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Abstract

With complete information, choice of one option over another conveys preference. Yet when

search is incomplete, this is not necessarily the case. It may instead reflect unawareness that

a superior alternative was available. To separate these phenomena, we consider non-standard

data on the evolution of provisional choices with contemplation time. We characterize precisely

when the resulting data could have been generated by a general form of sequential search. We

characterize also search that terminates based on a reservation utility stopping rule. We outline

an experimental design that captures provisional choices in the pre-decision period.
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framing effects, status quo bias, bounded rationality, stochastic choice, decision time

1 Introduction

In principle, incomplete information can explain apparent deviations from utility maximizing be-

havior: decision makers (DMs) may choose an inferior over a superior alternative if they are not

aware that the superior one is available. Yet traditional decision theory focuses exclusively on situ-

ations in which choice of one option over another reflects an underlying preference. This “revealed

preference” approach breaks down when information is incomplete.
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In contrast with decision theory, search theory is premised on incomplete information [Stigler

1961]. Given the tension between the principle of revealed preference in standard decision theory

and search theory, it is understandable that there are few linkages between them.

We develop a unified theoretical and experimental framework to help bridge the gap between

search theory and the principle of revealed preference by characterizing models of choice which

incorporate the process of information search. We first consider a model of “alternative-based”

search (ABS), in which the DM searches sequentially through the available options, comparing

searched options in full according to a fixed utility function. We consider also “reservation-based”

search (RBS), a refinement of ABS under which the DM searches until an object is identified with

utility above a fixed reservation level.

While ABS and RBS represent important classes of search behavior, neither provides testable

restrictions for standard choice data. Without additional ad hoc assumptions, any pattern of final

choice is rationalizable with either model. We therefore consider a richer data set, which we call

“choice process” data, with which to test the models. These data convey not only the final option

that the DM selects, but also how their choice changes during the period of contemplation prior to

making the final selection.1 By so enriching the data we are able to characterize whether or not

incomplete information and search can explain apparent violations of utility maximization.

The key to the axiomatic characterization of the ABS and RBS models is understanding what

type of behavior implies a revealed preference in the context of each model. In neither case does

final choice of one object over another necessarily indicate preference as the decision maker may be

unaware of the unchosen object. However, in both cases, a DM who changes their choice from one

object to another is interpreted as preferring the later-chosen object. The necessary and sufficient

condition for the ABS model to hold is that this information must be “consistent”, in the sense

of being acyclic. Under the RBS model, there may be additional revealed preference information

in the final choice itself, as in a set comprising objects all of which are below reservation utility,

search must be complete.

The ABS and RBS models both treat search order as unobservable. This makes it natural to

develop stochastic variants, given that search order is not a priori fixed and that there is no reason to

believe that search from a given set will always take place in the same order. The stochastic versions

1This data has previously been considered by Campbell [1978]
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of ABS and RBS are developed in section 4. While stochasticity adds to the technical intricacy

of the model, there is no conceptual difference between the deterministic and the stochastic cases:

the stochastic results are precise analogs of their deterministic counterparts.

The process of information search provides one particular channel by which choice can be

affected by seemingly unimportant features of the environment, such as the positioning of objects

on the screen, or in a shop. This in turn could lead to behavioral phenomena such as framing

effects, status quo bias and stochastic choice. Our models imply that, when driven by search, these

phenomena will have distinctive patterns. For example, if stochastic choice is driven by RBS and

random search order, choice is random amongst choice sets consisting of above-reservation items,

but deterministic in sets containing only below-reservation items. Characterizations in this spirit

of framing effects, status quo bias and stochastic choice are in section 5. To be clear, our approach

to these phenomena does not well describe several of the most well-studied cases.

The unified approach to theory and experiment that we take in this paper rests on two key

premises.

1. PREMISE 1: ABS and RBS represent broad styles of search that may be undertaken in a

wide variety of different decision making environments.

2. PREMISE 2: It is conceptually and experimentally feasible to collect data on the evolution

of “intended” choice with contemplation time.2

With regard to the first premise, we study ABS and RBS because we see them as broad search

modes that are of particular interest. We think that ABS-style search is a natural way to model

search behavior in many environments — particularly when there is a cost of switching attention

from one alternative to another, or if items can only be understood in their entirety. It is also

the canonical model of search within economics: search is alternative-based in most labor market

models, as well as Stigler [1961]’s model of price search, and Simon [1955]’s boundedly rational

model of search. In addition to its central role in the theoretical canon, there is also experimental

evidence suggesting that ABS may be a good description of search in some environments (e.g.

2There is a gap between the theoretically ideal data and the data our experiments generate. The model assumes

that we can identify not just one, but all best options at each point in time. In contrast, the experiment consider

only a single choice at each point in time. A similar gap is encountered in tests of standard rationality axioms.
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Reutskaja et al. [2008] and Payne, Bettman and Johnson [1988, 1993]). Similarly, we see RBS as

a natural first model of search termination. It is the stopping rule suggested by Simon [1955] in

his work on satisficing, and it also bears an interesting relationship with optimal search in certain

environments.3

With regard to the second premise, in section 6 we outline an experimental design that data

on the evolution of provisional choices with contemplation time. Subjects are presented with a

collection of objects from which they must choose. They can select an option at any time by

clicking on it, and change their selection as many times as they like. The key to the experimental

design is that the subject’s choice is not recorded at the point at which they press the finish button,

but at a randomly selected time unknown to the subject. This ensures that it is in the interest

of the subject to always keep selected their currently preferred option. As detailed in section 6,

Caplin, Dean, and Martin [2009] conduct a proof-of-principle experiment in which both ABS and

RBS are broadly supported.

While important, ABS and RBS are not universally applicable. There are other modes of

search available, such as those in which objects are compared on an attribute-by-attribute basis.

Hence ABS may be more prevalent in environments in which there are high costs to switching

among searched objects (for example, if the items of search were in different physical locations), or

where alternatives are best understood holistically (for example a written description of a financial

contract). In contrast, if it is easy to compare different alternatives on the same dimension, we

might expect ABS to be a poor description of behavior. ABS also appears less intuitively compelling

in when objects are easy to identify, yet difficult to compare. In such less favorable contexts, our

tests provide formal tools for understanding how the environment impacts search style, which in

turn may impact the nature and extent of incomplete information.

We see our approach as complementary to other attempts to use novel data to understand

information search based on eye tracking or Mouselab [e.g. Payne, Bettman and Johnson, 1993;

Gabaix et al., 2006, Reutskaja et al. 2008]. These approaches make aspects of the search process

observable, yet do not connect these intermediate acts of search with their implications for choice.

3While we do not explicitly derive ABS or RBS as resulting from optimal search it is true that a reservation based

stopping rule is optimal within the class of ABS search behavior for a DM who has fixed costs of search, and is not

learning about their environment. Moreover, the optimal reservation level does not depend on the size of the choice

set the DM is choosing from, just the cost of search and perceived distribution of object values.
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In comparison, choice process data misses out on potentially relevant visual and other cues on

search behavior, but captures the moment at which the search that has been undertaken changes

the DM’s assessment of the best option thus far encountered.4 The connection of eye tracking and

Mouselab data with standard theories of choice has yet to be characterized.

In the theoretical literature, Salant and Rubinstein [2006] also focus on data enrichment. They

study choices made from sets presented in “list” order. In their main result, they assume that the

order of the list is known to an outside observer, effectively making the order of search observable.

In this setting, they characterize a choice procedure by which the list order is only used to break

ties in the case of indifference. The tie can be broken either by choosing the first or last of the

optimal objects in the list. By contrast, we treat search order as unobservable, and assume that

people may not fully examine the available set.

Ours is not the first or only effort to bridge the gap between decision theory and search theory.

An alternative approach is to identify restrictions on more standard choice data deriving from

particular search procedures. Masatlioglu and Nakajima [2009] characterize choices that result

when the search path that is adopted depends only on an initial (externally observable) reference

point. Ergin [2003], Manzini and Marrioti [2007], and Ergin and Sarver [2009] also characterize the

implications for standard choice of various decision making procedures that produce incomplete

information. Masatlioglu, Nakajima and Ozbay [2009] identify objects that a decision maker is

actively considering by assuming that the removal of unconsidered objects cannot affect choice. We

believe that these various approaches are all worth pursuing, and that the intensification of interest

among decision theorists in incomplete consideration of options is overdue.5

4More broadly, prior experimental work on search and choice has made use of data that is less readily related to

choice: the time taken in arriving at a decision [Busermeyer and Townsend, 1992; Rustichini, 2008]; direct observation

of the order of information search using Mouselab [Payne, Bettman and Johnson, 1993; Ho, Camerer, and Weigelt,

1998; Johnson et al., 2002; Gabaix et al., 2006]; eye movements [Wang, Spezio and Camerer, 2006]; and verbal

responses [Ericsson and Simon, 1984].
5 In addition to playing an essential role in search theory, the fact that decision makers effectively choose among a

small subset of potentially available options is familiar in the marketing literature. One of the central challenges in

marketing is how to get an option to be actively considered, rather than being rejected sight unseen. The literature

on “consideration sets” reflects this focus on product awareness as a necessary prelude to product choice (e.g. Alba

and Chattopadhyay [1985] and Roberts and Lattin [1991]). Eliaz and Speigler [2010] study the behavior of a firm

that can use costly marketing devices to manipulate the consideration set of a consumer.
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2 Alternative Based Search: The Deterministic Case

2.1 The Choice Process

In order to characterize our models of search, we use an enriched data set we call choice process

data. Rather than recording only the alternative that is finally chosen by the DM, choice process

data tracks how choice evolves with contemplation time. As such, choice process data comes in

the form of sequences of observed choices. Let X be a nonempty finite set of elements representing

possible alternatives, with X denoting non-empty subsets of X. Let Z be the set of all infinite

sequences from X with generic element Z = {Zt}∞1 with Zt ∈ X/∅ all t ≥ 1. For A ∈ X , define

ZA ⊂ Z to comprise all such sequences selected from A,

ZA = {Z∈ Z|Zt ⊂ A all t ≥ 1} .

Definition 1 A (deterministic) choice process (X,C) comprises a finite set X and a function,

C : X → Z such that C(A) ∈ ZA ∀ A ∈ X .

Given A ∈ X , choice process data assigns not just final choices (a subset of A), but a sequence

of such choices, representing the DM’s choices after considering the problem for different lengths

of time. We let CA denote C(A) and CA(t) ∈ A denote the t-th element in the sequence CA, with

CA(t) referring to the objects chosen after contemplating A for t periods. Choice process data

represents a relatively small departure from standard choice data, in the sense that all observations

represent choices, albeit constrained by time.

2.2 ABS

Our first model captures the process of sequential search with recall, in which the DM evaluates

an ever-expanding set of objects, choosing at all times the best object thus far identified. We say

choice process data has an alternative-based search (ABS) representation if there exists a utility

function and a non-decreasing search correspondence for each choice set such that what is chosen

at any time is utility-maximizing in the corresponding searched set. To define this, we introduce

ZND ⊂ Z, the non-decreasing sequences of sets in Z,

ZND = {Z∈ Z|Zt ⊂ Zt+1 all t ≥ 1} .
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Definition 2 Choice process (X,C) has an ABS representation (u, S) if there exists a utility

function u : X → R and a search correspondence S : X → ZND, with SA ∈ ZA all A ∈ X , such

that,

CA(t) = arg max
x∈SA(t)

u(x).

The ABS model describes a DM who always chooses the best objects that they have searched.

As time passes, objects are either searched, and so in SA(t), or not searched. All objects that are

searched are compared in full according to a fixed utility function. Since the DM is assumed to recall

all past searches, SA(t) is non-decreasing and the choice made by the DM weakly improves over

time. It is this assumption that gives the concept of ABS empirical traction. Note that the ABS

model makes no assumptions concerning how or why a decision maker decides to stop searching -

there is no restriction on how the function S behaves in the limit. There is also no restriction on

the first object searched, since it may be the only object identified.

Given that final choice of x over y is unrevealing with incomplete search, the ABS characteri-

zation relies on an enriched notion of revealed preference. To understand the required enrichment,

it is useful to consider behavioral patterns that contradict ABS. To describe these patterns we use

the notation C(A) = B1;B2; ...;Bn! with Bi ⊂ A to indicate that the sets B1, ..., Bn are chosen

sequentially from A, with Bn being the final choice. We can readily identify four patterns of choice

process data that contradict ABS.6

• Cα ({x, y}) = x; y;x!

• Cβ ({x, y}) = x; {x, y}; y!

• Cγ ({x, y}) = y;x!; Cγ({x, y, z}) = x; y!

• Cδ ({x, y}) = y;x!; Cδ ({y, z}) = z; y!; Cδ ({x, z}) = x; z!

Cα contains a preference reversal: the DM first switches to y from x. As y has been chosen

by the DM, it must be in the searched set when they choose x, implying that x is preferred to y.

However, the DM then switches back to y, indicating that y is preferred to x. Cβ involves y first

being revealed indifferent to x, as x and y are chosen at the same time. Yet later y is revealed to be

strictly preferred to x as x is dropped from the choice set. In Cγ the direction in which preference
6We drop the braces around singleton sets: x; y;x! conveys selection of choice sets {x}, {y}, and {x}.
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is revealed as between y and x changes between the two element and three element choice set.

Cδ involves an indirect cycle, with separate two element sets revealing x as preferred to y, y as

preferred to z, and z as preferred to x.

As these examples suggest, the appropriate notion of strict revealed preference in the case of

ABS is based on the notion of alternatives being replaced in the choice sequence over time. A DM

who switches from choosing y to choosing x at some later time is interpreted by the ABS model

as preferring x to y. As search is non-decreasing, the DM must be aware of y when they choose

x. Thus the choice of x over y indicates revealed preference. Similarly, if we ever see x and y

being chosen at the same time, it must be that the DM is indifferent between the two alternatives.

We capture the revealed preference information implied by the ABS model in the following binary

relations.

Definition 3 Given choice process (X,C), the symmetric binary relation ∼ on X is defined by

x ∼ y if there exists A ∈ X such that {x, y} ⊂ CA(t) some t ≥ 1. The binary relation ÂC on X is

defined by x ÂC y if there exists A ∈ X and s, t ≥ 1 such that y ∈ CA(s), x ∈ CA(s + t) but y /∈

CA(s+ t).

For a choice process to have an ABS representation it is necessary and sufficient for the revealed

preference information captured in ÂC and ∼ to be consistent with an underlying utility ordering.

Our characterization of ABS therefore makes use of Lemma 1, a standard result which captures

the conditions under which an incomplete binary relation can be thought of as reflecting some

underlying complete pre-order.7 Essentially, we require the revealed preference information to be

acyclic.

Lemma 1 Let P and I be binary relations on a finite set X, with I symmetric, and define PI on

X as P ∪ I. There exists a function v : X → R that respects P and I:

xPy =⇒ v(x) > v(y);

xIy =⇒ v(x) = v(y);

if and only if P and I satisfy OWC (only weak cycles): given x1, x2, x3, .., xn ∈ X with x =

x1PIx2PIx3..PIxn = x1, there is no k with xkPxk+1.

7Note that Lemma 1 is a direct corollary of Theorem 2.6 in Bossert and Suzumura [2009].
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Armed with this result, we establish in theorem 1 that the key to existence of an ABS repre-

sentation is for ÂC and ∼ to satisfy OWC.8 This OWC condition is closely related to the standard

strong axiom of revealed preference. It is readily testable, and various metrics have been developed

to measure how close a data set is to satisfying such conditions (see Dean and Martin [2009] for a

review). Corollary 1, which is essentially immediate, characterizes equivalent representations of a

choice process for which ÂC and ∼ satisfy OWC.

Theorem 1 Choice process (X,C) has an ABS representation if and only if ÂC and ∼ satisfy

OWC.

Proof. By lemma 1, the result is equivalent to establishing that (X,C) admits an ABS represen-

tation if and only if there exists a function v : X → R that respects ÂC and ∼ in the sense of the

lemma. Certainly, if an ABS representation (u, S) exists, x ∼ y implies u(x) = u(y) since both

achieve the same maximum, while if x ÂC y, then u(x) > u(y) follows from y ∈ CA(s) ⊂ SA(s) ⊂

SA(s+t) with t ≥ 1 in which u(x) is maximal, while u(y) is not. Conversely, if a function v : X → R

exists that respects ÂC and ∼ on X, we can define the expanding correspondence S∗ : X ×N→ X

by,

S∗A(t) = ∪s≤tCA(s).

To show that (v, S∗) form an ABS representation of (X,C), we show that CA(t) comprises all

elements maximal in S∗A(t) according to v : X → R. Note that if x ∈ CA(t), then x ÂC y or

x ∼ y all y ∈ S∗A(t), whereupon v(x) ≥ v(y) follows from the fact that v respects ÂC and ∼

on X. Conversely, suppose that we can find x ∈ S∗A(t) satisfying v(x) ≥ v(y) all y ∈ S∗A(t) but

with x /∈ CA(t). In this case, all y ∈ CA(t) satisfy y ÂC x, implying that v(y) > v(x), which

contradiction completes the proof.

8While their paper has a different set up, there is a natural relation between our OWC condition and the dominating

anchor axiom in Masatlioglu and Nakajima [2009]. Under a natural translation between the two settings, OWC implies

the dominating anchor axiom but not vice versa. Masatlioglu and Nakajima [2009] consider extended choice problems

that map choice sets and a reference point to final choice. The dominating anchor axiom states that, for any set S,

there exists a “best” option x such that, if x is the reference point and some element from S is chosen from set T ,

that element must be x itself. Our axiom implies this if we assume that the starting point is always searched. Under

this condition, a violation of the dominating axiom would also lead to a violation of our OWC condition (as every

item in the set S would have been revealed inferior to some other element in S). However, the dominating anchor

axiom does not imply our OWC condition, as it has nothing to say about intermediate (i.e. non-final) choices.
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Corollary 1 Utility function v : X → R and search correspondence S : X → ZND form an ABS

representation of (X,C) if

1. v respects ÂC and ∼;

2. ∪s≤tCA(s) ⊆ SA(t) ⊆ CA(t) ∪ {x ∈ X|v(x) < v(y), y ∈ CA(t)} for all A ∈ X , t ∈ N.

Note from corollary 1 that there are strong limits to what can be said about search order. It

characterizes representations as involving a utility function v that respects ÂC and ∼ on X, a

search correspondence S that must include at least all objects which have been chosen from all

sets A at times s ≤ t, and that may also contain any additional elements that have utility strictly

below that associated with chosen objects according to v. Hence all that can be definitely asserted

is that items rejected along the path were searched. Items that are never chosen may or may not

have been searched. This implies that the more switches there are between objects in the choice

process data, the more restricted is the search order.9

Given that a utility function v : X → R can form the basis for an ABS representation, note

that any strictly increasing transform of v will still form an ABS representation in combination

with precisely the same set of search correspondences. However, we can also change the function

v in non-monotonic ways that do not contradict the information in ÂC and ∼. For example, if

X = {a, b, c}, and ÂC contains only {(a, b), (c, b)}, while ∼ is empty, the consistent utility functions

do not restrict the ranking of a against b, so that non-monotonic changes to the utility function

may still form part of an ABS representation. However, corollary 1 states, the upper bound on

what may be contained in SA(t) is determined by the set of objects that have utility lower than

those being chosen from A at time t. Thus, non-monotonic changes in the utility function may

change the set of permissible search functions.

9A reasonable prior, e.g. that search is in list order (Salant and Rubinstein [2008]), may enrich the inferences

one can make from choice process data. This theory of search order would be supported if chosen options were only

replaced by items higher in the list. Support would be even stronger if the selected options were the successive

maxima in list order.
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3 Reservation Based Search: The Deterministic Case

Since the ABS model says nothing about the stopping rule for search, we augment it with a simple

“reservation utility” stopping rule in which search continues until an object is found which has

utility above some fixed reservation level, whereupon it immediately ceases.10 We believe that

RBS is an interesting model in its own right, as many of the search models currently used within

economic fall into this category. These include search models in labor economics and industrial

organization, as well as the satisficing procedure first introduced by Simon [1955].

The key to the empirical content of RBS is that one can make inferences as to objects that must

have been searched even if they are never chosen. Specifically, in any set in which the final choice

has below reservation utility, it must be the case that all objects in the set are searched. Hence

final choices may contain revealed preference information.

Intuitively, an RBS representation is an ABS representation (u, S) in which a reservation level

of utility ρ exists, and in which the above- and below-reservation sets Xρ
u = {x ∈ X|u(x) ≥ ρ}

and X\Xρ
u play critical roles. Specifically, search stops if and only if an above-reservation item is

discovered, so that search is complete if there are no above-reservation items in available. In order

to capture this notion formally, we define CL
A = limt→∞CA(t), as the final choice the DM makes

from a set A ∈ X as well as limit search sets SL
A ≡ limt→∞ SA(t) ∈ X . Note that, for finite X, the

existence of an ABS representation guarantees that such limits are well defined.

Definition 4 Choice process (X,C) has a reservation-based search (RBS) representation (u, S, ρ)

if (u, S) form an ABS representation and ρ ∈ R is such that, given A ∈ X ,

R1 If A ∩Xρ
u = ∅, then SL

A = A.

R2 If A ∩Xρ
u 6= ∅, then:

(a) there exists t ≥ 1 such that SA(t) ∩Xρ
u 6= ∅;

(b) SA(t) ∩Xρ
u 6= ∅ =⇒ SA(t) = SA(t+ s) all s ≥ 0.

10One can readily allow for reservation rules that condition on immediately observable features of the choice set,

such as its cardinality. Tyson [2007] considers the implications for final choice of a reservation level that decreases as

choice sets get larger. However, Tyson assumes that the observable data is the set of all above reservation objects in

a particular set.
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Condition R1 demands that any set containing no objects above reservation utility is fully

searched. Condition R2(a) demands that search must at some point uncover an element of the

above-reservation set if present in the feasible set. Condition R2(b) states that search stops as soon

as reservation utility is achieved.

It should be noted that the RBS model only refines the behavioral implications of the ABS

model by demanding both R1 and R2. With R1 alone, the RBS model imposes no additional

behavioral restrictions, as any data that admits an ABS representation would also satisfy R1 if we

set the reservation utility ρ such that Xρ
u = X. Similarly, data that allows an ABS representation

can also trivially satisfy R2 alone by setting ρ such that Xρ
u = ∅.

As with the ABS model, the key to characterizing the RBS model is to understand the corre-

sponding notion of revealed preference. As RBS is a refinement of ABS, it must be the case that

behavior that implies a revealed preference under ABS also does so under RBS. However, the RBS

model implies that some revealed preference information may also come from final choice, with sets

that contain only below-reservation utility objects being completely searched.

The following cases that satisfy ABS but not RBS illustrate behaviors that must be ruled out:

• Cα({x, y}) = x; y!; Cα({x, z}) = x!; Cα({y, z}) = z!

• Cβ({x, y}) = x; y!; Cβ({x, y, z}) = x!

In the first case, the fact that x was replaced by y in {x, y} reveals the latter to be preferred

and the former to be below reservation utility. Hence the fact that x was chosen from {x, z} reveals

z to have been searched and rejected as worse than x, making its choice from {y, z} contradictory.

In the second, the fact that x is followed by y in the choice process from {x, y} reveals y to be

preferred to x, and x to have utility below the reservation level (otherwise search must stop as

soon as x is found). The limit choice of x from {x, y, z} therefore indicates that there must be no

objects of above-reservation utility in the set. However, this in turn implies that the set must be

fully searched in the limit, which is contradicted by the fact that we know y is preferred to x and

yet x is chosen.

These examples indicate the additional revealed preference information inherent in the RBS

model. Under an RBS representation, when a unique final choice is made from two objects x, y ∈ X
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either of which has below reservation utility, then we can conclude that the chosen object is strictly

preferred. To see this, suppose that y has below reservation utility. In this case if it is chosen over

x it must be that x was searched and rejected. Conversely, suppose that x is chosen over y. In this

case either x is above reservation, in which case it is strictly preferred to y, or it is below reservation,

in which case we know that the entire set has been searched, again revealing x superior.

In order to use this insight to characterize when an RBS representation exists, we define a class

of binary relations ÂL
D on X for any set D ∈ X . These binary relations capture the revealed

preference information that would derive from final choice with D as the set of below-reservation

utility objects. These binary relations ÂL
D on X are then united with the information from ÂC to

produce the new binary relation ÂR
D which captures the revealed preference information from the

RBS model under the assumption that D is the below reservation set.

Definition 5 Given a choice process model (X,C) and set D ∈ X , the binary relation ÂL
Don X is

defined by x ÂL
D y if {x, y} ∩D 6= ∅, and there exists A ∈ X with x, y ∈ A, x ∈ CL

A, yet y /∈ CL
A.

The binary relation ÂR
D is defined as ÂL

D ∪ ÂC, and %R
D is defined as ÂR

D ∪ ∼.

To identify conditions for an RBS representation we focus on identifying objects that must be

below-reservation utility in any possible representation. As a first step, we know that an object

must have utility below the reservation level if we see a DM continue to search even after they have

found that object. We call such an object non-terminal.

Definition 6 Given choice process (X,C) define the non-terminal set XN ⊂ X

XN = {x ∈ X|∃A ∈ X s.t. x ∈ CA(t) and CA(t) 6= CA(t+ s) some s, t ≥ 1 }

Using this concept, Proposition 1 characterizes the below-reservation sets that admit an RBS

representation. The result establishes that below reservation sets must satisfy three properties.

First, they must contain all non-terminal elements. Second, they must be closed under %R
D: if x

is below-reservation, and is revealed at least as good as y, then y must also be below reservation.

Third, ÂR
D and ∼ must satisfy condition OWC. We prove the proposition in appendix 1.

Proposition 1 A choice process model (X,C) admits an RBS representation with below reserva-

tion set D if and only if:

13



1. XN ⊂ D.

2. If x ∈ D and x %R
D y, then y ∈ D.

3. ÂR
D and ∼ satisfy OWC.

A necessary and sufficient condition for an RBS representation is therefore that there is some

set D that satisfies these conditions. Note that if the third condition is satisfied for some set D,

it will be satisfied for any D∗ ⊂ D: if D∗ ⊂ D, then ÂR
D contains ÂR

D∗ , so that if ÂR
D (along with

∼) satisfies OWC, then so will ÂR
D∗ . Thus the relevant necessary and sufficient condition is that

the revealed preference information generated by the smallest below-reservation set that satisfies 1

and 2 satisfies OWC.

To identify such a set, we introduce the indirectly non terminal set. This is the set of object in

X that are either directly revealed as non-terminal, or are revealed as inferior to a non-terminal

object.

Definition 7 Given choice process (X,C) define the indirectly non-terminal set XIN ⊂ X as,

XIN = XN ∪ {x ∈ X|∃A ∈ X , y ∈ XN with x, y ∈ A and y ∈ CL
A}.

It is clear that any below-reservation set must contain XIN : if y ∈ XN and y is chosen from

A, then the entire set must have been searched, revealing unchosen elements to be worse than y.

However, it is also true that, if ÂR
XIN and ∼ satisfy OWC, then XIN satisfies conditions 1 and

2. Thus, a choice process data admits of an RBS representation if and only ÂR
XIN and ∼ satisfy

OWC. Given its importance, we suppress the XIN subscript for preference relations defined using

this below-reservation set (i.e. ÂR=ÂR
XIN ). We prove theorem 2 in appendix 1.

Theorem 2 A choice process (X,C) has an RBS representation if and only if ÂR and ∼ satisfy

OWC.

The following corollary characterizes the set of equivalent RBS representations. First, one iden-

tifies all possible below reservation sets through proposition 1. Given such a set, which must include

XIN , one checks that the utility function respects the resulting revealed preference information.

Finally, the search correspondence is constructed as it was in the ABS model in the period before

search stops, with no further search allowed once an above reservation element is identified.

14



Corollary 2 A utility function v : X → R, reservation level ρ, and S : X → ZND form an RBS

representation of a choice process if and only if

1. D = {x ∈ X|v(x) < ρ} satisfies the properties of proposition 1.

2. v respects ÂR
D and ∼ .

3. ∪s≤tCA(s) ⊆ SA(t) ⊆ CA(t) ∪ {x ∈ X|v(x) < v(y), y ∈ CA(t)} for all A ∈ X , t ∈ N.

4. SA(t) ∩Xρ
u 6= ∅ =⇒ SA(t) = SA(t+ s) all s ≥ 0.

4 The Stochastic Model

The ABS and RBS models both treat search order as unobservable, and characterize the extent

to which it is recoverable from choice process data. This makes it natural to develop stochastic

variants, since there is no reason to believe that search from a given set will always take place in

the same order. We therefore generalize the deterministic models of section 2 and 3 to allow for

stochasticity. This allows us to develop stochastic versions of the RBS and ABS models, in which

choice is generated from the maximization of a fixed utility function against a stochastic search

sequence.

4.1 ABS

We introduce a probability space on Z, the class of infinite sequences from X . The probability

model is built upon standard foundations using cylinder sets.

Definition 8 Given T ≥ 1 and Y ⊂ X T , define the cylinder set H (Y, T ) by,

H (Y, T ) = {Z ∈ Z| (Z1, ...ZT ) ∈ Y} .

Define the algebra G = ∪∞T=1
©
H (Y, T ) |Y ⊂ X T

ª
∈ 2Z , define F =σ(G) as the σ-algebra generated

by G, and define P as all probability measures on (Z,F), with generic element P ∈ P.

We define the stochastic choice process as a mapping from sets A ∈ X to probability distribu-

tions over ZA ⊂ Z.

15



Definition 9 A stochastic choice process (X, C̃) comprises a finite set X and a function C̃ :

X → P such that C̃A ≡ C̃(A) has support ZA ⊂ Z.

As for the deterministic case, a stochastic choice process has an ABS representation if it can be

viewed as resulting from maximization of a utility function in the context of some process of search,

with the searched set never shrinking. However we allow the search process to be stochastic. We

will use S̃ : X → PND to denote a stochastic search function, where: PND ⊂ P identify probability

measures on (Z,F) with support ZND, the non-decreasing elements of Z. Given A ∈ X and

F ∈ F , let C̃A(F ) , S̃A(F ) respectively denote the measure assigned to F by C̃(A), S̃(A).11

Definition 10 Stochastic choice process (X, C̃) has a stochastic ABS representation (u, S̃) if

there exists u : X → R and S̃ : X → PND such that C̃ is the stochastic choice process derived by

optimizing u against S̃,

C̄A(F ) = S̃A

µ½
Z ∈ Z|

½
arg max

x∈Zt
u(x)

¾∞
t=1

∈ F

¾¶
, all A ∈ X , F ∈ F .

The theorem that characterizes the stochastic ABS representation is essentially identical to that

in the deterministic case. It simplifies notation to define join and replacement sets Jxy, Rxy ⊂ Z

for x, y ∈ X, where Jxy is the set of choice processes in which x and y are chosen at the same time,

while Rxy are those in which y is replaced by x.

Jxy = {Z ∈ Z| {x, y} ⊂ Zt some t ≥ 1} ;

Rxy = {Z ∈ Z|y ∈ Zs, x ∈ Zs+t, y /∈ Zs+t some s, t ≥ 1} ;

Measurability of Jxy, Rxy ⊂ Z is established in appendix 2.

For purposes of establishing the stochastic ABS representation, we define x to be revealed

strictly preferred to y if Rxy has strictly positive measure, and x to be revealed indifferent to y if

the set Jxy has strictly positive measure.

Definition 11 Given stochastic choice process (X, C̃), the binary relation ∼C̃ on X is defined by

x ∼C̃ y if there exists A ∈ X with x, y ∈ A and C̃A(J
xy) > 0. The binary relation ÂC̃on X is

defined by x ÂC y if there exists A ∈ X with x, y ∈ A and C̃A(R
xy) > 0.

11That the set of Z ∈ Z with arg maxx∈Zt u(x)
∞
t=1 ∈ F is measurable is demonstrated in appendix 2.
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As before, the condition for the characterization is that this revealed preference information is

consistent with a fixed underlying utility function.

Theorem 3 Stochastic choice process (X, C̃) has a stochastic ABS representation (u, S̃) if and

only if ÂC̃ and ∼C̃ satisfy OWC.

4.2 RBS

As in the deterministic case, the definition of a stochastic RBS representation requires the analysis

of limit behavior. Given B ∈ X , we define LB to be the F-measurable subset of Z with limit B,

LB =
n
Z ∈ Z| lim

t→∞
Zt = B

o
.

In appendix 2 it is shown that a stochastic choice process model (X, C̃) with stochastic ABS

representation (u, S̃) necessarily assigns full measure to the set in which limits exist,

C̃A

©
∪B∈XLB

ª
= 1.

Hence, given a stochastic choice process model (X, C̃) with stochastic ABS representation (u, S̃)

and A ∈ X , we can define limit choice and search probability measures C̃L
A, S̃

L
A on X endowed with

the discrete sigma-algebra,

C̃L
A(B) = C̃A(L

B) and S̃L
A(B) = S̃A(L

B) any B ∈ X .

As in the deterministic case, the definition of stochastic RBS involves a utility function u :

X → R and a level of reservation utility ρ which together identify above reservation set Xρ
u ≡

{x ∈ X|u(x) ≥ ρ}. Given Z ∈ Z, a key random variable in the stochastic RBS representation

is the first time that reservation utility is hit. To simplify notation in the stochastic version of

RBS, we let Hρ
u : Z −→ N ∪∞ denote this first hitting time associated with utility function u and

reservation utility level ρ,

Hρ
u(Z) =

⎧⎨⎩ inft≥1 {Zt ∩Xρ
u} 6= ∅, if {Zt ∩Xρ

u} 6= ∅ some t;

∞ otherwise.

That hitting times are F-measurable functions is standard.

We use the notion of hitting times to define the stochastic version of the RBS model.
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Definition 12 Stochastic choice process (X, C̃) has a stochastic RBS representation (u, S̃, ρ) if

(u, S̃) form a stochastic ABS representation and ρ ∈ R is such that, given A ∈ X ,

RS1 If A ∩Xρ
u = ∅, then S̃L

A(A) = 1

RS2 If A ∩Xρ
u 6= ∅, then:

(a) S̃A {Z ∈ Z|Hρ
u(Z) is finite} = 1;

(b) S̃A

n
Z ∈ Z|S̃L

A = S̃A (H
ρ
u(Z))

o
= 1.

As with ABS, the stochastic RBS characterization is the precise analog of the deterministic

version, and relies on the identification of directly and indirectly non-terminal sets. We define

∆y ⊂ Z to be the set of sequences in which y ∈ X appears at some point, but the sequence changes

thereafter. Measurability is established in appendix 2.

Definition 13 Given stochastic choice process (X, C̃), define the non-terminal set X̃N ⊂ X as,

X̃N =
n
x ∈ X|∃A ∈ X with x ∈ A and C̃A(∆

x) > 0
o
.

Define the indirectly non-terminal set X̃IN as X̃Nand elements rejected with positive probability

in favor of an element of XN ,

X̃IN = X̃N ∪ {x ∈ X||∃A ∈ X , y ∈ X̃N with x, y ∈ A and C̃L
A({y}) > 0}.

The definition of revealed preference in the stochastic RBS model can now proceed in line with

the deterministic case.

Definition 14 Given stochastic choice process (X̃, C), the binary relation ÂL̃ on X is defined

by x ÂL̃ y if {x ∪ y} ∩ X̃IN 6= ∅, and there exists A ∈ X with x, y ∈ A with C̃L
A {x} > 0 and

C̃A(J
xy) = 0. Binary relation ÂR̃ is defined as ÂL̃ ∪ ÂC̃.

Using this definition, the standard application of Lemma 1 characterizes existence of an RBS

representation.

Theorem 4 Stochastic choice process (X, C̃) has a stochastic RBS representation (u, S̃, ρ) if and

only if ÂR̃ and ∼C̃ satisfy OWC.
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4.3 Sketch of Proofs

The proofs of theorem 3 and of theorem 4 are detailed in appendix 3. We limit ourselves in this

discussion to presenting structural elements. Both proofs work by reducing the stochastic case to

its deterministic counterpart. The key step involves showing that nothing is lost by “compressing”

choice process data by removing time periods in which choice does not change.

Definition 15 Stochastic choice process (X, C̃) is compressed if C̃A(ZCOM ) = 1 for all A ∈ X ,

where,

ZCOM ≡ {Z ∈ Z|Zt = Zt+1 =⇒ Zt = Zt+s all s ≥ 1}.

In the first step of the reduction, a given stochastic choice process (X, C̃) is associated with a

unique compressed choice process by removing all periods of constancy (see appendix 3 for details).

The process of compression reduces to equivalence an infinite number of choice processes differing

only in the delay between switches.

The first observation that makes compression of value is the invariance of key properties under

compression and its inverse, decompression. It is immediate that the orderings ÂR̃, ÂC̃and ∼C̃ are

preserved under both operations. It is equally immediate that ABS and RBS survive both under

compression and decompression, since one uses exactly the same utility function and reservation

utility in the representation of the original process and its transformation, using compression only to

change the search correspondence by removing repetition in the case of compression, and inverting

suitably in the process of decompression.

The second observation that makes compression of value is that any compressed process that

satisfies ABS is “finite”, in that only a finite number of sequences have strictly positive probability.

Conversely, any compressed stochastic choice process for which ÂC̃ and ∼C̃ satisfy OWC is finite.

While the formal definitions and proof are in appendix 3, the intuition is simple. Both ABS and

OWC imply that a compressed stochastic choice process must stop changing within a number of

periods that matches the cardinality of the power set of X .

The bottom line of this reduction process is that the proofs in of theorems 3 and 4, detailed

in the appendix, are provided only for finite models, with the extension to the general case being

immediate. The critical observation in establishing the finite case is that any finite stochastic
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choice processes (X, C̃) can be identified with an appropriately defined convex combinations of

deterministic choice processes.

5 RBS and Non-Standard Behavior

The stochastic RBS model allows for two channels by which seemingly unimportant changes in

the decision making environment might lead to changes in the choices people make. First, they

may impact the probability distribution over paths of search. Second, they may impact the level

of reservation utility. These changes can, in turn, lead to framing effects, status quo bias and

stochastic choice of a specific form that we now characterize.

5.1 Framing Effects

To model framing effects, let Γ comprise abstract elements γ ∈ Γ that we refer to as frames. For

example, these frames may represent different ways in which objects are physically displayed to

the DM. Let Φ : Γ→ C̄ be a mapping from frames to the class C̄ of stochastic choice processes on

(Z,F), with Φ(γ) the process associated with γ ∈ Γ. We seek to characterize data sets in which all

choice processes regardless of frame can be derived from a common underlying utility function but

with frame-specific search orders and reservation utilities. Such a characterization is experimentally

useful, since it indicates conditions under which one can derive information on preferences in a low

search cost (hence high reservation utility) environment that will apply equally in a higher search

cost (hence lower reservation utility) frame in which choice process data yields less direct evidence

on preferences. It turns out that we need to apply OWC to a binary relation that appropriately

unifies revealed preference information across frames. In the statement, S̄ denotes the set of all

stochastic search processes on (Z,F).

Definition 16 Define x ÂR̃(Γ) y if x ÂR̃ y according to some stochastic choice process Φ(γ) for

some γ ∈ Γ . Similarly define x ∼C̃(Γ) y if x ∼R̄ y according to some stochastic choice process Φ(γ)

for some γ ∈ Γ.

Theorem 5 Given finite set X, frames Γ, and Φ : Γ→ C̄, there exists a utility function u : X → R,

a family of reservation utilities ρ : Γ→ R, and family of stochastic search processes Θ : Γ→ S̄ such
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that (u,Θ(γ), ρ(γ)) forms a stochastic RBS representation of Φ(γ) ∀ γ ∈ Γ if and only if ÂR̃(Γ)

and ∼C̃(Γ) satisfy OWC.

5.2 Status Quo Bias

One particular class of framing effect that can be explored using the RBS model is status quo bias

- the increased likelihood of selecting a particular object simply because it is the status quo, or

currently selected option [Samuelson and Zeckhauser, 1988]. We can model such behavior as a

framing model in which each status quo gives rise to its own frame. In order to capture status

quo bias, we posit that the status quo object is always the first object searched in any choice

environment.

Under this assumption, the stochastic RBS model makes particular predictions about how status

quo will affect choice. For above-reservation utility objects, status quo bias will be complete: when

such objects are the status quo then they will always be chosen, as the DM is immediately aware

of their existence and will indulge in no further search. However, if the status quo object is below

reservation utility then it will not be chosen unless it is the highest utility object in the choice set,

in which case it will be chosen regardless of the status quo, as the stochastic RBS model implies

that search will be complete in such cases. Thus, the RBS model implies a form of status quo bias

that has two extremes: either an object will always be chosen when it is the status quo, or the

status quo will have no effect.

5.3 Stochastic Choice

It is clear that the stochastic RBS model can give rise to stochastic choice in the form of a probability

distribution over final choices. Even with a fixed utility function, final choice will be random if

the order of search is random and search is incomplete. However this distribution will be of a

particular form: choice may be stochastic among above reservation objects, while objects with

below reservation utility are never chosen. In the simplest possible case with all search orders

being equally probable, final choice is deterministic and consistent for choice sets made up only

of below-reservation items, whereas for choice sets containing above-reservation items, there is an

equal chance of choosing any such item. Observed stochasticity in choice will therefore increase as

reservation utility falls.
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6 Eliciting Choice Process Data in the Laboratory

For the above results to advance our understanding of incomplete search and choice one must be

able to experimentally identify the path of provisional choices over the pre-decision period. We

sketch the approach that Caplin, Dean and Martin [2009] (CDM) use to generate just this data,

and describe results for a highly stylized experiment.

Subjects in the experiment were presented with various subsets of a larger choice set, from each

of which they had to make a choice. They were given a fixed time window within which to choose

from among each fixed set of available alternatives. They were allowed to select any alternative

at any point in a fixed time window.12 They were informed that they could change the selected

alternative whenever they wished. Rather than being based on final choice alone, actualized choice

was recorded at a random point in the given time window that was only revealed at the end of

the experiment. This incentivized subjects to always have selected their current best option in the

choice set. It is for this reason that we interpret the sequence of selections as comprising provisional

choices.13

Our first experiment using this interface was deliberately stark, missing the conflicting priorities

that may typify more intricate decisions. The objects of choice were kept as simple as possible,

and subject to clear and universal preferences: all options were deterministic dollar amounts. To

render the problem non-trivial, the dollar amount for each option was represented as a sequence of

addition and subtraction operations. The simplicity of the setting enabled us to explore the ABS

and RBS models in an uncluttered and “friendly” experimental context.

Each experimental round began with the topmost, and worst, option of $0 selected.14 Subjects

could at any time select any of the alternatives on the screen, with the currently selected object

12As with tests of standard choice theory, this experiment uncovers only one most preferred element rather than all

such elements. This opens some daylight between the theoretical definition of choice process data and the experimental

data.
13 In support of this interpretation, 58 of 76 subjects in a post-experiment survey responded directly that they always

had their most preferred option selected, while others gave more indirect responses that suggest similar behavior (e.g.

having undertaken a re-calculation before selecting a seemingly superior alternative).
14The subjects knew that the $0 option was the worst in the choice set. They therefore had the incentive to

immediately change their selection, which is consistent with the ABS model with this being the only object searched.

The model is restrictive only when a switch is made, at which point it implies that the object switched to is of higher

value.
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being displayed at the top of the screen. In each round there was a time constraint, with subjects

having up to 120 seconds to complete the choice task (though this constraint was only binding

in about 5% of rounds). A subject who finished in less than 120 seconds could press a submit

button, which completed the round as if they had kept the same selection for the remaining time.

Treatments were run varying in the number of alternatives available and in the complexity of each

alternative.

As one might have expected, the experiment provided support for ABS-style search. Subjects

made several selections in the course of a round and generally switched from lower value to higher

value objects over time. In the context of the experiment this is equivalent to finding positive

support for the ABS model of search. A more striking finding was that behavior was well approxi-

mated by the RBS model. While behavior did change as the number of available options and their

level of complexity was varied, it did so within the RBS framework. The results suggest that choice

process data is of more than theoretical interest.

7 Concluding Remarks

Incomplete information may explain many apparent deviations from utility maximizing behavior.

Standard choice data does not allow one to pin down when such deviations are caused by changing

preferences, and when they result from incomplete information. We develop clean procedures for

accomplishing this separation by expanding beyond standard choice data to include data on the

evolution of choice with time. We characterize standard alternative-based and reservation-based

procedures that are ubiquitous in search theory. Experimental investigation of choice process data

is ongoing.

8 Appendix 1: RBS

Proof of Proposition 1 To prove sufficiency, we note from lemma 1 that (3) implies existence of

u : X → R that respects ÂR
D and ∼ on X. Define

ρ =
maxx∈D u(x) + minx∈X\D u(x)

2
.
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Note from (2) that CL {x, y} = y whenever y ∈ X\D and x ∈ D, implying y ÂR
D x and

u(y) > u(x) and hence that X/D = Xρ
u. Mimicking the proof of theorem 1, one can then

define a search correspondence such that (u, S) that together form an ABS representation.

SA(t) =

⎧⎨⎩ ∪s≤tCA(s) for t < T (A);

∪s≤T (A)CA(s) ∪ L(A) for t ≥ T (A);

where T (A) ≡ min{t ≥ 1|CA(t) = CL
A}) is the time at which choice first achieves its limit and

L(A) comprises all elements of A with utility strictly below maxx∈CL
A
u(x). We now show that

all requirements for (u, S) and ρ together to form an RBS representation with reservation set

X\D are met:

• R1: When A ∩Xρ
u = ∅, and so A ⊂ D, we know that x ∈ CL

A, y /∈ CL
A =⇒ x ÂL

D y, so that

u(x) > u(y). Hence CL
A = argmax{x∈A} u(x) with SL

A = A by construction.

• R2(a): If A ∩Xρ
u 6= ∅ and so A ∩X\D 6= ∅, then CL

A ∩D = ∅ since x ∈ CL
A ∩D, y /∈ CL

A =⇒

u(x) > u(y) contradicting the fact that utility is strictly higher on X\D than on D. Hence

there exists t ≥ 1 such that CA(t) ∩Xρ
u 6= ∅.

• R2(b): If CA(t)∩Xρ
u 6= ∅, then CA(t)∩XN = ∅ by (1), implying directly that CA(t+s) = CA(t)

all s ≥ 1, by construction, it is therefore the case that SA(t+s) = SA(t) all s ≥ 1 as required.

That condition (1) of the proposition is necessary for an RBS representation follows directly from

property R2(b) of RBS definition, which implies that XN ⊂ D is required for D to be a reservation

set. Given lemma 1, to prove that (3) is necessary it suffices to show that u represents ÂR
D and ∼

in any RBS representation (u, S, ρ), where D = X\Xρ
u and X

ρ
u is the corresponding reservation set.

The fact that u represents ÂC and ∼ is direct since (u, S) form an ABS representation of (X,C).

To see that ÂL
D is respected, suppose to the contrary that x ÂL

D y but u(y) ≥ u(x). Note in this case

that x ∈ D, since y ∈ D =⇒ x ∈ D and {x ∪ y} ∩D 6= ∅ by definition of x ÂL
D y. But then by R1,

x ∈ CL
A =⇒ CL

A = argmaxx∈A u(x) hence u(y) < u(x) since y /∈ CL
A. This contradiction establishes

that u indeed represents ÂR
D and ∼ . With this we know that condition (2) of the proposition is

necessary, since x ∈ D =⇒ u(x) < ρ whereupon x %R
D y implies u(y) < ρ, hence y ∈ D, completing

the proof.

Proof of Theorem 2 To prove sufficiency, we show that the conditions of the proposition are

satisfied in this case for D = XIN . For (1) and (3) this is direct. Hence it suffices to establish
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that if x ∈ XIN and x %R y, then y ∈ XIN . By definition x ∈ XIN implies that we can

find z ∈ XN with z ºL x. Now, if CL
{y,z} = y, we have that x %R y ÂR z ºL x violating

OWC. Thus it must be the case that z ºL y, implying by definition that y ∈ XIN , as

required. To show that ÂR and ∼ satisfying OLC is necessary for (X,C) to have any RBS

representation (u, S, ρ), it suffices by lemma 1 to show that such u : X → R must respect ÂR

and ∼. This follows directly for ÂC and ∼ since (u, S) form an ABS representation of (X,C).

To confirm that u : X → R respects ÂL, consider A ∈ X with x, y ∈ A, x ∈ CL
A, y /∈ CL

A, and

x or y ∈ XIN . There are two cases.

• If u(x) < ρ, then x ∈ CL
A =⇒ A ∩Xρ

u = ∅ by R2(a) hence SL
A = A by R1, hence u(y) < u(x)

all y ∈ A with y /∈ CL
A.

• If u(x) ≥ ρ, then x /∈ XIN follows directly from condition 2(b) of the RBS definition, so that

y ∈ XIN ⊂ X\Xρ
u, and u(y) < ρ ≤ u(x).

9 Appendix 2: Measurability

We show that various sets are contained in the σ−algebra F .

• ZCOM and ZND: Given T ≥ 1, define NDT as all subsets of X T that are non-diminishing,

Zt ⊂ Zt+1 all 1 ≤ t ≤ T , and NRT as all subsets of X T in which there is no immediate

repetition, Zt 6= Zt+1 any 1 ≤ t ≤ T − 1, and note that,

ZND = ∩∞T=1
©
Z ∈ Z| (Z1, .., ZT ) ∈ NDT

ª
∈ F ;

ZCOM = ∪∞t=1
©
∩∞s=1

©
Z ∈ Z| (Z1, .., Zt) ∈ NRt, Zt = Zt+s

ªª
∈ F .

• That{Z ∈ Z| {arg maxx∈Zt u(x)}∞t=1 ∈ F} ∈ F for any F ∈ F , note that it can be expressed

as follows as a countable collection of cylinder sets,

∩∞T=1
½
Z ∈ Z|∃ Y ∈ F s.t. arg max

x∈Zt
u(x) = Yt ∀ t ∈ {1, ..., T}

¾
.

• For any x, y ∈ X, the sets Jxy, Rxy, and ∆x. Given A ∈ X , define WA as all supersets of A

and WC
A ⊂ X as its complement. Define the cylinder sets WA(t),WC

A (t) ∈ G by,

WA(t) ≡ {Z ∈ Z|Zt ∈WA};

WC
A (t) ≡ {Z ∈ Z|Zt ∈WC

A }.
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• Note that:

Jxy = ∪tW{x,y}(t) ∈ F ;

Rxy = ∪∞t=1
n
W{y}(t) ∩

n
∪∞s=1

n
WC
{y}(t+ s) ∩W{y}(t+ s)

ooo
∈ F ;

∆x = ∪∞t=1
n
∪B∈W{x} {∪

∞
s=1 {Z ∈ Z|Zt = B,Zt+s 6= B}}

o
∈ F .

• ZNCY = {Z ∈ Z|Zt+1 6= Zt =⇒ Zt+s 6= Zt any s ≥ 1}: (see appendix 3). First, index all

sets in X , A1, , Am, .., AM , with M the cardinality of X . Define Π(M) to be all permutations

of the first m ≤M integers. Given πm ∈ Π(M), define the countable set Υ(πm) to comprise

all strictly increasing sets of m natural numbers,

Υ(πm) = {Tm = {Tm
1 , Tm

2 , .., Tm
m )|Tm

1 = 1, Tm
i ∈ N and Tm

i < Tm
i+1 all i ≥ 1}.

That ZNCY ∈ F follows since it is a countable union of cylinder sets,

∪πm∈Π(M)∪Tm∈Υ(πm)
©
Z ∈ Z|Zt = Aπmi

for Tm
i ≤ t < Tm

i+1, 1 ≤ i ≤ m− 1; Zt = Aπmm for t ≥ Tm
m

ª
.

• E(Y ) : (see appendix 3). Given K non-negative integers sk define S0 = 0 and partial sums

Sk =
kX

j=1

sj enabling the following short definition:

E(Y ) = ∩∞K=1
©
∪∞sK=1....

©
∪∞s1=1 {Z ∈ Z|Zτ = Zk for Sk−1 + 1 ≤ τ ≤ Sk and 1 ≤ k ≤ K}

ªª
∈ F .

Proposition 2 If (X, C̃) permits of a stochastic ABS representation (u, S̃), then for any A ∈ X ,

C̃A

©
∪B∈XLB

ª
= 1.

Proof. Since (X, C̃) has an ABS representation (u, S̃), we know that S̃A(ZND) = 1. Note that since

X is finite, limit elements exist for all Z ∈ ZND, establishing that S̃A
©
∪B∈XLB

ª
= 1. Now note

that if Z ∈ ∪B∈XLB, then {arg maxx∈Zt u(x)}∞t=1 ∈ ∪B∈XLB, as, Z ∈ ∪B∈XLB implies that there

must be some t such that Zt = Zt+s ∀ s ≥ 0, thus it must be the case that arg maxx∈Zt u(x) = arg

maxx∈Zt u(x) ∀ s ≥ 0. Hence,

C̃A

©
∪B∈XLB

ª
= S̄

½
Z ∈ Z|

½
arg max

x∈Zt
u(x)

¾∞
t=1

∈ ∪B∈XLB

¾
≥ S̄

©
∪B∈XLB

ª
= 1.
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10 Appendix 3: Theorems 3 and 4

We first formally define compression, from which it follows immediately that it is sufficient to prove

theorems 3 and 4 for compressed stochastic choice processes. We then show that compressed sto-

chastic choice processes of interest are finite, further simplifying the requirements to establishing 3

and 4 for finite stochastic choice processes. Next, we show that finite stochastic choice processes can

be represented as weighted averages of deterministic processes. We close out by proving theorems

3 and 4 for the finite case, which proof is general in light of the earlier results.

10.1 Compression

Definition 17 Given Z ∈ Z, define the set of times at which Z changes in sequential fashion

starting with τ1(Z) = 1 as follows;

τ j+1(Z) =

⎧⎨⎩ mins≥1{Zτj(Z)+s 6= Zτj(Z)} if ∃s ≥ 1 s.t Zτj(Z)+s 6= Zτj(Z);

∞ if Zτj(Z)+s = Zτj(Z) all s ≥ 1.

Let J(Z) ∈ N ∪∞ be the number of distinct points of change, and define the compression of any

element Z ∈ Z, D(Z) ∈ ZCOM , by removing all time indices in which there is repetition and

repeating the limit element if there is any repetition,

D(Z) =

⎧⎨⎩ (Zτ1(Z), ..., Zτj(Z), ..ZτJ(Z)(Z), ...ZτJ(Z)(Z), ..ZτJ(Z)(Z)) if J(Z) is finite;

(Zτ1(Z), ..., Zτj(Z), ..) if J(Z) =∞.

Given Y ∈ ZCOM , define the equivalence classes of compressed elements of E(Y ) ⊂ Z ((the proof

that E(Y ) ∈ F is in appendix 2),

E(Y ) = {Z ∈ Z|D(Z) = Y }.

Given a measure P ∈ P, we define its compression DP ∈ P by shifting probabilities onto the

compressed representative of each equivalence class,

DP (Y ) =

⎧⎨⎩ P (E(Y )) for Y ∈ ZCOM ;

0 for Y = Z\ZCOM .
.

10.2 Compression and Finiteness

Proposition 3 A compressed SCP that has an ABS representation or for which ÂC̃ and ∼C̃ satisfy

OWC is finite, in that there exists a finite set G ∈ F such that C̃A(G) = 1 all A ∈ X .
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Proof. To show that compression and ABS imply that the SCP is finite, let M = |X | and let

Z(M) ∈ F be sequences that are unchanging after period M :

Z(M) = {Z ∈ Z|Zt = Zs ∀ t, s > M}.

It is intuitive that a compressed choice sequence with an ABS representation satisfies C̄A (Z(M)) =

1 ∀ A ∈ X . To confirm, consider the union of all cylinder sets with Zt 6= Zs some t, s > M . If any

element Z in this set is to be in ZCOM , it must be the case that, for some r, w < s, Zr = Zw and

r 6= w ± 1. Consider now the cylinder sets defined by,

{Z ∈ Z|Zt 6= Zs, Zr = Zw }.

Now take any k such that r < k < w. and consider the cylinder set

{Z ∈ Z|Zt 6= Zs, Zk 6= Zr = Zw }.

These cylinder sets must have measure zero in any choice process that has an ABS representation,

as the set of search sequences such that

arg max
x∈SA(k)

u(x) 6= arg max
x∈SA(r)

u(x) = arg max
x∈SA(w)

u(x),

is measure zero (as any such sequence would be non-increasing). As Z\Z(M) can be obtained by

the repeated countable union across {Z ∈ Z|Zt 6= Zs, Zr = Zw }, we know that if a choice process

is compressed and has an ABS representation C̃A(Z\Z(M)) = 0 ∀ A ∈ X , and so C̄A (Z(M)) = 1.

This in turn proves that (X, C̃) is finite.

To prove that a compressed SCP that satisfies for whichÂC̃ and ∼C̃ satisfy OWC is finite,

note that this implies that the associated choice process must apply full measure to ZNCY , those

elements of Z in which there are no cycles (the proof that ZNCY is measurable is in appendix 2),

ZNCY = {Z ∈ Z|Zt+1 6= Zt =⇒ Zt+s 6= Zt any s ≥ 1} ∈ F .

To see why %C̃ satisfying OWC implies that C̃A(ZNCY ) = 1 for any set A ∈ X, assume to

the contrary that there is a set of strictly positive measure according to some A ∈ X such that

Zt+1 6= Zt , yet Zt+s = Zt for some s ≥ 1. There are two possibilities. One is that there is an

element y ∈ Zt+1 with y /∈ Zt: in this case consider any x ∈ Zt+1, and note that C̃A(R
xy) > 0

due to exit of element y and entry of element x from period t + 1 to period t + s, while also one

of the statements C̃A(R
yx) > 0 or C̃A(J

yx) > 0 in consideration of the entry of y in period t + 1.
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In the former case, the contradiction to %C̃ satisfying OWC is that x ÂC̃ y and y ÂC̃ x, while in

the latter case the contradiction is that x ÂC̃ y and y ∼C̃ x. Alternatively, it could be that there is

some y ∈ Zt and y 6∈ Zt+1. A similar argument shows that this violates %C̃ satisfying OWC . This

establishes the required finiteness, since elements of ZCOM ∩ZNCY are unchanging after a number

of periods no larger than the cardinality of X , completing the proof.

10.3 Structure of The Finite Case

Proposition 4 A stochastic choice process (X, C̃) is finite if and only if it is the convex combina-

tion of a finite number of deterministic choice processes, in that there exist some J deterministic

choice processes
©
(X,Cj)

ªJ
j=1

and weight vector λ ∈ RJ
++ satisfying

JX
j=1

λj = 1, and such that

C̃ =
JX

j=1

λjC
j: i.e for all F ∈ F and A ∈ X ,

C̃A(F ) =
JX

j=1

λjC
j
A(F ) =

JX
j=1

λj1{Cj
A∈F} .

Proof. It is immediate that the convex combination of deterministic choice processes
©
(X,Cj)

ªJ
j=1

is finite, since C̃A{Z ∈ Z| ∃ j ∈ {1, .., J} s.t. Z = Cj} = 1 all A ∈ X . To prove that any finite

process (X, C̃) can be decomposed as the proposition asserts, use integers 1 ≤ k ≤ K to index

elements Zk of the finite set G with the property that C̃A(G) = 1 ∀ A ∈ X : we call these the basic

choice processes. Since C̃A(Zk) ≥ 0 and
KX
k=1

C̃A(Zk) = 1 we can use indicator functions to record

the probability of any set F ∈ F as a convex combination of these basic processes as follows,

C̃A(F ) =
KX
k=1

C̃A(Zk)1{Zk∈F ).

We now show that we can use these weights to construct a finite set of choice processes that are

able simultaneously to capture such probability information across sets F ∈ F and A ∈ X .

First, gather together in the finite set J all values taken on by the cumulative distributions

taken in order according to k across all A ∈ X ,

J =

(
x ∈ (0, 1]|x =

kX
i=1

C̃A(Zi) for some A ∈ X , k ∈ {1, ..K}
)
.
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We index members of the set J by 1 ≤ j ≤ J in increasing order, so that xj < xj+1, with xJ = 1.

We now define a family of functions fA : J → G that, for each A ∈ X , record which basic choice

process is related to each cumulative probability level,

fA(xj) = C̃A(Zk) if and only if xj ∈
Ã
k−1X
i=1

C̃A(Zi),
kX
i=1

C̃A(Zi)

#
.

We use these objects to construct the finite set of choice processes of interest using the following

iteration. The probability assigned to the first deterministic choice process C1 is x1 and the actual

specification involves using the set specific weights as follow,

C1A = fA(x1).

If J > 1, we iterate the construction, using at step j weight xj − xj−1 > 0 and specifying choice

process Cj
A to satisfy,

Cj
A = fA(

jX
i=1

xi).

The above construction identifies a finite set of deterministic choice process Cj , 1 ≤ j ≤ J and

weights λj = xj − xj−1 ≥ 0 and summing to 1. We now such that, for all A ∈ X and F ∈ F ,

C̃A(F ) =
JX

j=1

λjC
j
A(F ) =

JX
j=1

λj1{Cj
A∈F}.

We consider first the sets Zk ∈ F , noting that,

JX
j=1

λj1{Cj
A=Zk} =

JX
j=1

λj1{fA( j
i=1 λi)=Zk},

and that fA
³Pj

i=1 λi

´
= Zk if and only if

Pj
i=1 λi ∈

³Pk−1
i=1 C̃A(Zi),

Pk
i=1 C̃A(Zi)

i
. Hence we can

identify j, l such
Pj

i=1 λi =
Pk−1

i=1 C̃A(Zi) and
Pl

i=1 λi =
Pk

i=1 C̃A(Zi), so that by construction we

get,
JX

j=1

λj1{Cj
A=Zk} =

kX
i=1

C̃A(Zi)−
k−1X
i=1

C̃A(Zi) = C̃A(Zk).

That the same is true for any F ∈ F follows directly, since,

C̃A(F ) =
KX
i=1

C̃A(Zk)1{Zk∈F} =
KX
i=1

⎛⎝ JX
j=1

λj1{Cj
A=Zk}

⎞⎠ 1{Zk∈F} = JX
j=1

λj1{Cj
A∈F}.
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10.4 Proof of Theorem 3

Proof. Application of the compression and decompression relations establishes that the finite case

is all that needs to be considered. To prove that if ∼C̃ and ÂC̃ satisfy OWC ABS follows, we

apply lemma 1 directly to show that %C̃ satisfying OWC implies existence of ũ : X → R that

respects the binary relations ∼C̃ and ÂC̃ . Moreover, in light of the last proposition, (X, C̃) is the

weighted average of deterministic choice processes, C̃ =
JX
j=1

λjC
j , which have the property that

their corresponding relations ∼j and Âj are all respected by the same ũ : X −→ R, since ∼C̃ and

ÂC̃ represent the union of these deterministic relations:

C̃A(J
xy) > 0 if and only if x ∼j y, some 1 ≤ j ≤ J ;

C̃A(F
xy) > 0 if and only if x Âj y, some 1 ≤ j ≤ J .

Re-application of lemma 1 to each of the deterministic choice processes
©
(X,Cj)

ªJ
j=1

implies that

∼j and Âj satisfy OWC for all j, and moreover that the utility function ũ : X → R forms

part of some ABS representation of them, further ensuring the existence of deterministic search

processes Sj such that (ũ, Sj) form ABS representations of (X,Cj) for all 1 ≤ j ≤ J . Defining the

corresponding weighted average search process S̃ ≡
JX

j=1

λjS
j and vS

j

A =
n
argmax

x∈SjA(t)
u(x)

o∞
t=1
,

one can immediately confirm that (ũ, S̃) form a stochastic ABS representation of (X, C̃), since

given F ∈ F and A ∈ X ,

C̃A(F ) =
JX

j=1

λj1{Cj
A∈F} =

JX
j=1

λj1 vS
j

A ∈F .

But as S̃A
n
Z ∈ Z|Z = Sj

A for no j ∈ {1, .., J}
o
, we know that,

S̃A

µ½
Z ∈ Z|

½
arg max

x∈Zt
u(x)

¾∞
t=1

∈ F

¾¶
=

jX
j=1

S̃A(S̃
j
A)1 vS

j
A ∈F

=
JX

j=1

λj1 vS
j

A ∈F .

The last equality follows from the fact that, ∀ j ∈ {1, ..J}, S̃A(S̃J
A) = λj .

To prove that ABS implies that ∼C̃ and ÂC̃ satisfy OWC, note that if (ũ, S̃) form an ABS

representation of (X, C̃), Lemma 1 then implies that ũ respects the orderings ∼C̃ and ÂC̃ on X,
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which therefore satisfy OWC.

10.5 Proof of Theorem 4

As for ABS, the proof need be given only for the finite case in light of the compression and

decompression operations. This finite proof follows from the a generalized version of the RBS

characterization precisely as the deterministic result followed from proposition 1. To prove the

relevant result we need to generalize the ordering %R̃ of section 4.

Definition 18 Given a stochastic choice process (X̃, C) and set D ∈ X , the binary relation ÂL̃
Don

X is defined by x ÂL̃
D y if {x ∪ y} ∩D 6= ∅, and there exists A ∈ X with x, y ∈ A with C̃L

A {x} > 0

and C̃L
A {y} = 0. The binary relation ÂR̃ is defined as ÂL̃

D ∪ ÂC̃.

Proposition 5 A finite stochastic choice process model (X, C̃) has a stochastic RBS representation

(u, S̃, ρ) with below-reservation set D ⊂ X if and only if :

1. X̃N ⊂ D.

2. If x ∈ D and x %R̄
D y, then y ∈ D.

3. Given x1, x2, x3, .., xn ∈ X with x = x1 %R̄
D x2 %R̄

D .. %R̄
D xn = x, there is no k with

xk ÂR̄
D xk+1.

Proof. The proof that conditions (1) - (3) of the proposition are sufficient is constructive, and

similar to that in the deterministic case. As there, we define a utility function u : X → R that

respects ÂR̃
D and ∼ on X, define reservation utility ρ as the average between the maximum on

the set D and the minimum on the set X\D, and demonstrate again that X\D is the reservation

set associated with the utility function u : X → R and reservation utility level ρ by noting that

u(x) > u(y) whenever x ∈ X\D and y ∈ D. To see this, note that x ∈ X\D and y ∈ D implies by

condition (2) above that CL
{x,y}({x}) = 1, whereupon x ÂR̃

D y, so that u(x) > u(y) by construction.

We now consider all deterministic processes Cj in the decomposition of the finite stochastic

choice process map C̃ that we know by the last proposition to be available. Define XN
j as the non-

terminal set associated with deterministic choice process (X,Cj), and define also the corresponding
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binary relations ∼j , ÂCj
, ÂLj

D , ÂRj

D , %Cj
, %Lj

D , and %Rj

D . We show now that any set D ⊂ X with

properties 1-3 above for the stochastic choice process (X, C̃) necessarily satisfies corresponding

deterministic properties 1-3 established in theorem 2 to be necessary and sufficient for D to be a

reservation set in some RBS representation of each (X,Cj). With respect to the first such property,

note directly from the definition that any non-terminal element in (X,Cj) is necessarily so in the

stochastic models, so that XN
j ⊂ X̃N , hence XN

j ⊂ D as required. The second and third properties

follow directly from the fact that, for any j ∈ {1, ..., J}, x ÂRj

D y ⇒ x ÂR̄
D y and x ∼j y ⇒ x ∼ y. To

see this, note first that x ÂRj

D y implies that either x ÂCj
y or x ÂLj

D y. The former case indicates

that for some A ∈ X , C̃A(R
xy) ≥ λj > 0, and so x ÂCj

y, while the latter implies that, for some

A ∈ X and B ⊂ A, x ∈ B, y /∈ B and C̃L
A(B) ≥ λj > 0, so x ÂL

D y. In each case, x ÂR̄
D y. A similar

argument shows that x ∼j y implies for some A ∈ X , C̃A(J
xy) ≥ λj > 0 and so x ∼ y. This result

shows that any violation of conditions 2 and 3 at the level of the deterministic choice process j

would lead to a violation of the equivalent condition at the level of the stochastic choice function.

Given that the assumptions of theorem 2 are satisfied, we conclude not only that there exists

an RBS representation of each (X,Cj) with reservation set D, but also that the utility function

u : X → R and reservation utility level ρ can be utilized in constructing such a representation,

given that these are precisely the objects that are constructed in the course of the deterministic

proof. Hence, for each j, there exists a search correspondence Sj such that (u, Sj , ρ) represents an

RBS representation of (X,Cj). We show now that (u, S̃, ρ) comprises an RBS representation of

(X, C̃), where S̃ is the corresponding convex combination of the deterministic search processes Sj ,

S̃ =
JX

j=1

λjS
j

That (u, S̃) for a stochastic ABS representation follows as in the proof of the ABS represen-

tation theorem. That X\D = {x ∈ X|u(x) ≥ ρ} holds by construction. Moreover given A ∈ X ,

we know that if A ∩ (X\D) = φ, then A is searched fully in all search correspondences Sj , en-

suring that S̃L
A(A) = 1. On the other hand, if A ∩ XR ∩ (X\D) 6= φ, then we know that in

the limit, search reaches into the reservation set in all search correspondences Sj , ensuring that

S̃A
©
Z ∈ Z|HR(Z) is finite

ª
= 1. Finally, since each element in the reservation set has the property

that search ceases at once with probability one when such an element is encountered in each Sj ,

we know that S̃A
n
Z ∈ Z|S̃L

A = S̃A
¡
HR(Z)

¢o
= 1, completing the proof that (u, S̃, ρ) comprises

an RBS representation of (X, C̃).
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The proof that conditions 1-3 above are necessary for a finite stochastic choice process (X, C̄)

to have an RBS representation (u, S̃, ρ) is essentially identical to that in the deterministic case. We

let D be the below reservation set generated by that representation, and establish that the three

conditions of the proposition hold.

Proof of Theorem 5 Application of Lemma 1 translates the theorem to the statement that there

exists u : X → R, ρ : Γ → R, and Θ : Γ → S̄ such that (u,Θ(γ), ρ(γ)) forms a stochastic

RBS representation of Φ(γ) ∀ γ ∈ Γ if and only if there exists v : X → R that respects

ÂR̃(Γ) and ∼C̃(Γ). To see that existence of such a function v : X → R is necessary, note from

theorem 4 that the given function u : X → R such that (u,Θ(γ), ρ(γ)) forms a stochastic

RBS representation of Φ(γ) for all γ ∈ Γ respects ÂR̃(γ) and ∼C̃(γ) all γ ∈ Γ and hence

respects ÂR̃(Γ) and ∼C̃(Γ) . Conversely, given v : X → R that respects ÂR̃(Γ) and ∼C̃(Γ),

by definition it respects ÂR̃(γ) and ∼C̃(γ) all γ ∈ Γ, whereupon theorem 4 implies that there

exists an RBS representation of Φ(γ) for all γ ∈ Γ. In fact the proof of theorem 4 reveals

that the given function v : X → R that respects ÂR̃(γ) and ∼C̃(γ) can form the basis for an

ABS representation with appropriately defined ρ : Γ→ R and Θ : Γ→ S̄, with (v,Θ(γ), ρ(γ))

therefore forming the required stochastic RBS representation of Φ(γ) ∀ γ ∈ Γ.
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