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Many everyday decisions are made without full examination of all available
options, and as a result, the best available option may be missed. We develop a
search-theoretic choice experiment to study the impact of incomplete consider-
ation on the quality of choices. We find that many decisions can be understood
using the satisficing model of Simon [1955]: most subjects search sequentially,
stopping when a “satisficing” level of reservation utility is realized. We find
that reservation utilities and search order respond systematically to changes in
the decision making environment.
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Many everyday decisions are made without full examination of all available options, and as a
result, the best available option may be missed. However, little is known about how such incom-
plete consideration affects choice behavior. We develop a search-theoretic choice experiment that
provides new insights into how information gathering interacts with decision making.

Our central finding is that many decisions can be understood using the satisficing model of
Simon [1955]. Simon posited a process of item-by-item search, and the existence of a “satis-
ficing” level of utility, attainment of which would induce the decision maker to curtail further
search. Our experiments cover various settings that differin the number of options available and
in the complexity of these objects, and in all cases, we find broad support for Simon’s hypothesis.
Most subjects search sequentially, and stop search when an environmentally-determined level of
reservation utility has been realized.

One factor that has held back research on how incomplete search impacts choice is that there
are no observable implications of a general model in which the set of objects that a subject
considers may be smaller than the choice set as understood byan external observer.1 To identify
such restrictions, we develop a new experimental techniquethat incentivizes subjects to reveal
not only their final choices, but also how their provisional choices change with contemplation
time.2 This “choice process” data provides a test bed for simple models of sequential search (see
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1The satisficing model itself only has testable implicationsfor choice data if it is assumed that the search order never
changes. See Manzini and Mariotti [2007] and Masatlioglu and Nakajima [2009] for examples of other decision theoretic
models in which the decision maker’s consideration set is smaller than the externally observable choice set. See also
Eliaz and Spiegler [Forthcoming]. Rubinstein and Salant [2006] present a model of choice from lists, in which a decision
maker searches through the available options in a particular order. Ok [2002] considers the case of a decision maker who
is unable to compare all the available alternatives in the choice set. These models make specific assumptions about the
nature of search to gain empirical traction.

2Compared to other novel data used to understand informationsearch, such as those based on eye tracking or Mouse-
lab (Payne, Bettman and Johnson [1993], Gabaix et al. [2006], Reutskaja et al. [Forthcoming]), choice process data is
more closely tied to standard choice data and revealed preference methodology.
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Campbell [1978] and Caplin and Dean [Forthcoming]).
A second barrier to research in this area is that there is no general way to define, let alone mea-

sure, the quality of decisions.3 To overcome this conceptual problem, subjects in our experiment
select among monetary prizes presented as sequences of addition and subtraction operations.4

These calculations take time and effort to perform, making the choice problem nontrivial. As a
result, we find that subjects regularly fail to find the best option when choosing from sets of such
alternatives.

We use choice process data to test the satisficing model. We find that its two identifying
features are supported by our data. First, subjects typically switch from lower to higher value
objects, in line with information being absorbed on an item-by-item basis, as in sequential search
theory. Second, for each of our experimental treatments, weidentify fixed reservation values
such that most subjects curtail search early if, and only if,they identify an option of higher value
than the reservation level. Taken together, these two findings characterize the satisficing model.
The estimated levels of reservation utility increase with set size and with object complexity.

Choice process data provides insight into search order. We find that some subjects search from
the top of the screen to the bottom, while others do not. Thesesearch modes impact choice
quality: those who search down from the top do poorly if good objects are at the bottom of the
screen.

Our method for eliciting choice process data impacts the incentive to search, since there is an
increasing chance that later choices will not be actualized. In order to explore the impact of these
incentives, we develop a simple model of optimal search withpsychic costs that is rich enough
to cover this case in addition to standard choice data. We findthat, while a fixed reservation level
is optimal in the standard case, a declining reservation level is optimal for the choice process
environment. Moreover, the reservation level in a choice process environment is always below
the fixed optimal level in the equivalent standard choice environment.

We test the predictions of the optimizing model by comparingbehavior in the choice process
experiment with that in a standard choice environment. We exploit the fact that subjects were able
to, and indeed chose to, change options prior to finalizing decisions even in our standard choice
experiments, creating a sequence of choices that we can interpret as choice process data. We find
that standard choice data is indeed well described by the fixed reservation model. However, we
find no evidence of a declining reservation level in the choice process environment. This sug-
gests that our subjects may be satisficing for the reasons that Simon [1955] originally proposed,
as a rule of thumb that performs adequately across a broad range of environments, rather than
finely honing their search strategy to each choice environment they face. We find some evidence
that reservation levels in choice process settings are below those in equivalent standard choice
settings.

While our findings are in line with simple theories of sequential search, we consider (and re-
ject) an alternative model in which subjects search the entire choice set, but make calculation
errors that lead to choice mistakes. We estimate a random utility model in which the size of the
utility error depends on the size and complexity of the choice set. Fitting the model requires seem-
ingly large perceptual errors, yet simulations based on thefitted model significantly overestimate
subject performance in large and complex choice sets. Moreover, the estimated calculation er-
rors are incompatible with the fact that subjects almost always switch from lower to higher value
alternatives, in line with the principle of sequential search.

The paper is arranged into six sections. In section I we introduce our experimental protocols.
In section II we describe the pattern of choice mistakes exhibited by our subjects. In section III
we test the satisficing model, and show how reservation rulesvary across environments. Order

3See Bernheim and Rangel [2008], Gul and Pesendorfer [2008] and Koszegi and Rabin [2008] for methodological
viewpoints on the classification of particular decisions as“poor” or “mistaken.”

4Caplin and Dean [Forthcoming] characterize theoretical connections between choice process data, sequential search,
and reservation stopping rules with arbitrary objects of choice.
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effects on choice are addressed in section IV. Section V investigates the connection between
standard choice experiments and choice process experiments. Section VI contains our estimates
of the model based entirely on calculation errors rather than sequential search.

I. Experimental Design

We conducted experiments of four types. Experiment 1 measures choice quality in our exper-
imental task in a standard choice experiment. Experiment 2 uses the choice process design to
examine provisional choices within the same environment. Experiment 3 uses the choice process
experiment to explore search order. Experiment 4 imposes a time limit on subjects in an otherwise
standard choice task, allowing us to understand the source of differences in behavior between ex-
periments 1 and 2. All experiments were conducted at the Center for Experimental Social Science
laboratory at New York University, using subjects recruited from the undergraduate population.

A. Experiment 1: Standard Choice

Our goal in this paper is to study whether a model of information search can explain why
people sometimes fail to choose the best available option. Hence we work with objects of choice
for which such failures are easy to identify: dollar amountsexpressed as addition and subtraction
operations. We conducted six treatments that differ in terms of complexity (3 or 7 addition and
subtraction operations for each object) and the total number of available alternatives (10, 20 or
40). Figure 1 shows a 10 option choice set with objects of complexity 3.5

FIGURE 1. A TYPICAL CHOICE ROUND

Each round began with the topmost option on the screen selected, which had a value of $0 and
was worse than any other option. While only the final choice was payoff relevant, subjects could
select whichever option they wanted at any time by clicking on the option or on the radio button
next to it.6 The currently selected option was displayed at the top of thescreen. Once subjects
had finalized their selection, they could proceed by clicking on the submit button at the bottom
of the screen. Subjects faced no time constraint in their choices.

The value of each alternative was drawn from an exponential distribution with λ = 0.25,
truncated at $35 (a graph of the distribution was shown in theexperimental instructions – see
online supplemental material).7 The individual terms in the algebraic expression representing the
alternative were generated stochastically in a manner thatensured that neither the first nor the
maximal term in the expression were correlated with total value.

Subjects for experiment 1 took part in a single experimentalsession consisting of 2 practice
rounds and between 27 and 36 regular rounds, drawn from all 6 treatments. At the end of the
session, two regular rounds were drawn at random, and the subject received the value of the final
selected object in each round, in addition to a $10 show up fee. Each session took about an hour,
for which subjects earned an average of $32. In total we observed 22 undergraduate students
making 657 choices.

5Given that the subjects (New York University students) madenegligible mistakes when purely numerical options
were presented, we wrote out the arithmetic expressions in word form rather than in symbolic form.

6Changes that were made over the pre-decision period were recorded and are analyzed in section V.
7For each of the three choice set sizes we generated 12 sets of values, which were used to generate the choice objects

for both the low and the high complexity treatments.
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B. Experiment 2: Choice Process

Choice process data tracks not only final choice, but also howsubjects’ provisional choices
evolve with contemplation time. It is closely related to standard choice data, in that all obser-
vations represent choices, albeit indexed by time. We see this data as complementary to other
attempts to use novel data to understand information search, such as those based on eye tracking
or Mouselab (Payne, Bettman and Johnson [1993], Gabaix et al. [2006], Reutskaja et al. [Forth-
coming]). While choice process data misses out on such potentially relevant clues to search be-
havior as eye movements, it captures the moment at which search changes a subject’s assessment
of the best option thus far encountered.

Our experimental design for eliciting choice process data has two key features. First, sub-
jects are allowed to select any alternative in the choice setat any time, changing their selected
alternative whenever they wish. Second, actualized choiceis recorded at a random point in time
unknown to the experimental subject. Only at the end of each round does the subject find out
the time that was actualized, and what their selection had been at that time. This incentivizes
subjects always to select the option that they perceive as best. We therefore treat their sequence
of selections as recording their preferred option at each moment in time.8

The instructions that were given to subjects in the choice process experiment are available in
the online supplemental material. They were informed that the actualized time would be drawn
from a beta distribution with parametersα = 2 andβ = 5, truncated at 120 seconds.9 The
interface for selecting and switching among objects was identical to that of experiment 1. A
subject who finished in less than 120 seconds could press a submit button, which completed the
round as if they had kept the same selection for the remainingtime. Typically, a subject took part
in a session consisting of 2 practice rounds and 40 regular rounds. Two recorded choices were
actualized for payment, which was added to a $10 show up fee.

Experiment 2 included six treatments that matched the treatments in experiment 1: choice sets
contained 10, 20 or 40 alternatives, with the complexity of each alternative being either 3 or 7
operations. Moreover, exactly the same choice object values were used in the choice process and
standard choice experiments. For the 6 treatments of experiment 2, we collected data on 1066
choice sets from 76 subjects.

C. Experiment 3: Varying Complexity

Experiment 3 was designed to explore how screen position andobject complexity impacts
search order. All choice sets were of size 20, and the objectsin each set ranged in complexity
from one to nine operations. Subjects were instructed that object complexity, screen position and
object value were independent of one another. Incentives were as in experiment 2, the choice
process experiment. Experiment 3 was run on 21 subjects for atotal of 206 observed choice sets.

D. Experiment 4: Time Constraint

While the choice process experiments included time limits,the standard choice experiment
did not. In order to explore whether this time limit was responsible for differences in behavior
between the two settings, we re-ran the standard choice experiment with a two minute time con-
straint, as in the choice process experiment. If subjects failed to press the submit button within
120 seconds they received $0 for that round. For this experiment, a total of 29 subjects chose
from 407 observed choice sets.

8In support of this interpretation, 58 of 76 subjects in a postexperiment survey responded directly that they always
had their most preferred option selected, while others gavemore indirect responses that suggest similar behavior (e.g.
having undertaken a recalculation before selecting a seemingly superior alternative).

9A graph of this distribution was shown in the experimental instructions. The front-weighting in the beta distribution
provides an incentive for subjects to begin recording theirmost preferred options at an early stage.
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II. Choice Performance

A. Standard Choice Task

Table 1 reports the results of experiment 1, the standard choice experiment. The top section
reports the “failure rate” – the proportion of rounds in which the subject did not choose the option
with the highest dollar value. The second section reports the average absolute loss – the difference
in dollar value between the chosen item and the highest valueitem in the choice set.

Averaging across all treatments, subjects fail to select the best option almost 38 percent of the
time, and leave $3.12, or 17 percent of the maximum amount on the table in each round.10 Both of
these performance measures worsen with the size and the complexity of the choice set, reaching
a failure rate of 65 percent, and an average loss of $7.12 in the size 40, complexity 7 treatment.
Regression analysis shows that the difference in losses between treatments is significant.11

B. Choice Process Task

Given that our analysis of the search-based determinants ofchoice quality is based primarily
on the choice process data of experiment 2, it is important toexplore how the level and pattern
of final choices compares across experiments 1 and 2. To ensure that subjects in experiment
2 had indeed finalized their choices, we retain only rounds inwhich they explicitly press the
submit button before the allotted 120 seconds. This removes94 rounds, or 8.8 percent of our
total observations. Table 1 compares failure rates and average absolute losses by treatment for
choice process and standard choice tasks.

In both the choice process experiment and the standard choice experiment, subjects fail to find
the best option more frequently and lose more money in largerand more complicated choice
sets. However, in almost all treatments, the quality of finalchoice is worse in the choice process
task than the standard choice task. We explore this difference in section V, where we relate it
to the different incentives in the two experiments. There isless incentive to continue search in
the choice process task, given that the probability of additional effort raising the payoff falls over
time.

III. Sequential Search and Satisficing

We use the choice process data from experiment 2 to test whether a simple sequential search
model with a reservation level of utility can explain the failure of people to select the best avail-
able option. We test both whether subjects appear to understand the value of each searched object
in full before moving on to the next (as in the classic search models of Stigler [1961] and Mc-
Call [1970]), and whether they appear to search until an object is found that is above a fixed
reservation utility level. The power of our tests depends onobserving subjects switching from
one alternative to another. Fortunately, in 67 percent of rounds we observe at least one occasion
on which the subject switches between options after the initial change away from $0. The mean
number of such switches is 1.4.

10There is no evidence for any effect of learning or fatigue on choice performance. The order in which choice rounds
were presented was reversed for half the subjects, and the order of presentation did not have a significant effect on
performance. In part, this may be because our experimental design is structured to remove learning effects. The decision
making context, including the distribution of prizes, is known to the decision maker at the start of each experimental
round.

11Absolute loss was regressed on dummies for choice set size, complexity and interactions, with standard errors
calculated controlling for clustering at the subject level. Losses were significantly higher at the 5 percent level for size 40
compared to size 10 choice sets, and for the interaction of size 40 and complexity 7 compared to size 10 and complexity
3 choice sets.
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TABLE 1—PERFORMANCE IN CHOICE PROCESS TASK(EXPERIMENT2) VS. STANDARD CHOICE TASK(EXPERIMENT

1)

Failure rate (percent)
Complexity

Set size Set size 3 7
10 Choice process 11.38 46.53

Standard choice 6.78 23.61
20 Choice process 26.03 58.72

Standard choice 21.97 56.06
40 Choice process 37.95 80.86

Standard choice 28.79 65.38
Absolute loss (dollars)

Complexity
Set size Set size 3 7

10 Choice process 0.42 3.69
Standard choice 0.41 1.69

20 Choice process 1.62 4.51
Standard choice 1.10 4.00

40 Choice process 2.26 8.30
Standard choice 2.30 7.12
Number of observations

Complexity
Set size 3 7

10 Choice process 123 101
Standard choice 59 72

20 Choice process 219 172
Standard choice 132 132

40 Choice process 195 162
Standard choice 132 130

A. Sequential Search

Caplin and Dean [Forthcoming] provide a method of identifying whether or not choice process
data is consistent with sequential (but possibly incomplete) search. Assuming that utility is
monotonically increasing in money, a necessary and sufficient condition for choice process data
to be in line with sequential search is that successive recorded values in the choice process must
be increasing. We refer to this as Condition 1:

Condition 1 If option y is selected at timet and optionx is selected at times > t , it must be the
case that the value ofx is no less than the value ofy.12

In order to test whether our subjects are close to satisfyingCondition 1, we use a measure of
consistency proposed by Houtman and Maks [1985]. The Houtman-Maks (HM) index is based
on calculating the largest fraction of observations that are consistent with Condition 1.13

Figure 2 shows the distribution of HM indices for all 76 subjects. Over 40 percent of our
subjects have an HM index above 0.95, while almost 70 percenthave an HM index above 0.9

12Note that the choice process methodology only identifies a subset of searched objects: anything that is chosen at
some point we assume must have been searched, but there may also be objects that are searched but never chosen, which
we cannot identify. Combining our technology with a method of identifying what a subject has searched (for example
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FIGURE 2. DISTRIBUTION OF HM INDICES FOR ACTUAL AND RANDOM DATA (EXPERIMENT 2)

– meaning that over 90 percent of their switches are consistent with Condition 1, and therefore
consistent with sequential search. Figure 2 also shows the distribution of HM indices for 76,000
simulated subjects with the same number of switches as our subjects but who choose at random
– a measure of the power of our test (see Bronars [1987]). Clearly, the two distributions are very
different, as confirmed by a Kolmogorov–Smirnov test (p < 0.0001).

This analysis suggests that, for the population as a whole, sequential search does a good job of
describing search behavior. We can also ask whether the behavior of a particular subject is well
described by the sequential search model. To identify such sequential searchers, we compare
each subject’s HM index with the HM indices of 1,000 simulations of random data with exactly
the same number of observations in each round as that subject. For the remainder of the paper
we focus on the 68 out of 76 subjects who have an HM index above the 95th percentile of their
randomly generated distribution.14

FIGURE 3. PROPORTION OF FINAL CHOICES WHERE THE BEST OPTION WAS FOUND AND LARGEST PROPORTION OF

SELECTIONS TO HIGHER VALUE(EXPERIMENT 2)

One feature of the sequential search model is that it revivesthe concept of revealed preference
in a world of incomplete information. Panel A of figure 3 showshow close our subjects are to
satisfying the standard rationality assumption in each of our treatments, by showing the propor-
tion of rounds in which the best alternative is chosen. PanelB shows how close our subjects are
to satisfying rationality for sequential search in each treatment by calculating the HM index with
respect to Condition 1. The level of mistakes as measured by the standard definition of revealed
preference is far higher than by the sequential search measure. Note also that while there is strong
evidence of increasing mistakes in larger and more complex choice sets according to the standard
measure, such effects are minimal according to the sequential search measure. Using the latter,
there is no effect of set size on mistakes, and only a small effect from complexity.

B. Satisficing and Reservation Utility

The essential advantage that choice process data provides in testing the satisficing model is
that it allows us to observe occasions in which subjects continue to search having uncovered

Mouselab or eye tracking) would therefore be of interest.
13Specifically, we identify the smallest number of observations that need to be removed for the resulting data to be

consistent with condition 1. The HM index is the number of remaining observations, normalized by dividing through by
the total number of observations.

14An alternative measure of the failure of Condition 1 would beto calculate the minimum total change in payoff
needed in order to adjust the data to satisfy Condition 1. Forexample, if an object worth 12 was selected first and then
one worth 4, we would have to make a reduction of 8 to bring the data in line with Condition 1. On the other hand, if a
subject selected 5 and then 4, only a reduction of 1 would be needed.

The correlation between these two measures is very high in our sample: the Spearman’s rank correlation is 0.96.
However, our subjects perform worse relative to the random benchmark according to this measure than according to the
standard HM index. Using the new measure, 62 out of 76 subjects can be categorized as sequential search types using the
95th percentile of random choice simulations. This suggests that, when our subjects mistakenly switch to worse objects,
they sometimes make large errors in terms of dollar value.
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unsatisfactory objects. This allows us to directly test thereservation stopping rule and estimate
reservation values for our different treatments.

The first indication that our subjects exhibit satisficing behavior is shown in figure 4. This
shows how the value of the selected object changes with orderof selection for each of our six
treatments. Each graph has one isolated point and three segmented lines. The isolated point shows
the average object value for those who stop at the first objectchosen.15 The first segmented line
shows the average value of each selection from rounds in which one switch was made. The next
segmented line shows the average value of each selection in rounds where 2 switches were made,
and the final segmented line for rounds in which 3 switches were made.

FIGURE 4. AVERAGE VALUE BY SELECTION (EXPERIMENT 2)

Figure 4 is strongly suggestive of satisficing behavior. First, as we would expect from the
preceding section, aggregate behavior is in line with sequential search: in all but one case, the av-
erage value of selections is increasing. Second, we can find reservation values for each treatment
such that aggregate behavior is in line with satisficing according to these reservations. The hori-
zontal lines drawn on each graph show candidate reservationlevels, estimated using a technique
we describe below. In every case, the aggregate data show search continuing for values below
the reservation level and stopping for values above the reservation level, just as Simon’s theory
predicts.

ESTIMATING RESERVATION LEVELS

In order to estimate reservation utilities for each treatment, we assume that all individuals in
a given choice environment have the same reservation valuev and experience variabilityε in
this value each time they decide whether or not to continue search. Further, we assume this sto-
chasticity enters additively and is drawn independently and identically from the standard normal
distribution.16 Lettingv be the value of the item that has just been evaluated, the decision maker
(DM) stops search if and only ifv ≥ v + ε, whereε ∼ N (0,1). To cast this as a binary choice
model, letk be a decision node,vk be the value of the object uncovered andεk the error. Note
that the probability of stopping search is�(vk − v), where� is the cumulative density function
of the standard normal distribution, so we can estimatev̄ using maximum likelihood.

To employ this procedure using our data, we need to identify when search has stopped, and
when it has continued. The latter is simple: search continues if a subject switches to another

15Following the initial switch away from the zero value option.
16There are at least two ways to interpret the additive error term in this model. The first is that subjects calculate each

option perfectly but only have a rough idea of their reservation value. The second is that subjects have a clear idea of
their reservation value, but see the value of each option with some error.

The existing literature regarding stochastic choice models is summarized in Blavatsky and Pogrebna [2010]. Models
can broadly be categorized into two types. The first are “tremble” models of the type used in Harless and Camerer [1994].
For any given decision, there is a constant probability thatthe subject will make a mistake. All types of mistake are then
equally probable. The second type assumes that the value of each option is observed with some stochastic error. Different
models of this type assume different error structures, but all assume that small errors are more likely than large ones.

Our estimation technique uses a model from the second category: the Fechner Model of Heteroscedastric Random
Errors, which assumes that the reservation value is observed with an additive, normally distributed error term. In our
setting, we find the tremble class of models implausible – neither intuition nor the data supports the idea that small errors
are as likely as large ones.

It terms of the precise distribution of the error term, we tested other common alternatives: logistic and extreme value
errors. The results under these alternative assumptions were essentially the same.
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alternative after the current selection. Identifying stopped search is slightly more complicated.
If we observe that a subject does not make any more selectionsafter the current one, then there
are three possibilities. First, they might have continued to search, but run out of time before they
found a better object. Second, they might have continued to search, but already have selected the
best option. Third, they might have stopped searching. We therefore consider a subject to have
stopped searching at a decision node only if they made no further selections, pressed the submit
button, and the object they had selected was not the highest value object in the choice set.

RESULTS: ESTIMATED RESERVATION LEVELS

Because we assume that all individuals have the same distribution of reservation values in a
given environment, we pool together all selections within each treatment for the 68 participants
whose choice data is best modeled with sequential search. Table 2 shows the estimated reserva-
tion levels for each treatment, with standard errors in parentheses.

TABLE 2—ESTIMATED RESERVATION LEVELS(EXPERIMENT 2)

Complexity
Set size 3 7

10 Sequential search types 9.54 (0.20) 6.36 (0.13)
Reservation-based search types 10.31 (0.23) 6.39 (0.13)

20 Sequential search types 11.18 (0.12) 9.95 (0.10)
Reservation-based search types 11.59 (0.13) 10.15 (0.10)

40 Sequential search types 15.54 (0.11) 10.84 (0.10)
Reservation-based search types 15.86 (0.12) 11.07 (0.10)

Note: Standard errors in parenthesis

Table 2 reveals two robust patterns in the estimated reservation levels. First, reservation levels
decrease with complexity: using a likelihood-ratio test, estimated reservation levels are signifi-
cantly lower for high complexity treatments than for low complexity treatments at all set sizes
(p < 0.001). Second, reservation levels increase monotonically with set size (significantly dif-
ferent across set sizes for both complexity levels withp < 0.001).

One question that this estimation strategy does not answer is how well the reservation utility
model explains our experimental data. In order to shed lighton this question, we calculate the
equivalent of the HM index for this model with the estimated reservation levels of table 2. For
each treatment, we calculate the fraction of observations which obey the reservation strategy (i.e.
subjects continue to search when they hold values below the reservation level and stop when they
have values above the reservation level).

TABLE 3—AGGREGATEHM INDICES FOR RESERVATION-BASED SEARCH(EXPERIMENT 2)

Complexity
Set size 3 7

10 0.90 0.81
20 0.87 0.78
40 0.82 0.78

The results, aggregated across all subjects, are shown in table 3. The estimated model describes
about 86 percent of observations for treatments with simpleobjects and about 78 percent for com-
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plicated objects. Both of these percentages are significantly higher than the random benchmark
of 50 percent (where people arbitrarily stop or continue at each decision node) at the 1 percent
level.

There is significant heterogeneity across individuals withrespect to how well they follow a
fixed reservation stopping rule. While the majority of subjects have HM indices above 75 percent,
some have extremely low scores and are clearly poorly described by a reservation utility model
with the given estimated reservation levels. In order to ensure these individuals are not affecting
our estimates in table 2, we repeat the estimation of reservation strategies without those subjects
who have an HM index below 50 percent (an additional 6 subjects). These results are in table 2
under the rows for “Reservation-based search types.” The estimated reservation levels are similar
to those for the whole sample.

C. Reservation Utility or Reservation Time?

A natural question is whether our data is consistent with other stopping rules. One obvious
candidate is a stopping rule based on a reservation time, in which subjects search for a fixed time
and select the best option found subject to this time constraint. In order to assess this possibility,
we redraw in figure 5 the graphs of figure 4, but show the averagetime of each switch, rather than
the average value on the vertical axis.

FIGURE 5. AVERAGE TIME BY SWITCH (EXPERIMENT 2)

Figure 5 provides no support for the reservation time stopping rule. Unlike in figure 4, there
is generally no “reservation time” such that subjects continue to search for times below this level
and stop for times above that level (the horizontal lines on each graph show a reservation stop-
ping time estimated using the procedure describes in section III.B). Instead, those who identified
a high value object with their first selection stopped quickly, while those who made the most
switches took significantly longer. This is precisely as thereservation utility model would sug-
gest, and runs counter to the predictions of the reservationtime model.

IV. Search Order and Choice

In this section we show that choice process data provides insight into the order of search, and
that this information can help predict when subjects will dobadly in particular choice sets.

The first finding is that subjects in experiment 2 tend to search from the top to the bottom of
the screen. When we regress the order in which an object is selected on its position on screen,
we find that the average screen position is significantly higher (i.e. further down the screen) for
later selections.17 This relationship is more pronounced for choice sets with simple, rather than
complex objects.18

To assess whether subjects search from top to bottom (TB), wecalculate the fraction of ob-
servations that are consistent with this search order – in other words, the fraction of observations
for which objects selected later appear further down the screen. A subject is categorized as being
a TB searcher if this HM index for their search order is in the 95th percentile of a benchmark

17Regressing selection number on the screen position of the selection gives a coefficient of 0.028, significant at the 1
percent level (allowing for clustering at the subject level).

18For complexity 3 choice sets, regressing selection number on the screen position of the selection gives a coefficient
of 0.036, significant at the 1 percent level, while for complexity 7 sets the coefficient is 0.018, not significant at the 10
percent level.
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distribution constructed using random search orders. Withthis criterion, 53 percent of subjects
in experiment 2 are well described by TB search.

While the search order HM index is determined independentlyof a subject’s performance, we
find that TB searchers do worse when the best object appears further down the screen. When
we regress whether a subject found the best option onto the screen location of the best option,
the coefficient is negative (-0.03) and significant at the 1 percent level for TB searchers, but is
smaller in magnitude (-0.01) and insignificant at the 10 percent level for those not classified as
TB searchers.

For subjects that are strict TB searchers, sequential search has particularly strong implications.
Thus far, we have assumed that we only know an object has been searched if it has been chosen
at some point. However, if a strict TB searcher at some point selects the object at a certain screen
position, then they must have searched all objects in screenpositions above it. For example, if
the object in position 10 is selected, then the objects in positions 1 to 9 must have been searched
through as well. In this case, the test for sequential searchis whether or not, at any given time, the
value of the currently chosen object is higher than all the objects that fall earlier in the assumed
search order.

In the low complexity choice environment, we find that subjects classified as TB searchers
behave in line with this strict form of sequential search in about 92 percent of cases. They also
do significantly better in this test than subjects that we do not classify as TB.19 However, even
those we categorize as TB searchers violate this condition in about 42 percent of cases for more
complicated choice sets. This suggests that, in more complicated choice sets, even subjects who
generally search from top to bottom may not fully examine allof the objects along the way.

In addition to TB search, experiment 3 enables us to explore whether or not object complexity
impacts search order. We find not only that subjects in general search the screen from top to
bottom, but also from simple to complex objects.20 We define a subject in this experiment to
be a “Simple-Complex” (SC) searcher if they have a corresponding HM index above the 95th
percentile of random search orders. Eight subjects are categorized as both TB and SC searchers,
six as just TB searchers, three as just SC searchers. Only three subjects could be categorized as
neither.

V. Choice Process and Standard Choice Data

The choice process experiment has incentives that are different from those operating in a stan-
dard choice environment. To understand the impact that these incentives have on decisions, we
characterize optimal stopping strategies in a sequential search model that covers both the standard
experiment and the choice process experiment. We also explore behavioral differences between
experiments. In this respect we take advantage of the fact that, in experiment 1, subjects were able
to, and indeed did, select options prior to hitting the submit button and finalizing their choices.21

We can use these intermediate clicks to test our search models in the standard choice environment
of experiment 1, just as we did in experiment 2.

A. Condition 1 in Experiment 1

We use the intermediate choice data from experiment 1 to explore evidence for Condition 1,
the sequential search condition, in the standard choice environment. These tests indicate that if

19Controlling for selection number and position on screen, the coefficient on being a Top-Bottom searcher is negative
and significant (p = 0.005) in a regression where success or failure of top down sequential search is the dependent
variable.

20Regressing selection number on the screen position and complexity of the object selected gives coefficients of 0.037
and 0.136 respectively, both significant at the 1 percent level (allowing for clustering at the subject level).

21While there was no direct financial incentive for changing the selection in experiment 1, there may be a psychological
incentive if object selection aids memory.
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anything, data from the standard choice environment are more in line with sequential search than
choice process data. Indeed, there are even fewer violations of Condition 1 in experiment 1 (8
percent of rounds with a violation) than there were in experiment 2 (10 percent of rounds with a
violation). Once again there was little effect of either complexity or choice set size on conformity
with Condition 1.

B. A Model of Optimal Search

Given that Condition 1 applies generally in both experiments 1 and 2, we develop an optimizing
model of sequential search that covers both experimental designs. The search cost is specified
in utility terms, as in Gabaix et al. [2006]. The DM is an expected utility (EU) maximizer with
a utility functionu : X → R on the choice setX. We endow the searcher with information on
one available option at timet = 0, a period in which no choice is to be made. We normalize
u : X → R so that the endowed prize has an EU of zero. At each subsequenttime 1≤ t ≤ T ,
the DM faces the option of selecting one of the options already searched, or examining an extra
option and paying a psychological search costκ > 0 (in EU units). The agent’s search strategy
from any nonempty finite subsetA ⊂ X is based only on the sizeM of the set of available objects
in A, not the identities of these objects. Each available prize is assumed ex ante to have a utility
level that is independently drawn from some distributionF(z), as in our experiment. There is no
discounting.

To break the otherwise rigid connection between time and thenumber of objects searched, we
introduce parameterq ∈ (0,1) as the probability that searching an object in hand for one period
will result in its identity being known. If this does not happen, the same geometric probability
applies in the following periods. Once search stops, the agent must choose one of the identified
objects.22

To match the choice process experimental design, we allow for the possibility that search after
time t ≥ 1 will have no impact on the actual selection. We let the non-increasing functionJ(t)
identify the probability that the search from timet on will actually impact choice. In the standard
choice environment,J(t) is constant at 1, while in the choice process environmentJ(0) = 1,
J(t)− J(t + 1) > 0 for 1≤ t ≤ T − 1 andJ(T + 1) = 0 (whereT = 120 seconds).

Our characterization of the optimal search strategy is straight forward, and the proof is avail-
able in the online appendix.

THEOREM 1: For any time t,1 ≤ t ≤ T , define the reservation utility level uR(t) as the unique
solution to the equation,

(1)

∞∫

uR(t)

[z− x] dF(z) =
κ

q J(t)
.

It is uniquely optimal to stop search and select the best prior object searched of utilitȳut−1 if
ūt−1 > uR(t), to continue search if̄ut−1 < uR(t), with both strategies optimal if̄ut−1 = uR(t).

In the standard choice environment,J(t) = 1 for all t . Theorem 1 implies that the optimal
strategy is a fixed reservation levelūR defined as the solution to the following equation:

(2)

∞∫

ūR

(z− ūR)dF(z) =
κ

q
.

22This method of modeling makes the process of uncovering an option equivalent to the process of “locating” it as
feasible. The strategy is more intricate if we allow unexplored options to be selected.
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This reservation level is decreasing in the cost of searchκ , but is invariant to both the size of the
choice set and the number of options that remain unsearched.

In the choice process environment,J(t) is decreasing. Theorem 1 therefore implies that the
optimal strategy is defined by a declining reservation levelthat depends only onJ(t), not the size
of the choice set or the number of remaining alternatives. For any timet > 0, the reservation
level in the choice process environment will be below the level in the equivalent standard choice
environment. This result is intuitive: for anyt > 0, the probability of further search affecting the
outcome is higher in the standard choice environment than the choice process environment.

C. Stopping Rules in Experiments 1 and 2

The theoretical model suggests that, if anything, standardchoice data should be better ex-
plained by the satisficing model than the choice process data. We begin by repeating the analysis
of section III to determine whether this is the case. We find that the standard choice experiments
are indeed well explained by a fixed reservation rule. Figure6 recreates the analysis of figure 4,
and suggests that a reservation stopping rule broadly describes the aggregate data. Table 4 shows
that the estimated reservation levels for the standard choice data exhibit the same comparative
statics as do those for the choice process data.23 Table 5 shows that the estimated HM indices for
these reservation levels in the standard choice data are roughly similar for lower complexity and
smaller for higher complexity.24 This suggests that there is little qualitative distinctionbetween
behavior in the standard choice and choice process environments.

FIGURE 6. AVERAGE VALUE BY SWITCH (EXPERIMENT 1)

TABLE 4—ESTIMATED RESERVATION LEVELS(EXPERIMENT 1 AND EXPERIMENT 2)

Complexity
Set size 3 7

10 Choice process 10.17 (0.22) 6.34 (0.13)
Standard choice 10.05 (0.50) 8.41 (0.20)

20 Choice process 11.22 (0.11) 8.92 (0.09)
Standard choice 11.73 (0.16) 8.39 (0.12)

40 Choice process 15.15 (0.10) 10.07 (0.09)
Standard choice 16.38 (0.13) 10.39 (0.12)

Note: Standard errors in parenthesis

The optimal stopping model suggests that there should be twodifferences between the stan-
dard choice data and the choice process data. First, reservation levels should be lower in the
choice process environment than in the standard choice environment. Table 4 suggests that this
is broadly so for the sample pursuing reservation strategies (HM index above 0.5). As table 4

23For the analysis of table 4 we drop subjects who never switch in any round and who are not classified as using a
reservation strategy.

24For none of the treatments is the difference between experiments 1 and 2 in terms of compliance with the reservation
utility model significant at the 5 percent level.
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TABLE 5—AGGREGATEHM INDICES FOR RESERVATION-BASED SEARCH(EXPERIMENT 1)

Complexity
Set size 3 7

10 0.94 0.74
20 0.83 0.74
40 0.77 0.73

shows, the reservation utility is lower in experiment 1 thanin experiment 2 in four of six treat-
ments. This difference is significant in only two cases, and in both cases experiment 1 has the
lower reservation level. Lower reservation levels could also explain why subjects in the choice
process experiment finished searching more quickly than those in the standard choice environ-
ment.

While differing incentives could explain why final choice performance is worse in the choice
process environment than in the standard choice environment, another possibility is more mun-
dane – experiment 2 had a time limit while experiment 1 did not. Experiment 4 allows us to
determine which of these is the case, as it replicates the pure choice environment of experiment
1, but with a 2 minute time limit. The results suggest that thetime limit is responsible for some,
but not all of the difference. The average failure rate across all treatments is 33.7 percent for
the standard choice experiment, 39.5 percent in the standard choice with time limit experiment,
and 43.6 percent in the choice process experiment.25 The difference in incentives does appear to
impact performance in experiment 2 relative to that in experiment 1, over and above the effect of
the time limit.

The theoretical model shows that, while a fixed reservation strategy is optimal in the standard
choice data case, a declining reservation strategy is optimal in the choice process environment.
We use a revealed preference approach to test for the possibility of a declining reservation level.
The revealed preference implication of a declining reservation level is straightforward. If a sub-
ject stops searching and chooses an objectx at time t , but continues searching having found
objecty at times > t, it must be the case thatx is preferred toy. This is because the value ofx
must be above the reservation value at timet , which is in turn above the reservation level at time
s. Moreover, the value ofy must be below the reservation level at times as search is continuing.
Thusx must be preferred toy. In contrast, the revealed preference implication of a fixedreser-
vation level is thatx is preferred toy if search stops withx at some timet but continues with
y at some times, regardless of the relationship between t and s. Note that the fixed reservation
model is a special case of the declining reservation model.

Armed with these observations, we can ask whether the declining reservation model helps to
explain more of the choice process data than the fixed reservation model, by asking how many
times the relevant revealed preference condition is violated. We classify data as violating a par-
ticular revealed preference condition if optionx is revealed preferred to optiony, but the value of
y is greater than the value ofx. It turns out that the declining reservation model does not offer a
better description of choice process data. While the declining reservation model by definition has
fewer violations in absolute terms, theproportionof observations that violate revealed preference
is higher – 24 percent for the fixed reservation model versus 32 percent for the declining reserva-
tion. Thus, our revealed preference approach finds little evidence that our subjects are responding
to the choice process environment by implementing a declining reservation strategy.

25To calculate the average across all treatments, we calculate the average loss for each treatment and average across
these.
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D. Comparing Behavior across Treatments

Assuming that search costs are higher for more complex objects, our model of optimal search
implies that reservation utility should be lower in the higher complexity environment. It implies
also that optimal reservation levels are independent of thesize of the choice set. The compara-
tive statics properties of our experimentally estimated stopping rules do not align perfectly with
those of the optimal stopping rule. While subjects reduce their reservation level in response to
higher search costs, they also tend toincreasetheir reservation level as the size of the choice set
increases.

One possible reason for this discrepancy is that subjects may be searching “too much” in
larger choice sets relative to smaller ones. This may relateto findings from the psychology and
experimental economics literature that show that people may prefer smaller choice sets (Iyengar
and Lepper [2000], Seuanez-Salgado [2006]).26 It is also possible that satisficing is followed as
a rule of thumb, as Simon [1955] suggested. In the more everyday context with unknown object
values, subjects may search more in larger sets in order to refine their understanding of what
is available. They may then import this behavior into the experimental lab, despite being fully
informed about the distribution of object values.

VI. A Pure Random Error Model

Our explanation for subjects’ failure to pick the objectively best option is based on incomplete
sequential search. However, another possibility is that these failures result from calculation errors
– subjects search the entire choice set but make errors when evaluating each option. In order to
test this alternative explanation, we consider a simple model of complete search with calculation
errors. We put a simple structure on the error process – subjects are modeled as if they see the true
value of each object with an error that is drawn independently from an extreme value distribution.
The mode of this distribution is 0, and the scale factor on theerror term is allowed to vary with
complexity level and set size. With these assumptions, we can estimate the scale factor for each
treatment using logistic regression. Specifically, we find the scale factor that best predicts the
actual choice in each choice set.27 We allow for scale factors to differ between treatments.

Table 6 shows the estimated standard deviations from the calculation error model. This pro-
vides the first piece of evidence to suggest that the calculation error model is implausible. In large
and complicated choice sets, the standard deviation neededto fit the data becomes very large –
for example, in the size 40, complexity 3 treatment, the range between minus one and plus one
standard deviation is around $7, while the mean value of our choice objects is just $4.

Despite these large standard deviations, the calculation error model significantly underpredicts
both the frequency and magnitude of our subjects’ losses, asshown in table 7.28 The prediction of
subject performance under the estimated calculation errormodel was based on 1,000 simulations
of each observed choice set, in which a draw from the estimated distribution was added to the
value of each option and the object of highest total value wasidentified as being chosen.

A final problem with the calculation error model is that it should lead to far more violations
of sequential search than we in fact observe. Were subjects to be making calculation errors of

26One factor that potentially links these two findings is the concept of regret. Zeelenberg and Pieters [2007] show
that decision makers experience more regret in larger choice sets and suggest that this can lead them to search for more
information.

27For example, if a value of 10 was chosen by a subject from{7,10,12}, then our estimation strategy would find the
scale factor that gives the highest probability to choosing10, given that all options are seen with their own error. With
this approach, enough error must be applied so that the noisysignal of 10 appears larger than the noisy signal of 12, but
not so much error that the noisy signal of 7 appears larger than the noisy signal of 10.

28Alternatively, we could have estimated the scale factor to best match the number of mistakes or magnitude of mis-
takes found in the data, but this would ignore the actual choices that subjects made, which may contain other unpredicted
patterns.
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TABLE 6—ESTIMATED STANDARD DEVIATIONS (IN DOLLARS) FOR THE CALCULATION ERROR MODEL(EXPERI-
MENT 1 AND EXPERIMENT 2)

Complexity
Set size Set size 3 7

10 Choice process 1.91 5.32
Standard choice 1.90 3.34

20 Choice process 2.85 5.23
Standard choice 2.48 4.75

40 Choice process 3.54 7.25
Standard choice 3.57 6.50

TABLE 7—PERFORMANCE OF ACTUAL CHOICES AND SIMULATED CHOICES USING THE CALCULATION ERROR

MODEL (EXPERIMENT 2)

Failure rate (percent)
Complexity

Set size Set size 3 7
10 Actual choices 11.38 46.53

Simulated choices 8.35 32.47
20 Actual choices 26.03 58.72

Simulated choices 20.13 37.81
40 Actual choices 37.95 80.86

Simulated choices 25.26 44.39
Absolute loss (dollars)

Complexity
Set size Set size 3 7

10 Actual choices 0.42 3.69
Simulated choices 0.19 1.86

20 Actual choices 1.62 4.51
Simulated choices 0.62 1.78

40 Actual choices 2.26 8.30
Simulated choices 0.75 2.48

the magnitude required to explain final choices, we would expect to see them switch to worse
objects more often than they do. We demonstrate this in figure7. For this figure, the prediction
of subject performance under the estimated calculation error model is based on simulations of
choice process data assuming that values are observed with treatment-specific error.29 Note that

29Simulated data was generated as follows. For each sequence of choice process data observed in experiment 2, we
simulated 1,000 sequences of the same length. For each sequence, a draw from the value distribution (rounded to the
nearest integer) was treated as the initial selection. The sum of this value and a draw from the treatment-specific error
distribution was then compared to the sum of a second draw from the value distribution and a draw from the treatment-
specific error distribution. If the latter sum was higher than the initial sum, then we assumed a switch occurred, and the
value of the second draw from the value distribution was carried forward as the current selection. Otherwise we assumed
that no switch occurred, and so the initial selection remained the current selection. Another draw from the value and error
distributions was then made, and compared to the current selection plus error. This process was then repeated until the
number of simulated switches was equal to the length of actual switches in sequence taken from experiment 2. We then
calculated the ratio of correct switches (where the true value of the new selection was higher than the true value of the
current selection) to the total number of switches.
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FIGURE 7. COMPARISON OF THE PROPORTION OF SWITCHES TO LARGER VALUE FOR ACTUAL DATA AND SIMU -
LATED DATA FROM CALCULATION ERROR MODEL (EXPERIMENT 2)

the predicted success rates for the calculation error modellie below the lower bounds of the 95
percent confidence interval bars for all treatments.

VII. Concluding Remarks

We introduce a choice-based experiment that bridges the gapbetween revealed preference the-
ory and the theory of search. We use it to classify search behaviors in various decision making
contexts. Our central finding concerns the prevalence of satisficing behavior. Models of sequen-
tial search based on achievement of context dependent reservation utility closely describe our
experimental data, suggesting the value of the search theoretic lens in systematizing our under-
standing of boundedly rational behavior.
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Figure 1: A typical choice round 

 
 
 
Figure 2: Distribution of HM indices for actual and random data (experiment 2) 
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Figure 3: Proportion of final choices where the best option was found and largest proportion of selections 
to higher value (experiment 2) 
Panel A: Best option found 
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Panel B: Higher value selected 
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Figure 4: Average value by selection (experiment 2) 
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Figure 5: Average time by switch (experiment 2) 
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Figure 6: Average value by switch (experiment 1) 
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Figure 7: Comparison of the proportion of switches to larger value for actual data and 
simulated data from calculation error model (experiment 2) 
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Note: Interval bars represent 95 percent confidence intervals 


