract

The neurotransmitter dopamine is central to the emerging discipline of neuroeconomics;

it is hypothesized to encode the difference between expected and realized rewards and

thereby to mediate belief formation and choice. We develop the first formal test of this

theory of dopaminergic function, based on a recent axiomatization by Caplin and Dean

[2008A]. These tests are satisfied by neural activity in the nucleus accumbens, an area

rich in dopamine receptors. We find evidence for separate positive and negative reward

prediction error signals, suggesting that behavioral asymmetries in response to losses and

gains may parallel asymmetries in nucleus accumbens activity.
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I Introduction

The neurotransmitter dopamine is central to the emerging discipline of neuroeconomics. Pio-

neering work of Wolfram Schultz, P. Read Montague, Peter Dayan, and their colleagues1 sug-

gests that dopamine not only participates in the encoding of information on crucial economic

variables such as preferences and beliefs, but also plays a key role in choice and learning. The

“dopaminergic reward prediction error” hypothesis (DRPE) states that instantaneous dopamine

levels in the brain encode the difference between how rewarding an event is expected to be, and

how rewarding it turns out to be. Largely based on this hypothesis, research informed by an

understanding of the dopamine system has already had an impact on the social sciences.2

Reasons for economists to be interested in observing reward prediction errors are manifold.3

Beliefs play a central role in theories of decision making and learning, yet they are hard to

observe. Adding dopaminergic measurements to the arsenal of belief measurement techniques

can bolster current methods based on structural models of the updating processes [e.g. Cheung

and Friedman 1997] or incentive compatible elicitation methods [Nyarko and Schotter 2002].

Similarly, theories of reference dependent choice, such as loss aversion, give a central role to the

decision maker’s reference point, yet little is known about how these are determined.4 Dopamine

provides a promising line of attack for those seeking to understand reference points and reward

expectations, at least in tightly specified “neuroeconomic” experiments.

Despite its promise, Caplin and Dean [2008B] detail evidentiary gaps in the existing literature

on the DRPE hypothesis. Critically, most tests of the DRPE hypothesis assume that expec-

tations are derived through reinforcement learning, then test a highly parameterized version
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of the DRPE.5 Yet reinforcement learning often contradicts Bayesian learning, and behavioral

experiments suggest that it serves as a good model of learning only in restrictive circumstances

[Charness and Levin 2005]. Moreover, the predictions of the DRPE model based on reinforce-

ment learning are often violated in the data.6

To address these issues, Caplin and Dean [2008A] (henceforth CDA) propose an axiomati-

cally based testing protocol that disconnects the DRPE entirely from learning behavior. CDA

consider a simple data set in which dopamine activity is observed when prizes are obtained from

different lotteries. In such an environment, the DRPE can be characterized by three simple and

easily testable axioms. These axioms target the DRPE hypothesis without any of the auxiliary

hypotheses that have inhibited previous tests.

The current paper contains the first tests of the axiomatic version of the DRPE hypothesis.

We pick a simple setting in which the DRPE hypothesis can be completely characterized by

the three intuitive axioms of CDA. In the experiment that we use to test these axioms, human

subjects are endowed with lotteries from which a prize is drawn. We use functional magnetic

resonance imaging (fMRI) to measure brain activity as the prize is revealed to the subject. By

comparing fMRI measures of activity as different prizes are received from different lotteries, we

test whether activity in a brain region known as the nucleus accumbens satisfies the axioms.

This brain region is a principal anatomical target of the dopamine neurons hypothesized to

encode the DRPE signal.

In broad terms, the results of our experimental tests support the basic DRPE model. Of the

three axioms that we test, two are strongly supported, the third weakly. To a first approxima-

tion, measured activity in the nucleus accumbens does indeed satisfy the DRPE axioms. Our
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experiment also throws up one intriguing and unexpected finding. Our evidence suggests that

overall dopaminergic activity may be an amalgamation of two different processes operating with

different temporal dynamics: the signal recording “positive” prediction error acts at a shorter

time lag, and with less intensity, than that recording negative prediction error. This suggests

that further study of the dopamine system may be particularly valuable for those interested

in understanding asymmetric responses to gains and losses of the form described in prospect

theory [Kahneman and Tversky, 1979].

II Dopamine and the Reward Prediction Error

Hypothesis

1 What is Dopamine?

The brain is composed of millions of neurons; tiny self-sustaining units about a thousandth

of an inch in diameter. A connection between neurons across which communication can take

place is called a synapse. Such connections allow (in general) one-way communication, with a

pre-synaptic neuron communicating information to one, or possibly many, post-synaptic cells.

A neurotransmitter is a chemical used in this process of communication. When a pre-synaptic

neuron releases a neurotransmitter, it travels across the synaptic cleft, the physical gap across

which the synaptic connection is made, and attaches itself to receptors in the post-synaptic

cell. Thus, the state of the post-synaptic neuron comes to reflect the fact that the pre-synaptic

neuron has released a neurotransmitter, a form of information transfer.
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Dopamine is one such neurotransmitter and the term dopamine (or dopaminergic) neuron

refers to any neuron which uses dopamine as a neurotransmitter to communicate with its post-

synaptic (downstream) partners. While dopamine neurons exist in several different parts of the

brain, this paper is interested in the midbrain dopamine neurons; a particular class of these

neurons located at the base of the brain. Interestingly, although the dendrites of these midbrain

dopamine neurons (the structures by which these cells receive inputs from upstream neurons) are

located in a relatively small region of the brain, the axons of these neurons distribute dopamin-

ergic synapses throughout almost half of the human brain. This suggests that the information

that they transmit might well be of importance to neurons in many different functional divisions

of the nervous system.

2 The DRPE Hypothesis

It was early on observed that many addictive drugs mimic the effects of dopamine at the synapse,

and that humans appear to place a high positive value (as measured by both self-report and

choice) on processes that activate or mimic the activity of midbrain dopamine neurons (see Wise

[2004] for a review). As a result of these early observations, midbrain dopamine neurons were

presumed to carry some kind of hedonic pleasure signal.

This simple “dopamine-as-pleasure” theory was called into question by studies which showed

that dopamine signals were stronger when the same reward was delivered unexpectedly than

when it was expected. For example, Mirenowicz and Schultz [1994] measured the activity of

dopaminergic neurons in a thirsty monkey as it learned to associate a tone with the receipt

of fruit juice. Dopamine neurons were initially active in response to the juice but not the
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tone. However, after many repetitions (presumably once the monkey had learned that the tone

predicted the arrival of juice), dopamine neurons responded to the tone rather than to the juice.

Moreover, once learning had taken place, if the tone was played but the monkey did not receive

the juice then there was a pause or decrease in the background level of dopamine activity at the

time that the juice was expected.

These findings led to the hypothesis that dopamine was encoding the difference between

“experienced” and “predicted” reward, or a “reward prediction error” [Montague, Dayan, and

Sejnowski, 1996; Schultz, Dayan, and Montague, 1997]. In the above example, before learning

had taken place, the receipt of the fruit juice was a positive surprise (in the sense of a positive

utility shock) to the monkey, so dopamine responded in a positive way. However, after learning

had taken place, while still rewarding, the fruit juice was no longer surprising, so dopamine did

not respond to its arrival. However, the tone was now both surprising and rewarding, as it was

unexpected and predicted the imminent arrival of juice.

If correct, the DRPE hypothesis makes the observation of dopamine of great potential interest

to economists. Dopamine not only contains information on beliefs and rewards (or preferences),

but subsequent studies have shown it to play an important role in choice and learning. We will

return to this point in section VI.

3 Testing the DRPE Hypothesis

The neuroscientific literature contains a number of tests of the DRPE hypothesis on both mon-

keys and humans [Schultz, Montague, and Dayan 1997; O’Doherty et al. 2003; McClure, Berns,
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and Montague, 2003; O’Doherty et al., 2004; Bayer and Glimcher 2005; Abler et al., 2006; Li et

al., 2006; Pessiglione et al., 2006; Bayer, Lau and Glimcher, 2007; D’Ardenne et al., 2008]. While

generally supportive, these tests have all failed to be taken as conclusive proof of the DRPE

hypothesis. These tests typically operationalize the DRPE hypothesis by assuming fixed values

for the “experienced reward” of different events, and using a reinforcement learning model to

construct a time path for “predicted reward”. This allows the authors to construct a ‘reward

prediction error’ for a sequence of rewards and cues, which can then be compared to observed

dopamine activity. Typically, these studies do find that dopamine activity is correlated with the

reward prediction error signal. Although these restrictive tests have provided generally intrigu-

ing results, it is unsurprising to learn that they have not conclusively demonstrated that the

DRPE theory is both necessary and sufficient for explaining the role of dopamine in behavior.

Perhaps the main reason that alternative theories of dopamine remain plausible is that

existing tests of the DRPE hypothesis have relied on auxiliary assumptions (arbitrary para-

meterizations lying outside the theory) and on very weak tests. It is easy to understand the

attraction of such tests, since they provide insight not only into the basic question of whether or

not the DRPE hypothesis is correct, but also into the actual learning algorithm it may encode.

Unfortunately, this makes it hard to separate out precisely how strong is the support for the

broad hypothesis as opposed to the learning algorithm. In O’Doherty et al (2002), for example,

the authors use a model of reinforcement learning to fit dopaminergic responses. In support of

the basic DRPE, the evidence did indicate that once a human had been repeatedly exposed to a

tone that predicted a reward, dopamine neurons became active in response to the tone when it

was presented alone. While it is clear that many parameterized versions of the DRPE hypothesis
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do make such a prediction, i) many other theories of dopamine also make this prediction and ii)

many parameterizations of the DRPE theory do not make this prediction.

Tests like this one are therefore joint tests of the underlying DRPE model, the reinforcement

learning model of belief formation and a set of arbitrary parameterizations. For this reason, a

set of alternative theories of dopamine function (and hence alternative theories of the biological

basis of belief formation) persist. The qualitative fMRI studies of Zink et al. [2003], Delgado

et al. [2005] and Knutson and Peterson [2005] have, for example, suggested that dopamine

responses may be modulated by ‘salience’, or how surprising an event is. Redgrave and Gurney

[2006] suggest that dopamine plays a role in switching attention between different activities. The

incentive salience hypothesis of Berridge and Robinson [1998] holds that dopamine influences

the subject’s assessment of a reward’s salience but in a way that is not causally related to belief

formation. By stripping away the need for these additional assumptions, and by anchoring

experimental data to conditions of necessity and sufficiency, the axiomatic approach provides

for tests of the underlying DRPEmodel without relying on a particular model of belief formation

or on arbitrary parameterizations.

III The Axiomatic Model

In this paper, we use an axiomatic representation based on the work of CDA to design and

implement a test of the DRPE hypothesis. The axiomatic representation provides a set of

necessary and sufficient conditions for the entire class of DRPE models. Moreover, these tests

do not require ad hoc auxiliary assumptions on the nature of belief formation or ‘reward’. Thus
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the axioms provide a simple and parsimonious way of testing the concepts that lie at the heart

of the DRPE hypothesis.

1 Definitions

The environment in which we formalize and test the DRPE hypothesis is one in which an

experimental subject is endowed with a lottery (or probability distribution over prizes) from

which a specific prize is then realized.7 The key observable is the firing rate of dopamine

neurons, ( ), when the prize  is obtained from the lottery . The characterizations in CDA

are based on an idealized data set in which the dopaminergic firing rate is observed for any such

conceivable combination of prizes and lotteries. For experimental purposes, it is important to

deal with cases in which we observe  only on some finite subset  of all possible lottery-prize

pairs, as this is the data that will be generated by any real world experiment. We therefore

define a finite version of the data set described in CDA.8

Definition 1 Let  be a set of prizes with generic element  ∈ . The set of all simple lotteries

over  is denoted Λ, with generic element  ∈ Λ. We define the set Λ() as all lotteries with 

in their support, and denote as  the degenerate lottery that assigns probability 1 to prize  ∈ ,

 ∈ Λ() ≡ { ∈ Λ|  0}

A dopaminergic data set comprises a finite set  consisting of pairs ( ), with  ∈  and

 ∈ Λ() all 1 ≤  ≤  , and with { } ∈ , ∀  ∈ , together with a dopaminergic firing

rate  : → R for each observation ( ) ∈ .

9



In the two prize case, a dopaminergic data set can be represented easily in graphical form, as

demonstrated in figure I. The space of lotteries, Λ, can be represented by a single number: the

probability of winning prize 1. This forms the -axis of these figures. We represent the function

 using two lines - the solid line indicates the dopamine firing rate after prize 1 is obtained from

each of these lotteries (i.e. (1 )), while the dashed line represents the dopamine firing rate

when prize 2 is obtained from each lottery (i.e. (2 )).

The definition of a DRPE representation is as in CDA. Effectively, we say that dopamine

has a DRPE representation if we can find an expected reward function for lotteries and an

experienced reward function for prizes such that dopamine activity is decreasing in the former

and increasing in the latter. Furthermore, all situations in which experienced reward is equal to

actual reward, and thus there is no “reward prediction error” must be treated equivalently by

dopamine. These properties capture the notion that dopamine encodes the difference between

experienced and predicted rewards.

Definition 2 The finite dopaminergic data set ( ) admits a dopaminergic reward pre-

diction error (DRPE) representation ( ) if there exist functions  : Λ → R and  :

() × (Λ) → R such that ( ) = (() ()); with ( ) strictly increasing in its first

and strictly decreasing in its second argument; and such that (() ()) = ((0) (0)) all

 0 ∈ 9
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2 The Three Axioms

CDA introduce three necessary conditions for the existence of a DRPE representation. In the

case in which there are three or more prizes, these conditions are necessary but not sufficient for

a DRPE representation. Yet in the two prize case one can prove directly that such equivalence

does indeed hold.10

The first axiom, “Coherent Prize Dominance” demands that dopamine “ranks” prizes con-

sistently, regardless of what lottery these prizes were obtained from. If winning prize 1 produces

more dopaminergic activity than winning prize 2 from the same lottery, it must be the case that

prize 1 has higher experienced reward. Thus, it must be the case that, from any lottery, there

is more dopamine released when prize 1 is obtained than when prize 2 is obtained.

Axiom 1 (A1: Coherent Prize Dominance) Given ( ) (0 ) ( 0) (0 0) ∈ ,

( )  (0 )⇒ ( 0)  (0 0)

Figure Ia shows a violation of this axiom, which in this graphical space is equivalent to the

requirement that the lines (1 ) and (2 ) cannot cross.

The second axiom, Coherent Lottery Dominance demands that the ordering of lotteries by

dopamine firing rate is independent of the obtained prize. If a higher dopamine firing rate is

observed when prize 1 is obtained from lottery 0 than from , this indicates that 0 has a lower

predicted reward than . Thus it must also be true that we observe a higher dopamine firing

rate when prize 2 is obtained from 0 than when it is obtained from .
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Axiom 2 (A2: Coherent Lottery Dominance) Given ( ) (0 ) ( 0) (0 0) ∈ ,

( )  ( 0)⇒ (0 )  (0 0)

Graphically, coherent lottery ordering is equivalent to the requirement that the lines (1 )

and (2 ) are co-monotonic - they have the same direction of slope between any two points.

Figure Ib shows a case that contradicts this - higher dopamine activity is observed when prize

1 is obtained from lottery 0 than when it is obtained from lottery , yet the exact opposite is

true for prize 2.

No Surprise Equivalence deals directly with situations in which a particular prize is expected

with certainty. These are situations that dopamine must treat equivalently, regardless of the

prize, as there is no reward prediction error.

Axiom 3 (A3: No Surprise Equivalence) Given  0 ∈ 

(0 0) = ( )

Figure Ic shows a violation of this axiom, in which more dopamine is released when prize 1 is

obtained from its degenerate lottery than when prize 2 is obtained from its degenerate lottery.

No Surprise Equivalence demands that the points (1 1) and (2 0) take the same value.

In the case of 2 prizes, axioms A1-A3 are necessary and sufficient conditions for dopamine

activity to be described by the DRPE model.
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Theorem 1 With two pure prizes, a finite DDS admits a DRPE if and only if it satisfies A1 -

A3.

Thus, in the two prize case, if A1-A3 hold, we will be able to extract consistent orderings over

lotteries and prizes which we can label ‘dopaminergic’ predicted and experienced reward respec-

tively. Figure Id illustrates such a case. How these orderings might relate to more traditional

notions of reward and prediction is a matter we discuss in the conclusion.

3 Other Models of Dopamine Function

While we have not explicitly axiomatized other models of dopamine activity, it is clear how some

of the alternative hypotheses, if true, would lead to violations of the three axioms described

above. Here we focus on how the “hedonia” and “salience” hypotheses would lead to a violation

of the representation.

The hedonia hypothesis states that, rather than encoding a reward prediction error, dopamine

encodes simply the reward value of events. In other words, there is some reward function  that

attaches reward values to different events, and dopamine activity is an increasing function of

this reward value. While a system that encodes hedonia might satisfy axioms A1 and A2, it

would violate A3: No Surprise Equivalence. Unless every object in the observation set has the

same reward value, different prizes would lead to different dopaminergic responses, even when

received from degenerate lotteries. Thus A3 provides a test between the hedonia and DRPE

hypothesis.

The salience hypothesis states that dopamine responds to the salience, or surprise associated
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with a particular event. While the concept of salience is often not well defined, it does seem

that for any sensible definition, a system that encodes salience would violate both A1: Coherent

Prize Dominance and A2: Coherent Lottery Dominance. To see this consider a case with two

prizes,  and , and two lotteries. The first, , gives prize  with 99% probability and prize 

with probability 1%, while the second, , gives prize  with 1% and  with 99%. In this case,

the salient event is getting prize  from lottery  or getting prize  from lottery , as these

are the ‘surprising’ events. Thus, a salience encoder would imply that ( )  ( ) but

( )  ( ), violating A1. Similarly, ( )  ( ) but ( )  ( ), violating A2.

Thus, A1 and A2 provide a test between salience and the DRPE hypothesis.

IV The Experiment

We describe now the methodology by which we test the axioms described above, and so the

DRPE model. In an ideal world, we would make real-time observations directly from dopamine

neurons as agents choose among, and receive prizes from, various lotteries. Unfortunately, such

measurements, while feasible in animals (see for example Mirenowicz and Schultz [1994], Phillips

et al. [2003] and Bayer and Glimcher [2005]), are infeasible in humans due to the invasiveness

of the procedure. Instead, we measure dopamine activity indirectly using fMRI. This technique,

described in more detail below, relies on a difference in the magnetic susceptibility of oxygenated

and deoxygenated blood to measure a blood-oxygen-level dependent (BOLD) signal, which is

in turn related to brain activity. By focusing on an area of the basal ganglia called the nucleus

accumbens, which is known to receive substantial inputs from the midbrain dopamine neurons,
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one can obtain an estimate of dopamine-related activity in real time.11 Unfortunately, the data

produced by this technique are noisy, so we use repeated observations (both within and across

subjects) to construct estimates of . The assumptions we make in doing so are discussed below.

1 Experimental Design

The experimental paradigm we use is designed to endow subjects with lotteries so that we can

observe brain activity when they are informed of what prize they have won from that lottery.

On each trial, subjects choose between two lotteries, represented by pie charts, and experience

the outcome of their chosen lottery. A fixation cross signals the beginning of a trial. After

12.5 seconds, two lotteries appear on either side of the display. After 5 seconds, the fixation

cross is extinguished and the subject has 1.25 seconds to press a button to indicate which of the

lotteries they wish to play. Their chosen lottery moves to the center of the display and after

a delay period of 7.5 seconds, the outcome of the lottery is determined (by a random number

generator) and revealed to the subject for 3.75 seconds. The prize which the subject will receive

is indicated by a change in the color of that prize’s segment of the pie chart.12 If the subject

fails to press a button during the response window, they receive the worst prize available from

any lottery in the experiment, a loss of $10. Figure II shows the timeline of a typical trial.

As we describe below, brain activity is measured at the point at which the prize that the

subject has won is revealed from the lottery they own. It should be noted that, at this stage, this

is the only uncertainty that is resolving itself for the subject. They do not learn any more about

future lotteries that they will receive, or choices that they will be offered. Thus, we interpret

measured neural activity at this stage as the response to the receipt of a particular prize from
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a particular lottery.

Each subject takes part in two separate scanning sessions consisting of multiple blocks of

16 trials each. Before each session, subjects are given instructions and complete one or more

unpaid practice blocks of trials outside the scanner. At the start of each session, subjects are

endowed with $100, given to them in cash, with money added to or subtracted from this amount

on the basis of the outcome of each trial. How much they have won or lost is reported at the

end of each block. The final amount awarded to a subject for a session is the $100 endowment,

plus the cumulative outcome (positive or negative) of all lotteries, plus a $35 show-up fee. A

full set of instructions is included in appendix 1.

It is worth commenting on some features of the experimental design. First, while we ask

subjects to choose between lotteries, we do not make use of the choice data in this paper.

The reason we ask for choices is to keep the subject alert and engaged in the experiment. An

experimental session lasts for about two hours, and if the subject is not asked to perform any

task during this time they could lose concentration and, in some cases, fall asleep inside the

scanner. Second, each trial includes several relatively long delays. The reason for this is that

the BOLD signal measured by the scanner is the convolution of the neural activity we wish to

measure with a 20-second long “hemodynamic response function”, which approximately takes

the form of a gamma function. Thus, by spacing out events within a trial, differentiation between

activity associated with different events becomes more accurate. Third, we make the somewhat

unusual choice to reward subjects based on the outcome of every trial, rather than on the basis

of some randomly selected subset of trials. The reason for this is also to keep subjects engaged

in the experiment. Finally, as subjects can win or lose money on each trial, there is a chance
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that the subjects will lose all of their $100 in the course of a scanning session. While we designed

the experiment to minimize the risk of this happening, it is possible. In such an occurrence, the

experiment is stopped as soon as the subject’s account reaches zero, and the scan terminated

by this event is excluded from all further analysis.

Our choice of the lotteries to present to subjects was governed by the need for repeated

observations of lottery-prize pairs. As fMRI data has a low signal-to-noise ratio, we need to

observe a subject receiving a particular prize from a particular lottery several times to accurately

estimate the underlying neural activity. Thus, the set of lottery-prize pairs from which we make

observations over a two-hour experiment is relatively small. We restrict ourselves to two prizes

(+$5, -$5), and 5 lotteries (probabilities of winning $5 of 0, 0.25, 0.5, 0.75 and 1), giving 8

possible lottery-prize pairs.

In each trial, the subject was offered a choice between one lottery from the above observation

set and a second lottery from a larger decoy set, which included lotteries which had $0 and -$10 in

their support. To ensure that the lottery from the observation set was chosen in most trials, the

decoy lottery had an expected value of between $1.25 and $5 less than the observation lottery.

In each 16-trial scan, assuming the observation lottery is always chosen, the subject receives the

degenerate lotteries (those which have a 100% chance of winning a particular prize) twice each

and the other lotteries four times each. The ordering of lottery presentation is randomized in

each scan.
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2 Measuring 

This experiment provides us with repeated occurrences of a subject receiving a particular prize

from a particular lottery. There are four steps to using the experiment to construct measures of

, and so test our axioms:

1. Use fMRI to obtain data on BOLD activity for all locations within the subject’s brain.

2. Define anatomically restricted regions of interest (ROIs) within the brain (those sub-areas

very densely populated with dopaminergic synapses), the activity in which we will use as

a proxy for dopaminergic activity.

3. Construct a time series of activity in the ROI, and use this time series to construct esti-

mates of 

4. Use these estimates of  to test our axioms.

The following sections describe each of these steps in detail.

1 From Functional Magnetic Resonance Imaging to Dopamine13

The signal measured by an MRI scanner is now very well understood and the mapping of that

signal to neural activation is heavily constrained. The scanner works by placing a subject in a

strong and highly structured magnetic field and then subjecting them to brief radiofrequency

pulses of energy. As different chemical substances respond to these pulses as a function of the
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local magnetic field, this allows the scanner to reveal the chemical structure of tissue at any

location inside the brain with tremendous precision.

Relating information about the local chemical structure of the brain to neural activity, how-

ever, is significantly more complicated. The local shifts in electrical equilibrium produced by

brain activity lie well below the resolution of these devices. Instead, the scanners measure brain

activity indirectly by observing a small change in the local chemical environment induced by

neural activity. When a brain cell becomes active, it consumes energy. This demand for energy

leads to an increase in blood flow. The response of the blood flow system to increased demand

is now well characterized and approximates a linear process. The vascular system responds to

an impulse in demand with a delayed and graded increase in blood flow, with an onset delayed

by about 2 seconds and a peak at a delay of about 6 seconds, a process known as the hemody-

namic response. Fortunately for neurobiologists, the molecule hemoglobin which carries oxygen

to the cells, and the density of which is controlled by the hemodynamic response, has a magnetic

signature which can be measured by the brain scanner.

The brain scanner thus allows us to measure the hemodynamic response as a time series at

almost any location in the brain. Signal-to-noise considerations, however, limit the precision of

this measurement. In practice the scanner yields, with each measurement, the local oxygenation

of the blood in little cubes of brain tissue typically 3 mm on a side, cubes known as voxels. The

BOLD signal in each voxel is therefore an estimate of the average metabolic demand by all of the

neurons within that voxel — on the order of 10,000,000 neurons. By repeating this measurement

at intervals of 1-2 seconds, intervals knows as repetition times (TRs), one can construct a time

series that reports average metabolic activity in each 3 mm voxel in a human brain. A brain
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scan typically consists of approximately 250,000 voxels, so this yields approximately 250,000

different time series for each brain scanned.

How can BOLD activity be related to the activity of dopamine neurons? Recall that the MRI

scanner averages the activity of the roughly 10,000,000 neurons within each voxel. Unfortunately,

the average human brain contains only about 100,000 dopamine neurons which are distributed

spatially over dozens of voxels. The result is that direct measurements of the hemodynamic

response induced by the dopamine neurons is at present difficult. However, each dopamine

neuron connects to on order 10,000 other cells, the locations of which are well known. This

means that the activity of on order one billion neurons are influenced by dopamine activity,

and we know the location of these neurons. The strategy for measuring dopamine neurons in a

living human is thus to identify, ex ante, the locations in the brain containing high densities of

dopaminergic synapses and then to measure the metabolic activity in these regions as a function

of behavioral manipulations hypothesized to influence dopaminergic activity.

Studies in animals, where it is feasible to measure both the BOLD signal or dopamine

chemically and the activity of nerve cells directly, fortunately provide further constraints on the

relationship between dopamine activity and the BOLD signal. A number of studies have now

indicated that, at a biological level of analysis, activity in the dopamine neurons and the BOLD

signal in our regions of interest are co-monotonic. (For a review of this issue see Frank and

O’Reilly, 2006.)
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2 Defining Regions of Interest

Scanning subjects using fMRI provides us with an enormous amount of information about

BOLD activity; for each of the 250,000 voxels in a scan of a typical subject’s brain it provides

a time series of data points for the entire scanning period. The next stage of our analysis

is to identify the areas of the brain which we will use to test our theory. As discussed above,

several experiments have shown patterns of BOLD activity in the nucleus accumbens and ventral

putamen that are strikingly similar to patterns of dopamine activity measured in animals using

more direct techniques. Because the nucleus accumbens receives particularly dense projections

from a large number of dopamine neurons and can be accurately defined anatomically using

data obtained from a brain scanner, we focus on activity in this area as a proxy for dopamine

activity. There are two standard ways of identifying regions of interest (ROIs) within fMRI

data.

1. Anatomical ROI: Identified as a particular brain structure using an understanding of the

physical geography of the brain.

2. Functional ROI: Defined by the way activity in that area is related to a particular stimulus.

In this paper, we focus mainly on an anatomical definition of the nucleus accumbens. For

individual subjects, we defined the nucleus accumbens according to the algorithm described in

Neto et al. [2008].14 Figure III shows the ROIs for three of our subjects.

As a robustness check for our results, we also employed a functionally defined ROI, using

the assumption that dopaminergic neurons should, as a first approximation, respond positively
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at the time of prize receipt to the difference between the value of the prize and the expected

value of the lottery from which it came. We therefore regress brain activity in each voxel

on this difference (as well as other variables described in appendix 2). We used a random-

effects group-level analysis15 to identify activity positively correlated with this ‘expected reward

prediction error’ regressor. Figure IV shows the significant areas at a threshold of p0.0005

(uncorrected), areas which overlap considerably with the typical anatomically defined nucleus

accumbens. Unlike our anatomical ROIs, which were defined in individual subjects, functional

ROIs were defined at the group level. In order to make the definition of the ROI statistically

independent of later tests of the axioms, we split the data set into two halves, data sets  and

, with set  containing odd-numbered scanning runs for the first session and even-numbered

runs for the second session, and set  containing all other runs. We then collect data from set 

using the ROI defined using data from set , and vice versa.

The next task is to combine BOLD data from the voxels identified in an ROI into a single

time series. We do this by averaging across all voxels in an ROI and then converting the average

signal in each trial to percent signal change according to standard fMRI protocol; by using the

last two time points of the fixation period as a baseline and dividing the signal in a trial by the

average signal in those two time points.

3 Constructing 

In an ideal world, we would use a within-subject design to test the axioms on an individual by

individual basis. However, fMRI data are still too noisy for such a test. We therefore combine

data across subjects, effectively treating our data as all coming from a single person. In general,
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finding the axioms satisfied at such a group level is neither necessary nor sufficient to say that

they are satisfied at the individual level. Effectively, we rely on an assumption of homogeneity

- that subjects order prizes and lotteries the same way. In this case, this only requires that all

subjects find winning $5 more rewarding than losing $5, and that all subjects expect a higher

reward from lotteries with higher objective probability of winning the better prize. (While we

acknowledge the limitation of this approach we also note that this assumption has now been

used in literally tens of thousands of papers.)

We now use our time series data to provide estimates of . We do this by regressing the time

series of dopamine activity on a sequence of dummy variables for each of the 8 lottery-prize

pairs in the experiment, and using the estimated coefficients as an estimate of activity caused

by each pair. Specifically, we use a separate dummy to represent the event of getting each given

prize from each given lottery (8 dummies). There is therefore one dummy variable which takes

the value 1 when the $5 prize is revealed from the lottery which had a 50% chance of +$5 and

50% chance of -$5, another which takes the value 1 when the -$5 is revealed from the same

lottery, and so on. Dummies take the value 1 for a time window starting 4 TRs (5 seconds) and

finishing 10 TRs (12.5 seconds) after a prize has been revealed. This time window is chosen to

take into account the hemodynamic response, the lag between brain activity and the change in

blood chemistry that can be detected by fMRI. The coefficients on these dummies we use as

our estimates . Notationally, we will use ̂( ) to indicate the estimated parameter on the

dummy which is set to 1 when prize  is received from the lottery which gives the prize $5

with probability . In addition we include scan-level dummies to capture scan-specific effects

(i.e a separate dummy for each scan run - remembering that each subject takes part in multiple
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scans). The regression is performed using ordinary least squares, with Huber/White/sandwich

robust standard errors [Huber 1967; White 1980].

3 Testing the Axioms

We now face the challenge of using our estimates, ̂, to test our axioms. If these observations

were deterministic then the test would be easy - by theorem 1, all we would have to do would

be to take the numbers ̂( ) and check whether Coherent Prize Dominance, Coherent Lottery

Dominance, and No Surprise Equivalence hold. Unfortunately, ̂( ) are noisy estimates of

underlying brain activity ( ). Ideally we would like to take the route of standard statistical

hypothesis testing, by stating a null hypothesis that the underlying parameters ( ) violate

our axioms. We would then wish to calculate the probability of observing ̂( ) given this null

hypothesis. Such tests rely on one’s ability to use the null hypothesis to generate a suitable

test statistic. In the case of simple linear restrictions this presents no difficulty. However in this

case this is extremely difficult to do. We therefore take an alternative approach, consisting of

pairwise Wald tests of linear restriction. In particular, for each { }, { } ∈ , we perform a

test of the restriction that ( ) = ( ) If we cannot reject this hypothesis, we treat the two

values as equal. If we can, then we treat them as unequal in the same direction as the relation

of ̂( ) and ̂( ).

We are now in a position to test our axioms Let the function () equal + if  is positive,

− if  is negative and = otherwise. The test of our axioms can therefore be written as:
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• Axiom 1: Coherent Prize Dominance:

 ((5 025)− (−5 025))

=  ((5 05)− (−5 05))

=  ((5 075)− (−5 075))

• Axiom 2: Coherent Lottery Dominance

 ((5 025)− (5 05))

=  ((−5 025)− (−5 05))

and

 ((5 025)− (5 075))

=  ((−5 025)− (−5 075))

and

 ((5 05)− (5 075))

=  ((−5 05)− (−5 075))

25



• Axiom 3: No Surprise Equivalence

(5 1) = (−5 0)

One thing to note is that these criteria would be met by any  function that ordered prizes

and lotteries consistently - for example one that ranked losing $5 above winning $5, or that was

everywhere constant. We therefore also provide a more restrictive test based on the idea that

reward should be increasing in monetary value, and that predicted reward should be increasing

in lottery expected value, which we refer to as Strong Coherent Prize Dominance and Strong

Coherent Lottery Dominance.

V Experimental Results

1 Subjects

Fourteen paid volunteers participated in the experiment (9 women, 5 men, all right-handed,

mean age = 26.0 years (S.D. 8.1 years)). All participants gave informed consent in accordance

with the procedures of the University Committee on Activities involving Human Subjects of

New York University. All subjects completed at least 13 scans (of approximately 8 minutes

each) over two sessions. Excessive motion during the experiment rendered the fMRI data for

two subjects unusable.16 Of the remaining twelve subjects, all completed 14-16 scans with most

subjects (n = 9) completing 8 scans in each session.17

Subjects earned an average of $125 (S.D. $39) per session including the endowment and show-
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up fee. One subject lost the entirety of her endowment during her second scanning session, and

the final scan of that session is excluded from analysis. That subject was also the only subject

who failed to respond within the required time window on more than 2 trials, missing 6 trials

in total. The average reaction time for successful responses was 382 ms (S.D. 103 ms). In

total, 17 trials were missed out of a possible 3024. Due to a programming error, a further 4

trials erroneously resulted in missed trials, despite the response being within the specified time

window. These 4 trials are excluded from further analysis. Subjects usually chose the lottery

with the higher expected value with 6 subjects making such a choice on every trial. In total,

28 choices were made of lotteries in the decoy set. Thus out of a possible 3024 trials in 189

completed scans, 2975 trials are included in further analysis.

2 Results

Figure Va shows the parameter estimates of ̂ for the anatomically defined ROI. These estimates

are shown in the graphical format introduced in section 1. For each prize, we plot a line showing

the parameter estimates when that prize is received from each observed lottery. Recall from

section 1 that our three axioms are equivalent to three properties of these graphs: that the lines

do not cross, that they are co-monotonic, and that ̂(−5 0) is equal to ̂(5 1).

An examination of figure Va suggests that activity in the anatomically defined nucleus accum-

bens is consistent with Strong Coherent Prize Dominance, Strong Coherent Lottery Dominance

and No Surprise Equivalence: the line for the +$5 prize lies everywhere above that for the -$5

prize, and both lines are downward sloping. Furthermore ̂(−5 0) looks very similar to ̂(5 1)

suggesting that No Surprise Equivalence might also hold.
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Table I performs the statistical tests discussed in section 3 above. These largely confirm

that the data satisfy the three axioms. The evidence for Strong Coherent Prize Dominance is

overwhelming: the hypothesis that ̂(−5 ) = ̂(5 ) is rejected at below the 0.1% level for each

 ∈ {025 05 075} (with ̂(−5 )  ̂(5 )). ̂(−5 0) is not significantly different to ̂(5 1)

so No Surprise Equivalence also holds. Coherent Lottery Dominance also holds, but only in

the weak sense: for neither prize is ̂( 025) statistically different from ̂( 05), however, for

both prizes ̂( 05) is significantly higher that ̂( 075) and ̂( 025) is significantly higher

that ̂( 075) Thus, our key result is that the BOLD signal recorded from the anatomically

defined nucleus accumbens region meets the necessary and sufficient criteria required of a reward

prediction error encoder. Moreover, the ordering of prizes and lotteries is as one would expect -

more money is rated as “more rewarding” than less money, and lotteries with a higher probability

of winning $5 have a higher predicted reward.

3 Robustness Tests

1 Functionally Defined ROI

Figure Vb shows the parameter estimates for the functionally defined ROIs (the statistical tests

are also reported in Table I). In most major respects, the results are the same: the line for the

+$5 prize lies everywhere above that for the -$5 prize, and both lines are downward sloping. In

fact, for the functionally defined ROI axiom 2 holds in the strong, as well as the weak sense,

as both lines are significantly downward sloping between all points. However, for this ROI, No

Surprise Equivalence does not hold: the amount of activity observed when $5 is lost for sure is
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significantly higher than for when $5 is won for sure.

2 Temporal Window

As a second check of the robustness of our results, we examine the temporal window, or time

within each trial during which ̂ was estimated. To do this we construct a plot of the average

BOLD activity as a function of time for trials of each lottery-prize pair. This is shown in figure

VI for both anatomically and functionally defined ROIs. The temporal window used in the

proceeding analysis of ̂ is shown in grey. For our results to be robust to different time windows,

we would require that the ordering of these lines does not change through the course of the trial.

Figure VI suggests that this is in fact not the case: Early time periods (immediately after the

lottery outcome is revealed) seem to show clear differentiation between lotteries when the positive

prize is received, while the latter time periods show differentiation between lotteries when the

negative prize is received. Moreover, activity for the degenerate lotteries seems to follow a rather

different pattern from that seen for non-degenerate lotteries. For all non-degenerate lotteries,

BOLD activity peaks soon after the prize has been received, then falls. For the degenerate

lotteries, activity shows no spike in response to the revelation of the prize.

In order to further examine this apparent temporal variation in ̂, we reestimate our 8

parameters on two different temporal windows: an early window (consisting of TR 4-6, where

TR 0 is the time at which outcome is displayed) and a late window (TR 7-10) for both the

anatomically and functionally defined ROIs. These estimates are shown in figures VII and VIII.

While still satisfying Coherent Prize Dominance, the early window graph (figure VII) suggests

that Coherent Lottery Dominance does not hold in this period - the positive prize line remains
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downward sloping, while the negative prize line is largely flat. In contrast, while Coherent

Lottery Dominance does seem to approximately hold in the late window (figure VIII), it seems

that the responsiveness of activity to changes in lottery is much stronger for the negative prize

that the positive prize. This pattern is borne out by figure IX, which shows how the difference

between ̂( 025) and ̂( 075) changes with the estimation period for each prize for the

anatomically defined ROI. The figure plots these differences for estimates made on different 2-

TR windows, starting at the TR indicated on the -axis. Thus the graph provides an indication

of how the slope of the ̂(5 ) and ̂(−5 ) lines varies with the time window considered.

This graph indicates that the peak differentiation between lotteries occurs around TR 4 for the

positive prize, and around TR 6 for the negative prize. Perhaps even more surprisingly, the size

of the differentiation for the negative prize is also roughly twice as large as that for the positive

prize.18 The economic and neurobiological implications of this result are discussed below.

It should be noted that the original time window we selected is not an ad hoc “knife edge”

case for which the axioms hold. First of all, the time window was selected in order to match

what is known about standard hemodynamic response functions. Second, our original results

are robust to balanced changes in the time window - that is changes in the time window that

change the start and end point of the window while keeping the central point the same.19

4 Discussion

Our results can be summarized as follows:

1. Strong and robust support for Axiom A1: Coherent Prize Dominance
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2. Support for Axiom A2: Coherent Lottery Dominance for the average signal across the full

time window of the hemodynamic response

3. Weak support for Axiom A3: No Surprise Equivalence in the anatomical, but not the

functional ROI.

The results of this study are broadly a success for proponents of the DRPE hypothesis.

The average BOLD signal measured by fMRI from the anatomically defined nucleus accumbens

satisfies the three necessary and sufficient conditions for a reward prediction error encoder, al-

though support is weak for the third axiom. Certainly, this renders false previous claims that

nucleus accumbens activity (as measured by BOLD) cannot encode a reward prediction error.

In light of the axioms being satisfied, there is a strong theoretical basis for using dopaminergic

measurements to define consistent measurements of “reward” and “belief” based on neurobio-

logical measurements of activity in this area. In our experiment, these measurements satisfy

basic rationality conditions: more money is more rewarding than less money, and lotteries have

higher predicted reward if they have a higher probability of winning the higher prize. Thus, our

work rigorously tests and confirms the conclusions of previous authors who have claimed to have

found evidence in favor of the DRPE hypothesis in fMRI data [McClure, Berns, and Montague,

2003; O’Doherty et al., 2003, 2004; Abler et al., 2006; Li et al., 2006; Pessiglione et al., 2006;

D’Ardenne et al., 2008].

Note that, while we do not axiomatically charactize salience or hedonia models of dopamine

activity, our results do not look promising for these other potential explanations for the infor-

mation encoded in nucleus accumbens activity. Recall that, from section 3, the key axiom that

appears to be inconsistent with the “hedonia” hypothesis was No Surprise Equivalence: hedonia
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would imply that better prizes would lead to higher responses even from degenerate lotteries.

In our data, either No Surprise Equivalence holds (in the anatomically defined ROI), or we find

that the worse prize gives rise to higher dopamine activity (functional ROI). Neither of these

cases appears consistent with the hedonia hypothesis.

Our data also seems inconsistent with the possibility that the nucleus accumbens encodes

salience. Again, recall from section 3 that a standard reading of the salience hypothesis would

imply that dopamine activity should lead to a failure of Coherent Prize Dominance. From the

lottery  = 025, winning $5 is more surprising, and so arguably more salient than losing $5,

so winning $5 should lead to a higher dopamine response. From the lottery  = 075, losing $5

is more salient than winning $5, so losing $5 should lead to the higher dopamine response. We

find no evidence for such an effect.

The success of the DRPE hypothesis is largely robust to the choice of functional or anatomical

ROI. In both cases Coherent Prize Dominance and Coherent Lottery Dominance hold. The only

difference between the two results is that No Surprise Equivalence holds in the anatomical ROI

and not in the functional ROI. An examination of figure VI suggests that this result may be part

of a richer story involving the degenerate lottery, which has not yet received attention in either

neurobiological or economic circles. Clearly, the time course of activity following the revelation

of prizes is very different for the degenerate lotteries than for all non-degenerate lotteries. While

revelation from the non-degenerate lotteries leads to a sharp increase in BOLD activity, followed

by a gradual decline in all cases, revelation for the degenerate lotteries leads to a much slower,

gentler increase in activity for both the +$5 and -$5 prizes. For the anatomical ROI, the path is

the same for both prizes, while for the functional ROI, the response for the -$5 line is somewhat
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higher than that for the +$5. This result suggests that the degenerate lotteries are treated in

a qualitatively different manner than non-degenerate lotteries at an algorithmic (or at least a

temporally dynamic) level by the brain.

Perhaps the most novel feature of the data is that, while average activation for the entire

time window satisfies the DRPE hypothesis, this seems to be due to the amalgamation of

two different processes, each with different temporal dynamics. This result supports earlier

controversial theoretical proposals [Daw et al., 2002; Bayer and Glimcher, 2005; Bayer, Lau and

Glimcher 2007], which hypothesized that dopamine responses may be asymmetric - recording

positive but not negative reward prediction error. Our findings raise the possibility that the

nucleus accumbens is indeed receiving, and possibly amalgamating, signals from two different

processes which, between them, provide an encoding of an RPE signal. A high priority in future

research is to understand the robustness and significance of the distinct pattern of dopaminergic

responses to losses and gains that we identify.

As we note above, the observations that we make have to do with activity in the nucleus

accumbens, and not dopaminergic activity per se. Thus, we cannot conclude from these findings

that dopamine is an RPE encoder. In fact, the evidence we find for two different systems points

to the possibility that dopamine may only be encoding part of the RPE signal we observe here,

as suggested in Daw et al. [2002] and Bayer and Glimcher [2005], and a recent detailed proposal

by Dayan and Huys [2009]. If this is the case, then the signal we observe could reflect activity

induced in part by dopamine and in part by some other source that may serve as the negative

RPE encoder. To say more about the role of dopamine and RPE, one would have to perform

more direct measurements of dopamine, such as single-unit recording from dopamine neurons
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in monkeys. We see such a project as important future research.

VI Conclusion

This paper presents the first use of an axiomatic representation theorem to test a neurobiological

hypothesis using neurobiological data. We show that BOLD activity measured by fMRI in the

dopamine-rich nucleus accumbens can be modelled as encoding a reward prediction error - the

difference between the experienced and predicted reward of an event. In doing so, we believe

that this paper makes three contributions. First, it provides a concrete answer to the question

of whether activity in the nucleus accumbens can encode a reward prediction error. Second, it

increases the tools that economists have for studying economic behavior. Third, it introduces

the tools of axiomatic modelling to the study of neuroscience.

Promising as our results, they do not immediately advance our understanding of choice,

the acid test of neuroeconomic progress proposed by Bernheim [2008]. Yet they point the way

to just such advances, in particular through the potential of dopaminergic measurements to

provide fresh insights into the evolution of beliefs and of expectation-based reference points.

Given that the DRPE hypothesis holds, we can now define both dopaminergic reference points

(the expected reward of an event) and beliefs (the probabilities attached to states of the world

that would generate such an expectation). The next stage of our research agenda is to link

these concepts to the equivalent constructs in standard decision theory - via experiments that

relate dopamine activation to choice. If such a link exists, then dopamine can provide a new

tool for understanding how beliefs and reference points evolve, rather than having to infer this
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from choice data alone.20

Given their importance to play, understanding of beliefs is particularly important in repeated

games [Stahl and Wilson 1995; Cheung and Friedman 1997; Fudenberg and Levin 1998]. In this

arena, dopaminergic evidence will strengthen the arsenal of belief elicitation techniques. Nyarko

and Schotter [2002] were able to explain play in various games far better using beliefs estimated

from an incentive compatible mechanism rather than using model-based estimates. Rutström

and Wilcox [2006] provide an opposing example in which model-estimated beliefs are superior.

In contrast with incentive compatible mechanisms, dopaminergic techniques offer a potential

window into beliefs that does not interrupt the course of play.21

With respect to methodology - it is our belief that the axiomatic approach has a significant

role to play in the field of behavioral neuroscience for the reasons discussed in more detail in

Caplin and Dean [2008B]. This paper provides a proof of method, by using this approach to

provide clear answers to a previously open question within neuroscience - whether or not activity

in the nucleus accumbens encodes a reward prediction error signal.

Until now, model testing, comparison, and improvement in neuroscience has taken place

largely through a regression-based approach, by which highly parameterized models of reward,

belief, and learning have been correlated with brain activity. In essence, this approach consti-

tutes a form of gradient-descent through modeling space towards what is hoped to be a globally

best model. We believe that the axiomatic approach, which has characterized so much of eco-

nomic modeling during this same period, can provide a powerful alternative to this non-structural

tradition which at present dominates neurobiological research. By clearly encapsulating condi-

tions of necessity and sufficiency for describing a class of models, the axiomatic approach allows
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us not to ask whether a particular model fits well but rather to ask whether an entire class

of models can be falsified. What makes the axiomatic approach uniquely powerful is that it

presents a model in the clearest and most easily falsifiable form possible. This represents a

fundamental contribution that the economic approach can make to neuroscience and one that

we believe can have broad impact in that discipline. Economic tools can help shape future

neurobiological discourse.

In summary, the present results indicate that brain activity in the nucleus accumbens, as

measured by fMRI, meets the criteria of necessity and sufficiency for carrying a reward prediction

error signal. This fundamentally strengthens the conclusion that reward prediction error-based

learning of value occurs in the human brain. Axiomatic modelling, an approach that offers

many advantages over traditional neurobiological modelling which is often necessarily ad hoc in

nature, can be used to provide novel insights into brain function. In the converse direction, our

broad confirmation of the DRPE suggests concrete ways in which neurobiology will be able to

return the compliment by providing new insights into economic behavior.
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VII Appendix 1 - Instructions

We are interested in understanding how people choose and value uncertain financial options,

like lotteries. You will be asked to make a series of choices between lotteries. For example, one

lottery might be the one pictured at right [figure A.1]. When you play this lottery, you have a

50% probability of gaining $5 (of real money) and a 50% probability of losing $5. Before you

start the game, we will give you $100 of real money. Put it in your pocket. You will play the

game with this money. If you win more money over the course of the game, we will give you

those winnings when you finish. If you lose money during the game, you will return it to the

experimenter and you can keep the rest of the $100. If at any point in the game, you lose all of

your $100, the game ends and you must return the money. You will play 8 rounds of 16 trials

each. At the start of each trial, a white cross appears at the center of the screen (shown below,

figure A.1). Then two lotteries will be presented on the screen. Your task is to decide which of

the two lotteries you would prefer to play with the $100 in your pocket. The amounts on the

screen are in real money, which you can win and lose on every trial. Press the left button for

the lottery on the left, the right for the lottery on the right. The lottery you chose will then

be shown in the center of the screen. There is no right answer. We just want to know what

lottery you would prefer to play. The computer then rolls the dice and tells you which prize

you received. In the example below, you would have won $5 of real money. After each block

of trials, the computer tells you how much you won or lost for that block and what your total

earnings are up to that point in the game. If you do not make a choice within the 1.25s time

limit, the trial will end and the screen will display ‘No Lottery Selected’ and you will receive a

penalty of -$10 [the worst prize; shown below, figure A.1]. Regardless of your performance in
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the game, you will be paid a show-up fee of $35. If you decide to quit playing the game before

its conclusion, you will be paid the show-up fee but you must return the $100. Good luck!

VIII Appendix 2 - Details of Imaging Protocol and

Data Processing

1 Imaging

We used a Siemens Allegra 3-Tesla head-only scanner equipped with a head coil from Nova

Medical to collect the blood-oxygen-level dependent (BOLD) signal. We collected 23 axial slices

of T2*-weighted functional images with an echo planar imaging (EPI) pulse sequence. Our slices

were oriented parallel to the anterior-posterior commissure (AC-PC) plane. Sequence parameters

were as follows: 23 axial slices, repetition time (TR) = 1.25 s, echo time (TE) = 30 ms, flip

angle = 73 degrees, 64 x 64 acquisition matrix, in-plane resolution = 3 x 3 mm, field of view

(FOV) = 192 mm, slice thickness 2 or 3 mm). Each scan consisted of 16 30-second trials with an

additional fixation period of 15 seconds at the end of each scan, for a duration of 8 minutes and

15 seconds per scan. Thus each scan consisted of 396 images. We also collected high-resolution

T1-weighted anatomical images using a magnetization-prepared rapid-acquisition gradient echo

(MP-RAGE) pulse sequence (144 sagittal slices, TR = 2.5 s, TE = 3.93 ms, inversion time (TI)

= 900 ms, flip angle = 8 degrees, 1 x 1 x 1 mm, 256 x 256 matrix in a 256-mm FOV). The

display was projected onto a screen at the back of the scanner and subjects viewed the display

through a mirror attached to the head coil. To minimize head movements, subjects’ heads were
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stabilized with foam padding.

2 Data Analysis

Data were analyzed with the BrainVoyager QX software package (Brain Innovation) with ad-

ditional analyses performed in MATLAB (MathWorks) and Stata (StataCorp). Preprocessing

of functional images included discarding the first four images to avoid T1 saturation effects,

sinc-interpolation for slice scan time correction, intersession and intrasession 3D motion correc-

tion using six-parameter rigid body transformations, and linear trend removal and high-pass

filtering (cutoff of 3 cycles per scan) to remove low-frequency drift in the signal. Images were

coregistered with each subject’s anatomical scan, rotated to the AC-PC plane, and transformed

into Talairach space [Talairach and Tournoux, 1988] using trilinear interpolation. For group-

level random-effects analyses only, data were also spatially smoothed with a gaussian kernel of

8 mm (full-width half-maximum). We used the summary statistics approach to test when the

mean effect at each voxel was significantly different from zero across subjects. We modelled the

time course of activity as transient responses at the following times convolved with the canoni-

cal two-gamma hemodynamic impulse response function (peak = 6 s, undershoot peak = 15 s,

peak-undershoot ratio = 6): lotteries onset, button press and outcome onset. We also included

a parametric regressor at outcome onset equal in magnitude to the difference between the out-

come and the expected value of the lottery in dollars. This regressor allowed us to perform the

traditional regression analysis on our data.
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Notes

1See Schultz, Apicella, and Ljungberg [1993], Mirenowicz and Schultz [1994], Montague, Dayan, and Sejnowski

[1996], Schultz, Dayan, and Montague [1997] and Hollerman and Schultz, [1998]

2For example Bernheim and Rangel [2004], McClure, Laibson, Loewenstein, and Cohen [2004], Bossaerts,

Preuchoff, and Hsu [2008].

3For more details see Dean and Caplin [2008A, 2008B, 2008C].

4Kahneman and Tversky [1979], Samuelson and Zeckhauser [1988], Koszegi and Rabin [2006], Ok et al. [2008]

5For example O’Doherty et al. [2004], Bayer and Glimcher [2005]

6For example Berridge and Robinson [1998], Zink et al. [2003], Delgado et al. [2005], Knutson and Peterson

[2005], Redgrave and Gurney [2006].

7We do not allow observation of dopaminergic activity from a prize that is impossible according to the given

lottery (i.e. a prize from outside the support of a particular lottery).

8Given that the DRPE hypothesis has quite specific information on what happens when there is no surprise,

we will also insist that all no surprise outcomes of the form ( ) are in the domain of observation, although this
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has no technical impact on the availability of a DRPE representation.

9Note that we additionally assume that people make perfect predictions in the case of degenerate lotteries:

the predicted reward of the lottery  that gives prize  for sure is equal to the experienced reward of prize .

Thus the experienced reward function can be derived directly from the predicted reward function.

10The theorem is proved in the working paper version of the paper as part of the proof for the general finite

prize case.

11It should be noted that this technique measures overall activity in this brain area, to which dopaminergic

action potentials are a major, although not unique, contributor. This imposes on our measurement a limitation

shared by all fMRI-based studies of dopaminergic activity. If anything, however, this limitation should bias our

empirical results against observing the axiomatic behavior we seek.

12All the colors used in the experiment are approximately isoluminent, reducing brain activity which comes

about due solely to visual stimulation induced by the changing display.

13For technical details of the imaging protocol and initial data analysis, see appendix 2. For more details on

magnetic resonance imaging the reader is referred to Huettel et al. [2004].

14The dorsal limit of the nucleus accumbens is the horizontal plane passing under the caudate nucleus head

from the inferior border of the lateral ventricle to the edge of the internal capsule. The lateral limit is the internal

capsule. The medial limit is the diagonal band of Broca. The ventral limit is the anterior hypothalamic nucleus

and the external capsule laterally. The posterior limit is the posterior border of the anterior commissure. The

anterior limit begins where the anterior caudate head and putamen are clearly divided by the internal capsule.

The nucleus accumbens was defined bilaterally in this manner on the individual high-resolution anatomical

images in Talairach [Talairach and Tournoux, 1988] space.

15See appendix 2 for details.

16Both subjects had 9 scans with at least 0.1 mm per TR or 0.1 degrees per TR average motion in any direction;

no other subject had more than 3 scans with as much motion. These subjects were excluded from all further
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analysis, as is common practice in fMRI studies.

17To an experimental economist, the small number of experimental subjects in this and other neuroscientific

studies may be disturbing. This is particularly so given that there are significant individual differences in neuro-

logical structure. Unfortunately, it is a necessary feature of current experiments given technological constraints.

Since dopaminergic responses are of interest to many research groups, robustness of results is uncovered through

independent replication.

18Though it should be noted that interpreting differences in magnitudes in BOLD signals is a complicated

matter, particularly when comparing increases and decreases in the signal. Thus the difference in magnitude

should be interpreted with caution.

19In such windows axioms 1 and 3 hold, while support for axiom 2 is mixed.

20One potential issue is the extent to which our results will generalize beyond the simple experimental en-

vironment tested here. For example - do we know that dopamine will respond the same way when there is a

longer gap between the predictive stimulus and reward, or if probabilities are subjective rather than objective?

To some extent these are open questions, though previous studies give some guide. Gallistel and Gibbon [2000]

show that dopamine does seem to still encode a DRPE if signals and reward are temporally separated, as long as

there is not too much variation in the length of the intervals. Moreover, many previous studies have attempted

to test the DRPE in environments in which subjects have to learn probabilities from past rewards drawn from

an unknown distribution - which is much closer to the idea of subjective probabilities than it is to objective

probabilities. Of course, none of these studies test our axioms directly.

21Realistically, the technology of measurement will first have to improve, since the fMRI machine is not a

natural habitat.
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  Anatomical ROI Functional ROI 
  Sign Prob Sign Prob 

A1: Consistent 
Prize Ordering 

{5,0.25} - {-5,0.25} + 0.0 + 0.0 
{5,0.50} - {-5,0.50} + 0.0 + 0.0 

 {5,0.75} - {-5,0.75} + 0.0 + 0.0 
      

A2: Consistent 
Lottery Ordering 

{-5,0.50} - {-5,0.25} = 11.1 -* 5.3 
{5,0.50} - {5,0.25} = 73.9 -* 9.7 

      
 {-5,0.75} - {-5,0.50} - 0.9 -* 9.3 
 {5,0.75} - {5,0.50} - 4.4 - 0.2 
      
 {-5,0.75} - {-5,0.25} - 0.0 - 0.0 
 {5,0.75} - {5,0.25} - 4.8 - 0.1 
       

A3: No Surprise 
Equivalence 

{-5,0} - {5,1} = 34.0 + 0.7 

 
Table I 

 
Statistical tests on the difference between parameter estimates. The Prob column 
reports the probability that each hypothesis holds according to a Wald test of linear 

restriction using robust standard errors. The Sign column shows a + or – if the test is 
significant in that direction at the 5% level, with a * appended if significant at the 10% 
level. Regressions run on 74088 data points (TRs) from 2975 trials, 189 scans and 12 

subjects. 
 

 



 
 

Figure I 
 

Graphical representation of violations of the axioms for the two prize case. Solid points represent 
example experimental measurements. Open points represent unobservable outcomes. (a) A 

violation of Axiom 1: Coherent Prize Dominance. When received from lottery p, prize 1 leads to 
higher dopamine release than does prize 2, indicating that prize 1 has higher experienced reward. 

This order is reversed when the prizes are realized from lottery p’, suggesting that prize 2 has higher 
experienced reward. Thus a DRPE representation is impossible. (b) A violation of Axiom 2: Coherent 

Lottery Dominance. More dopamine is released when prize 1 is obtained from lottery p’ than from 
lottery p, suggesting that p has a higher predicted reward than p’. The reverse is true for prize 2, 

making a DRPE representation impossible. (c) A violation of Axiom 3: No Surprise Equivalence. The 
dopamine released when prize 1 is obtained from its degenerate lottery is higher than when prize 2 

is obtained from its degenerate lottery. (d) No axioms are violated in this graph. 



 
 

 
 

Figure II 
 

Experimental design. Following a fixation period, subjects were presented with two lotteries. 
When the fixation cross was extinguished, subjects had 1250 milliseconds to indicate their 

choice by button press. Following a delay period, the outcome was revealed by a change in the 
color of the prize received. Durations of each period in the 30-second trial are given in 

milliseconds. In this example, the subject chose the lottery on the left and won $5. 
 



 

Figure II 
 

The nucleus accumbens defined anatomically in three subjects. (a-c) Regions defined in three 
subjects (DV in a, MH in b, and PM in c). Coronal sections (left, y=+7) and horizontal sections 
(right, z=+0) are shown for each subject. The inset in a shows the outlined nucleus accumbens 

for subject DV. The nucleus accumbens was defined by anatomical landmarks using the 
algorithm described in Neto et al. (2008). Data are shown in radiological convention with the 

right hemisphere on the left in the coronal sections and on the bottom in the horizontal sections.



 

 
 

Figure IV 
 

Group analysis showing the brain areas in which activity is correlated with expected reward 
prediction error. (a) A region of correlation (p<0.0005, uncorrected), which overlaps 

considerably with the anatomically defined nucleus accumbens, can be seen in a coronal (left, 
y=+7) and a horizontal section (right, z=+0), overlayed on a mean normalized anatomical 
image. (b) When the data set is split in half, independent regions of correlation (p<0.005, 

uncorrected) are defined for data set a (blue), odd-numbered runs in the first session and even-
numbered runs in the second, and data set b (yellow), the rest of the runs. The region of 

overlap between the two regions is indicated (green). The random-effects analyses include 
regressors for the options onset, button press, outcome onset, and a parametric variable at the 
time of the outcome onset. This variable is computed as the difference between the outcome 

and the expected value of the lottery in dollars. All regressors are one time point convolved with 
the canonical two-gamma hemodynamic response function. Data are shown in radiological 

convention with the right hemisphere on the left in the coronal sections and on the bottom in the 
horizontal sections. 



 
 

 
 

Figure V 
 

Parameter estimates using the full time window (TR 4-10). Parameter estimates are shown for 
regions of interest in the nucleus accumbens defined both (a) anatomically and (b) functionally. 
Error bars show +/- 1 standard robust standard errors. Regressions run on 74088 data points 

(TRs) from 2975 trials, 189 scans and 12 subjects. 



 
 

 
 

Figure VI 
 

Group-level time courses are shown averaged over all voxels in a region of interest for 12 
subjects and then re-plotted as trial averages. Trial averages are shown for regions of interest 

in the nucleus accumbens defined both (a) anatomically and (b) functionally. Trial averages are 
color-coded by lottery-prize pair with the probability of winning $5 indicated for each. The 

largest standard error is shown at right. The timeline above the plot shows the expected time of 
responses to each period using a 5-s (4 TRs) lag to account for the delay in the hemodynamic 

response function. Peak responses typically coincided with the options onset, button press, and 
outcome onset (hereafter referred to as TR 0). The time window (TR 4-10) used for further 

analysis is shown in gray. 



 
 

 
 

Figure VII 
 

Parameter estimates using the early time window (TR 4-6). Parameter estimates are shown for 
regions of interest in the nucleus accumbens defined both (a) anatomically and (b) functionally. 
Error bars show +/- 1 standard robust standard errors. Regressions run on 74088 data points 

(TRs) from 2975 trials, 189 scans and 12 subjects.. 



 
 

 
 

Figure VIII 
 

Parameter estimates using the late time window (TR 7-10). Parameter estimates are shown for 
regions of interest in the nucleus accumbens defined both (a) anatomically and (b) functionally. 
Error bars show +/- 1 standard robust standard errors. Regressions run on 74088 data points 

(TRs) from 2975 trials, 189 scans and 12 subjects. 



 
 

 
 

Figure IX 
 

Difference in parameter estimates of activity in the anatomically defined nucleus accumbens 
between when each prize is received from the 25% lottery and the 75% lottery. Each point 

represents this difference for a sliding 2-TR window starting at the TR indicated on the x-axis 
where TR 0 is the time of outcome onset and TR 4-10 is the time window used for prior 

analyses. 



 
 

 
 

Figure A.1 
 

Figures included in the instructions given to subjects before the experiment (appendix 2). (a) 
Example lottery. (b) Task diagram. 
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