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Many everyday decisions are made without full examinatioallaavailable
options, and as a result, the best available option may beatdisWe develop a
search-theoretic choice experiment to study the impactaafimplete consider-
ation on the quality of choices. We find that many decisionsbeaunderstood
using the satisficing model of Simon [1955]: most subjecscbesequentially,
stopping when a “satisficing” level of reservation utility realized. We find
that reservation utilities and search order respond systtially to changes in
the decision making environment.
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Many everyday decisions are made without full examinatiballcavailable options, and as a
result, the best available option may be missed. Howevt, is known about how such incom-
plete consideration affects choice behavior. We devel@aech-theoretic choice experiment that
provides new insights into how information gathering iate#s with decision making.

Our central finding is that many decisions can be understgotyuhe satisficing model of
Simon [1955]. Simon posited a process of item-by-item deamnd the existence of a “satis-
ficing” level of utility, attainment of which would induce ¢hdecision maker to curtail further
search. Our experiments cover various settings that diffédre number of options available and
in the complexity of these objects, and in all cases, we finddbsupport for Simon'’s hypothesis.
Most subjects search sequentially, and stop search whemvanrementally-determined level of
reservation utility has been realized.

One factor that has held back research on how incompletelsgapacts choice is that there
are no observable implications of a general model in whiehgét of objects that a subject
considers may be smaller than the choice set as understcaul dxternal observérTo identify
such restrictions, we develop a new experimental techrtiggteincentivizes subjects to reveal
not only their final choices, but also how their provisionabices change with contemplation
time2 This “choice process” data provides a test bed for simpleatsaof sequential search (see
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IThe satisficing model itself only has testable implicatiforschoice data if it is assumed that the search order never
changes. See Manzini and Mariotti [2007] and Masatlioghlildakajima [2009] for examples of other decision theoretic
models in which the decision maker’s consideration set iallemthan the externally observable choice set. See also
Eliaz and Spiegler [Forthcoming]. Rubinstein and Sala@0f] present a model of choice from lists, in which a decision
maker searches through the available options in a partiouer. Ok [2002] considers the case of a decision maker who
is unable to compare all the available alternatives in thaoehset. These models make specific assumptions about the
nature of search to gain empirical traction.

2Compared to other novel data used to understand informsgiarch, such as those based on eye tracking or Mouse-
lab (Payne, Bettman and Johnson [1993], Gabaix et al. [2008]tskaja et al. [Forthcoming]), choice process data is
more closely tied to standard choice data and revealedrprefe methodology.
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Campbell [1978] and Caplin and Dean [Forthcoming]).

A second barrier to research in this area is that there is nergkway to define, let alone mea-
sure, the quality of decisiorfsTo overcome this conceptual problem, subjects in our expari
select among monetary prizes presented as sequences tibradaid subtraction operatiofis.
These calculations take time and effort to perform, makiregahoice problem nontrivial. As a
result, we find that subjects regularly fail to find the begtapwhen choosing from sets of such
alternatives.

We use choice process data to test the satisficing model. \WeHat its two identifying
features are supported by our data. First, subjects typisaiitch from lower to higher value
objects, in line with information being absorbed on an iteyritem basis, as in sequential search
theory. Second, for each of our experimental treatmentsidesatify fixed reservation values
such that most subjects curtail search early if, and onthdy identify an option of higher value
than the reservation level. Taken together, these two fysdomaracterize the satisficing model.
The estimated levels of reservation utility increase withsize and with object complexity.

Choice process data provides insight into search order. ntf¢tfat some subjects search from
the top of the screen to the bottom, while others do not. Tlesech modes impact choice
quality: those who search down from the top do poorly if gobgeots are at the bottom of the
screen.

Our method for eliciting choice process data impacts theritice to search, since there is an
increasing chance that later choices will not be actualizedrder to explore the impact of these
incentives, we develop a simple model of optimal search paychic costs that is rich enough
to cover this case in addition to standard choice data. Wetietgwhile a fixed reservation level
is optimal in the standard case, a declining reservatioal isvoptimal for the choice process
environment. Moreover, the reservation level in a choice@ss environment is always below
the fixed optimal level in the equivalent standard choicérenment.

We test the predictions of the optimizing model by compabegavior in the choice process
experiment with that in a standard choice environment. Vjgoéthe fact that subjects were able
to, and indeed chose to, change options prior to finalizirgstns even in our standard choice
experiments, creating a sequence of choices that we caprietas choice process data. We find
that standard choice data is indeed well described by the feservation model. However, we
find no evidence of a declining reservation level in the chgioocess environment. This sug-
gests that our subjects may be satisficing for the reasohSitiman [1955] originally proposed,
as a rule of thumb that performs adequately across a broae i@renvironments, rather than
finely honing their search strategy to each choice environithey face. We find some evidence
that reservation levels in choice process settings arevidlose in equivalent standard choice
settings.

While our findings are in line with simple theories of seqiedrgearch, we consider (and re-
ject) an alternative model in which subjects search thaesgtioice set, but make calculation
errors that lead to choice mistakes. We estimate a randadity utbdel in which the size of the
utility error depends on the size and complexity of the chgigt. Fitting the model requires seem-
ingly large perceptual errors, yet simulations based offittieel model significantly overestimate
subject performance in large and complex choice sets. Mergthe estimated calculation er-
rors are incompatible with the fact that subjects almosagswitch from lower to higher value
alternatives, in line with the principle of sequential sdwar

The paper is arranged into six sections. In section | we dluite our experimental protocols.
In section Il we describe the pattern of choice mistakeskatdd by our subjects. In section IlI
we test the satisficing model, and show how reservation magsacross environments. Order

3See Bernheim and Rangel [2008], Gul and Pesendorfer [20@BKaszegi and Rabin [2008] for methodological
viewpoints on the classification of particular decisionépor” or “mistaken.”

4Caplin and Dean [Forthcoming] characterize theoreticaheations between choice process data, sequential search,
and reservation stopping rules with arbitrary objects @ici
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effects on choice are addressed in section IV. Section Vstigetes the connection between
standard choice experiments and choice process expesintggittion VI contains our estimates
of the model based entirely on calculation errors rather seguential search.

I. Experimental Design

We conducted experiments of four types. Experiment 1 measuroice quality in our exper-
imental task in a standard choice experiment. Experimerge® the choice process design to
examine provisional choices within the same environmexpeEiment 3 uses the choice process
experiment to explore search order. Experiment 4 imposegedimit on subjects in an otherwise
standard choice task, allowing us to understand the sofidiferences in behavior between ex-
periments 1 and 2. All experiments were conducted at thesC&mtExperimental Social Science
laboratory at New York University, using subjects recrditeom the undergraduate population.

A. Experiment 1: Standard Choice

Our goal in this paper is to study whether a model of infororagearch can explain why
people sometimes fail to choose the best available optiencelwe work with objects of choice
for which such failures are easy to identify: dollar amowgressed as addition and subtraction
operations. We conducted six treatments that differ in $eofrcomplexity (3 or 7 addition and
subtraction operations for each object) and the total nurobavailable alternatives (10, 20 or
40). Figure 1 shows a 10 option choice set with objects of dexity 3.2

FIGURE 1. A TYPICAL CHOICE ROUND

Each round began with the topmost option on the screen edleghich had a value of $0 and
was worse than any other option. While only the final choics payoff relevant, subjects could
select whichever option they wanted at any time by clickinghe option or on the radio button
next to it® The currently selected option was displayed at the top otheen. Once subjects
had finalized their selection, they could proceed by cligkam the submit button at the bottom
of the screen. Subjects faced no time constraint in theiiceso

The value of each alternative was drawn from an exponenisaittution with 2 = 0.25,
truncated at $35 (a graph of the distribution was shown inettgerimental instructions — see
online supplemental materidl)The individual terms in the algebraic expression représgtie
alternative were generated stochastically in a manneretigired that neither the first nor the
maximal term in the expression were correlated with tothlea

Subjects for experiment 1 took part in a single experimesgakion consisting of 2 practice
rounds and between 27 and 36 regular rounds, drawn from adlantents. At the end of the
session, two regular rounds were drawn at random, and thecsuéceived the value of the final
selected object in each round, in addition to a $10 show upHaeh session took about an hour,
for which subjects earned an average of $32. In total we sbde22 undergraduate students
making 657 choices.

5Given that the subjects (New York University students) maegligible mistakes when purely numerical options
were presented, we wrote out the arithmetic expressionsid ferm rather than in symbolic form.

6Changes that were made over the pre-decision period wesedestand are analyzed in section V.

For each of the three choice set sizes we generated 12 settie§ywhich were used to generate the choice objects
for both the low and the high complexity treatments.
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B. Experiment 2: Choice Process

Choice process data tracks not only final choice, but also sudvjects’ provisional choices
evolve with contemplation time. It is closely related tonstard choice data, in that all obser-
vations represent choices, albeit indexed by time. We seseal#fta as complementary to other
attempts to use novel data to understand information sgsuich as those based on eye tracking
or Mouselab (Payne, Bettman and Johnson [1993], Gabaix gt0f)6], Reutskaja et al. [Forth-
coming]). While choice process data misses out on such pallgrrelevant clues to search be-
havior as eye movements, it captures the moment at whichrsehanges a subject’s assessment
of the best option thus far encountered.

Our experimental design for eliciting choice process dais two key features. First, sub-
jects are allowed to select any alternative in the choicatsaty time, changing their selected
alternative whenever they wish. Second, actualized chsi@xorded at a random point in time
unknown to the experimental subject. Only at the end of eaohd does the subject find out
the time that was actualized, and what their selection had b¢ that time. This incentivizes
subjects always to select the option that they perceive sts Wdée therefore treat their sequence
of selections as recording their preferred option at eacmemb in time®

The instructions that were given to subjects in the choioegss experiment are available in
the online supplemental material. They were informed thatactualized time would be drawn
from a beta distribution with parametess= 2 and$ = 5, truncated at 120 secondisThe
interface for selecting and switching among objects waatidal to that of experiment 1. A
subject who finished in less than 120 seconds could pressnaitdolitton, which completed the
round as if they had kept the same selection for the rematiirg Typically, a subject took part
in a session consisting of 2 practice rounds and 40 regulards) Two recorded choices were
actualized for payment, which was added to a $10 show up fee.

Experiment 2 included six treatments that matched thenreatts in experiment 1: choice sets
contained 10, 20 or 40 alternatives, with the complexity aghrealternative being either 3 or 7
operations. Moreover, exactly the same choice object saligge used in the choice process and
standard choice experiments. For the 6 treatments of erpeti2, we collected data on 1066
choice sets from 76 subjects.

C. Experiment 3: Varying Complexity

Experiment 3 was designed to explore how screen positionoajett complexity impacts
search order. All choice sets were of size 20, and the objeaach set ranged in complexity
from one to nine operations. Subjects were instructed thjatbcomplexity, screen position and
object value were independent of one another. Incentives a® in experiment 2, the choice
process experiment. Experiment 3 was run on 21 subjectstébalof 206 observed choice sets.

D. Experiment 4: Time Constraint

While the choice process experiments included time lintits, standard choice experiment
did not. In order to explore whether this time limit was resgible for differences in behavior
between the two settings, we re-ran the standard choiceimgrg with a two minute time con-
straint, as in the choice process experiment. If subjedexifto press the submit button within
120 seconds they received $0 for that round. For this experina total of 29 subjects chose
from 407 observed choice sets.

8In support of this interpretation, 58 of 76 subjects in a gogteriment survey responded directly that they always
had their most preferred option selected, while others gamee indirect responses that suggest similar behavior (e.g
having undertaken a recalculation before selecting a segyrsuperior alternative).

A graph of this distribution was shown in the experimentatinctions. The front-weighting in the beta distribution
provides an incentive for subjects to begin recording timeist preferred options at an early stage.
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Il. Choice Performance
A. Standard Choice Task

Table 1 reports the results of experiment 1, the standartel®xperiment. The top section
reports the “failure rate” — the proportion of rounds in whtbe subject did not choose the option
with the highest dollar value. The second section repogtatierage absolute loss — the difference
in dollar value between the chosen item and the highest vi@orein the choice set.

Averaging across all treatments, subjects fail to selexbtst option almost 38 percent of the
time, and leave $3.12, or 17 percent of the maximum amourttetable in each rount?. Both of
these performance measures worsen with the size and thdeodtypf the choice set, reaching
a failure rate of 65 percent, and an average loss of $7.12isi#e 40, complexity 7 treatment.
Regression analysis shows that the difference in losse@battreatments is significaht.

B. Choice Process Task

Given that our analysis of the search-based determinarmisaate quality is based primarily
on the choice process data of experiment 2, it is importaekpdore how the level and pattern
of final choices compares across experiments 1 and 2. Toeetisair subjects in experiment
2 had indeed finalized their choices, we retain only roundshiich they explicitly press the
submit button before the allotted 120 seconds. This remB¥a®unds, or 8.8 percent of our
total observations. Table 1 compares failure rates anchgeeabsolute losses by treatment for
choice process and standard choice tasks.

In both the choice process experiment and the standardecbrperiment, subjects fail to find
the best option more frequently and lose more money in laagdrmore complicated choice
sets. However, in almost all treatments, the quality of fatnice is worse in the choice process
task than the standard choice task. We explore this differém section V, where we relate it
to the different incentives in the two experiments. Therke$s incentive to continue search in
the choice process task, given that the probability of &mithl effort raising the payoff falls over
time.

lll. Sequential Search and Satisficing

We use the choice process data from experiment 2 to test eh@tsimple sequential search
model with a reservation level of utility can explain theldiae of people to select the best avail-
able option. We test both whether subjects appear to ureaherttie value of each searched object
in full before moving on to the next (as in the classic searddets of Stigler [1961] and Mc-
Call [1970Q]), and whether they appear to search until anabigefound that is above a fixed
reservation utility level. The power of our tests depend®bserving subjects switching from
one alternative to another. Fortunately, in 67 percent ofids we observe at least one occasion
on which the subject switches between options after thelimihange away from $0. The mean
number of such switches is 1.4.

10There is no evidence for any effect of learning or fatigue looice performance. The order in which choice rounds
were presented was reversed for half the subjects, and tfee of presentation did not have a significant effect on
performance. In part, this may be because our experimeaségialis structured to remove learning effects. The detisio
making context, including the distribution of prizes, isolm to the decision maker at the start of each experimental
round.

11apsolute loss was regressed on dummies for choice set sireplexity and interactions, with standard errors
calculated controlling for clustering at the subject levelsses were significantly higher at the 5 percent levelifm 40
compared to size 10 choice sets, and for the interactiorzef&) and complexity 7 compared to size 10 and complexity
3 choice sets.
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TABLE 1—PERFORMANCE IN CHOICE PROCESS TASKEXPERIMENT2) VS. STANDARD CHOICE TASK(EXPERIMENT
1)

Failure rate (percent)
Complexity
Set size Set size 3 7
10 Choice process 11.38 46.53
Standard choice  6.78 23.61
20 Choice process 26.03 58.72
Standard choice 21.97 56.06
40 Choice process 37.95 80.86
Standard choice 28.79 65.38
Absolute loss (dollars)
Complexity
Set size Set size 3 7
10 Choice process 0.42  3.69
Standard choice 0.41  1.69
20 Choice process 1.62 451
Standard choice 1.10  4.00
40 Choice process 2.26  8.30
Standard choice 2.30 7.12
Number of observations
Complexity
Set size 3 7
10 Choice process 123 101
Standard choice 59 72
20 Choice process 219 172
Standard choice 132 132
40 Choice process 195 162
Standard choice 132 130

A. Sequential Search

Caplin and Dean [Forthcoming] provide a method of identifyivhether or not choice process
data is consistent with sequential (but possibly incongdlsearch. Assuming that utility is
monotonically increasing in money, a necessary and sutticiendition for choice process data
to be in line with sequential search is that successive decbvalues in the choice process must

be increasing. We refer to this as Condition 1:

Condition 1 If option y is selected at timeand optiornx is selected at time > t, it must be the
case that the value ofis no less than the value gf1?

In order to test whether our subjects are close to satisf@imgdition 1, we use a measure of
consistency proposed by Houtman and Maks [1985]. The Haudeks (HM) index is based
on calculating the largest fraction of observations thatcansistent with Condition %

Figure 2 shows the distribution of HM indices for all 76 suitge Over 40 percent of our
subjects have an HM index above 0.95, while almost 70 pettare an HM index above 0.9

12Note that the choice process methodology only identifiesbaetuof searched objects: anything that is chosen at
some point we assume must have been searched, but theresodealbjects that are searched but never chosen, which
we cannot identify. Combining our technology with a methéddentifying what a subject has searched (for example
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FIGURE 2. DISTRIBUTION OF HM INDICES FOR ACTUAL AND RANDOM DATA (EXPERIMENT 2)

— meaning that over 90 percent of their switches are comsigti¢gh Condition 1, and therefore
consistent with sequential search. Figure 2 also showsistrébdtion of HM indices for 76,000
simulated subjects with the same number of switches as djgcs but who choose at random
— a measure of the power of our test (see Bronars [1987]) rigl|¢@e two distributions are very
different, as confirmed by a Kolmogorov—Smirnov tgst<{ 0.0001).

This analysis suggests that, for the population as a whetgiential search does a good job of
describing search behavior. We can also ask whether thevibelod a particular subject is well
described by the sequential search model. To identify sagbemtial searchers, we compare
each subject’s HM index with the HM indices of 1,000 simwat of random data with exactly
the same number of observations in each round as that subjecthe remainder of the paper
we focus on the 68 out of 76 subjects who have an HM index abbw/@%th percentile of their
randomly generated distributidfi.

FIGURE 3. PROPORTION OF FINAL CHOICES WHERE THE BEST OPTION WAS FOUND ANLARGEST PROPORTION OF
SELECTIONS TO HIGHER VALUE(EXPERIMENT 2)

One feature of the sequential search model is that it rethasoncept of revealed preference
in a world of incomplete information. Panel A of figure 3 shdwsv close our subjects are to
satisfying the standard rationality assumption in eachuoftieeatments, by showing the propor-
tion of rounds in which the best alternative is chosen. PBr&lows how close our subjects are
to satisfying rationality for sequential search in eachtirent by calculating the HM index with
respect to Condition 1. The level of mistakes as measuretebgtandard definition of revealed
preference is far higher than by the sequential search meedsate also that while there is strong
evidence of increasing mistakes in larger and more comgieice sets according to the standard
measure, such effects are minimal according to the se@lieeirch measure. Using the latter,
there is no effect of set size on mistakes, and only a smaiteffom complexity.

B. Satisficing and Reservation Utility

The essential advantage that choice process data prowvidesting the satisficing model is
that it allows us to observe occasions in which subjectsimoatto search having uncovered

Mouselab or eye tracking) would therefore be of interest.

13Specifically, we identify the smallest number of observagithat need to be removed for the resulting data to be
consistent with condition 1. The HM index is the number of a@mng observations, normalized by dividing through by
the total number of observations.

14An alternative measure of the failure of Condition 1 wouldtbecalculate the minimum total change in payoff
needed in order to adjust the data to satisfy Condition 1.ekkample, if an object worth 12 was selected first and then
one worth 4, we would have to make a reduction of 8 to bring #te @ line with Condition 1. On the other hand, if a
subject selected 5 and then 4, only a reduction of 1 would bdet

The correlation between these two measures is very highrirsample: the Spearman’s rank correlation is 0.96.
However, our subjects perform worse relative to the randentbmark according to this measure than according to the
standard HM index. Using the new measure, 62 out of 76 sudhjact be categorized as sequential search types using the
95th percentile of random choice simulations. This suggestt, when our subjects mistakenly switch to worse ohjects
they sometimes make large errors in terms of dollar value.
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unsatisfactory objects. This allows us to directly testrémervation stopping rule and estimate
reservation values for our different treatments.

The first indication that our subjects exhibit satisficindnééor is shown in figure 4. This
shows how the value of the selected object changes with ofdexlection for each of our six
treatments. Each graph has one isolated point and threeségaiiines. The isolated point shows
the average object value for those who stop at the first objeagen'®> The first segmented line
shows the average value of each selection from rounds inwvdrie switch was made. The next
segmented line shows the average value of each selectionnds where 2 switches were made,
and the final segmented line for rounds in which 3 switchegweade.

FIGURE 4. AVERAGE VALUE BY SELECTION (EXPERIMENT 2)

Figure 4 is strongly suggestive of satisficing behavior.sti-ias we would expect from the
preceding section, aggregate behavior is in line with setiplesearch: in all but one case, the av-
erage value of selections is increasing. Second, we candgsaivation values for each treatment
such that aggregate behavior is in line with satisficing ediog to these reservations. The hori-
zontal lines drawn on each graph show candidate resendatiels, estimated using a technique
we describe below. In every case, the aggregate data showhsmmtinuing for values below
the reservation level and stopping for values above thevatsen level, just as Simon’s theory
predicts.

ESTIMATING RESERVATION LEVELS

In order to estimate reservation utilities for each treatimere assume that all individuals in
a given choice environment have the same reservation vahred experience variability in
this value each time they decide whether or not to continaecke Further, we assume this sto-
chasticity enters additively and is drawn independentty identically from the standard normal
distribution® Letting v be the value of the item that has just been evaluated, theidechaker
(DM) stops search if and only if > v + ¢, wheree ~ N (0, 1). To cast this as a binary choice
model, letk be a decision nodey be the value of the object uncovered amndhe error. Note
that the probability of stopping searchds(vk — v), where® is the cumulative density function
of the standard normal distribution, so we can estiniaieing maximum likelihood.

To employ this procedure using our data, we need to identifgmmsearch has stopped, and
when it has continued. The latter is simple: search consiriia subject switches to another

15Following the initial switch away from the zero value option

16There are at least two ways to interpret the additive erron ta this model. The first is that subjects calculate each
option perfectly but only have a rough idea of their reséovavalue. The second is that subjects have a clear idea of
their reservation value, but see the value of each optiom saime error.

The existing literature regarding stochastic choice no@esummarized in Blavatsky and Pogrebna [2010]. Models
can broadly be categorized into two types. The first are ‘tlefrmodels of the type used in Harless and Camerer [1994].
For any given decision, there is a constant probability thasubject will make a mistake. All types of mistake are then
equally probable. The second type assumes that the valaelobption is observed with some stochastic error. Differen
models of this type assume different error structures, basaume that small errors are more likely than large ones.

Our estimation technique uses a model from the second estetie Fechner Model of Heteroscedastric Random
Errors, which assumes that the reservation value is obderit an additive, normally distributed error term. In our
setting, we find the tremble class of models implausible theeintuition nor the data supports the idea that smallrsrro
are as likely as large ones.

It terms of the precise distribution of the error term, weddsother common alternatives: logistic and extreme value
errors. The results under these alternative assumptioresegsentially the same.
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alternative after the current selection. Identifying gteg search is slightly more complicated.

If we observe that a subject does not make any more selecftarshe current one, then there

are three possibilities. First, they might have continwesearch, but run out of time before they

found a better object. Second, they might have continuedarch, but already have selected the
best option. Third, they might have stopped searching. \&kefbre consider a subject to have
stopped searching at a decision node only if they made nlodiusielections, pressed the submit
button, and the object they had selected was not the highkst gbject in the choice set.

RESULTS. ESTIMATED RESERVATION LEVELS
Because we assume that all individuals have the same diibribof reservation values in a
given environment, we pool together all selections withdoketreatment for the 68 participants

whose choice data is best modeled with sequential searble Zashows the estimated reserva-
tion levels for each treatment, with standard errors inpheses.

TABLE 2—ESTIMATED RESERVATION LEVELS(EXPERIMENT 2)

Complexity
Set size 3 7
10 Sequential search types 954 (0.20) 6.36 (0.13)
Reservation-based search types 10.31 (0.23) 6.39 (0.13)
20 Sequential search types 11.18 (0.12) 9.95 (0.10)
Reservation-based search types 11.59 (0.13) 10.15 (0.10)
40 Sequential search types 15.54 (0.11) 10.84 (0.10)

Reservation-based search types 15.86 (0.12) 11.07 (0.10)
Note: Standard errors in parenthesis

Table 2 reveals two robust patterns in the estimated res@mavels. First, reservation levels
decrease with complexity: using a likelihood-ratio testjreated reservation levels are signifi-
cantly lower for high complexity treatments than for low qaexity treatments at all set sizes
(p < 0.001). Second, reservation levels increase monotonicatly set size (significantly dif-
ferent across set sizes for both complexity levels witk 0.001).

One question that this estimation strategy does not answesw well the reservation utility
model explains our experimental data. In order to shed bighthis question, we calculate the
equivalent of the HM index for this model with the estimatedarvation levels of table 2. For
each treatment, we calculate the fraction of observatidriswobey the reservation strategy (i.e.
subjects continue to search when they hold values belovetervation level and stop when they
have values above the reservation level).

TABLE 3—AGGREGATEHM INDICES FOR RESERVATIONBASED SEARCH(EXPERIMENT 2)

Complexity

Set size 3 7
10 0.90 0.81
20 0.87 0.78
40 0.82 0.78

The results, aggregated across all subjects, are showbl@aThe estimated model describes
about 86 percent of observations for treatments with simipjects and about 78 percent for com-
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plicated objects. Both of these percentages are signifjchigther than the random benchmark
of 50 percent (where people arbitrarily stop or continueaahedecision node) at the 1 percent
level.

There is significant heterogeneity across individuals wétspect to how well they follow a
fixed reservation stopping rule. While the majority of sabgehave HM indices above 75 percent,
some have extremely low scores and are clearly poorly destihy a reservation utility model
with the given estimated reservation levels. In order tausmthese individuals are not affecting
our estimates in table 2, we repeat the estimation of resemnvstrategies without those subjects
who have an HM index below 50 percent (an additional 6 sugjedthese results are in table 2
under the rows for “Reservation-based search types.” Tima&ed reservation levels are similar
to those for the whole sample.

C. Reservation Utility or Reservation Time?

A natural question is whether our data is consistent witleiogtiopping rules. One obvious
candidate is a stopping rule based on a reservation timehichvgubjects search for a fixed time
and select the best option found subject to this time canstia order to assess this possibility,
we redraw in figure 5 the graphs of figure 4, but show the avanageof each switch, rather than
the average value on the vertical axis.

FIGURE 5. AVERAGE TIME BY SWITCH (EXPERIMENT 2)

Figure 5 provides no support for the reservation time stogppille. Unlike in figure 4, there
is generally no “reservation time” such that subjects cargito search for times below this level
and stop for times above that level (the horizontal lines achegraph show a reservation stop-
ping time estimated using the procedure describes in selitiB). Instead, those who identified
a high value object with their first selection stopped quickihile those who made the most
switches took significantly longer. This is precisely asrdmgervation utility model would sug-
gest, and runs counter to the predictions of the reservétitmmodel.

IV. Search Order and Choice

In this section we show that choice process data providéghinisito the order of search, and
that this information can help predict when subjects willbdally in particular choice sets.

The first finding is that subjects in experiment 2 tend to deémam the top to the bottom of
the screen. When we regress the order in which an objectdstedl on its position on screen,
we find that the average screen position is significantlydiighe. further down the screen) for
later selectiond’ This relationship is more pronounced for choice sets withpé, rather than
complex objectd®

To assess whether subjects search from top to bottom (TByaleelate the fraction of ob-
servations that are consistent with this search order -hieratords, the fraction of observations
for which objects selected later appear further down theestrA subject is categorized as being
a TB searcher if this HM index for their search order is in tl¢h9ercentile of a benchmark

17Regressing selection number on the screen position of teetiem gives a coefficient of 0.028, significant at the 1
percent level (allowing for clustering at the subject Igvel

18ror complexity 3 choice sets, regressing selection numbéhe screen position of the selection gives a coefficient
of 0.036, significant at the 1 percent level, while for comfile7 sets the coefficient is 0.018, not significant at the 10
percent level.
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distribution constructed using random search orders. Withcriterion, 53 percent of subjects
in experiment 2 are well described by TB search.

While the search order HM index is determined independenftlysubject’s performance, we
find that TB searchers do worse when the best object appeatinerfudown the screen. When
we regress whether a subject found the best option onto teerstocation of the best option,
the coefficient is negative (-0.03) and significant at the rceat level for TB searchers, but is
smaller in magnitude (-0.01) and insignificant at the 10 @etdevel for those not classified as
TB searchers.

For subjects that are strict TB searchers, sequentiallsbacparticularly strong implications.
Thus far, we have assumed that we only know an object has lkeeched if it has been chosen
at some point. However, if a strict TB searcher at some peietss the object at a certain screen
position, then they must have searched all objects in sgiesttions above it. For example, if
the object in position 10 is selected, then the objects iitipos 1 to 9 must have been searched
through as well. In this case, the test for sequential saamghether or not, at any given time, the
value of the currently chosen object is higher than all thieaib that fall earlier in the assumed
search order.

In the low complexity choice environment, we find that sutgjedassified as TB searchers
behave in line with this strict form of sequential searchhioat 92 percent of cases. They also
do significantly better in this test than subjects that we diochassify as TB® However, even
those we categorize as TB searchers violate this conditiabdut 42 percent of cases for more
complicated choice sets. This suggests that, in more coatpl choice sets, even subjects who
generally search from top to bottom may not fully examinevfithe objects along the way.

In addition to TB search, experiment 3 enables us to expltiethrer or not object complexity
impacts search order. We find not only that subjects in géseeach the screen from top to
bottom, but also from simple to complex objeisWe define a subject in this experiment to
be a “Simple-Complex” (SC) searcher if they have a corredpgnHM index above the 95th
percentile of random search orders. Eight subjects argadted as both TB and SC searchers,
six as just TB searchers, three as just SC searchers. Onby shibjects could be categorized as
neither.

V. Choice Process and Standard Choice Data

The choice process experiment has incentives that areafiffrom those operating in a stan-
dard choice environment. To understand the impact thaetimegntives have on decisions, we
characterize optimal stopping strategies in a sequemigath model that covers both the standard
experiment and the choice process experiment. We alsorexipétavioral differences between
experiments. In this respect we take advantage of the fat;tithexperiment 1, subjects were able
to, and indeed did, select options prior to hitting the sutimiton and finalizing their choice&s.
We can use these intermediate clicks to test our search miodéke standard choice environment
of experiment 1, just as we did in experiment 2.

A. Condition 1 in Experiment 1

We use the intermediate choice data from experiment 1 tmex@vidence for Condition 1,
the sequential search condition, in the standard choicieoemaent. These tests indicate that if

19Controlling for selection number and position on screea,dbefficient on being a Top-Bottom searcher is negative
and significant p = 0.005) in a regression where success or failure of top downesgigl search is the dependent
variable.

20Regressing selection number on the screen position andleritypf the object selected gives coefficients of 0.037
and 0.136 respectively, both significant at the 1 perceed lallowing for clustering at the subject level).

2ywhile there was no direct financial incentive for changirgghlection in experiment 1, there may be a psychological
incentive if object selection aids memory.
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anything, data from the standard choice environment are indine with sequential search than
choice process data. Indeed, there are even fewer vicdatib@ondition 1 in experiment 1 (8

percent of rounds with a violation) than there were in experit 2 (10 percent of rounds with a
violation). Once again there was little effect of either gexity or choice set size on conformity
with Condition 1.

B. A Model of Optimal Search

Given that Condition 1 applies generally in both experiradraind 2, we develop an optimizing
model of sequential search that covers both experimensadjiie The search cost is specified
in utility terms, as in Gabaix et al. [2006]. The DM is an exjgekcutility (EU) maximizer with
a utility functionu : X — R on the choice seX. We endow the searcher with information on
one available option at time = 0, a period in which no choice is to be made. We normalize
u: X — R so that the endowed prize has an EU of zero. At each subsetijment <t < T,
the DM faces the option of selecting one of the options alresm@drched, or examining an extra
option and paying a psychological search cost 0O (in EU units). The agent’s search strategy
from any nonempty finite subsétC X is based only on the si2d of the set of available objects
in A, not the identities of these objects. Each available paassumed ex ante to have a utility
level that is independently drawn from some distributiefz), as in our experiment. There is no
discounting.

To break the otherwise rigid connection between time andtneber of objects searched, we
introduce parameter € (0, 1) as the probability that searching an object in hand for omege
will result in its identity being known. If this does not hagp the same geometric probability
appliezzizn the following periods. Once search stops, thatagest choose one of the identified
objects?

To match the choice process experimental design, we allothéopossibility that search after
timet > 1 will have no impact on the actual selection. We let the naméasing functiord (t)
identify the probability that the search from tirhen will actually impact choice. In the standard
choice environment] (t) is constant at 1, while in the choice process environndfy = 1,
Jt)—J(t+1) >0forl<t<T-—1andJ(T + 1) =0 (whereT = 120 seconds).

Our characterization of the optimal search strategy isgéttdorward, and the proof is avail-
able in the online appendix.

THEOREM 1: Foranytimetl <t < T, define the reservation utility leveR(t) as the unique
solution to the equation,

o

' K
1 / z—X]dF(2) = ——.
. J = 930
uR(t)
It is uniquely optimal to stop search and select the bestrmigect searched of utility,_1 if
dt—1 > uR(t), to continue search ifii_1 < uR(t), with both strategies optimal if_1 = uR(t).

In the standard choice environmediit) = 1 for allt. Theorem 1 implies that the optimal
strategy is a fixed reservation le\igt defined as the solution to the following equation:

@) /l(z—GR)dF(z)z g.

22This method of modeling makes the process of uncovering #oropquivalent to the process of “locating” it as
feasible. The strategy is more intricate if we allow unex@tboptions to be selected.
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This reservation level is decreasing in the cost of seardiut is invariant to both the size of the
choice set and the number of options that remain unsearched.

In the choice process environmedti(t) is decreasing. Theorem 1 therefore implies that the
optimal strategy is defined by a declining reservation léval depends only od(t), not the size
of the choice set or the number of remaining alternatives. alfg timet > 0, the reservation
level in the choice process environment will be below thell@vthe equivalent standard choice
environment. This result is intuitive: for any> 0, the probability of further search affecting the
outcome is higher in the standard choice environment thawchbice process environment.

C. Stopping Rules in Experiments 1 and 2

The theoretical model suggests that, if anything, standhaice data should be better ex-
plained by the satisficing model than the choice process Wadegin by repeating the analysis
of section Il to determine whether this is the case. We firad the standard choice experiments
are indeed well explained by a fixed reservation rule. Figurecreates the analysis of figure 4,
and suggests that a reservation stopping rule broadlyidesdhe aggregate data. Table 4 shows
that the estimated reservation levels for the standarccehtata exhibit the same comparative
statics as do those for the choice process thfi@ble 5 shows that the estimated HM indices for
these reservation levels in the standard choice data ag@lsosimilar for lower complexity and
smaller for higher complexit§# This suggests that there is little qualitative distinctimiween
behavior in the standard choice and choice process envaotsm

FIGURE 6. AVERAGE VALUE BY SWITCH (EXPERIMENT 1)

TABLE 4—ESTIMATED RESERVATION LEVELS(EXPERIMENT 1 AND EXPERIMENT 2)

Complexity

Set size
10 Choice process 10.17 (0.22) 6.34 (0.13)
Standard choice 10.05 (0.50) 8.41 (0.20)
20 Choice process 11.22 (0.11) 8.92 (0.09)
Standard choice 11.73 (0.16) 8.39 (0.12)
40 Choice process 15.15 (0.10) 10.07 (0.09)
Standard choice 16.38 (0.13) 10.39 (0.12)
Note: Standard errors in parenthesis

The optimal stopping model suggests that there should beliffeyences between the stan-
dard choice data and the choice process data. First, résan@vels should be lower in the
choice process environment than in the standard choiceosméent. Table 4 suggests that this
is broadly so for the sample pursuing reservation strase@i®/ index above 0.5). As table 4

23For the analysis of table 4 we drop subjects who never swit@dmy round and who are not classified as using a
reservation strategy.

24For none of the treatments is the difference between expatsrl and 2 in terms of compliance with the reservation
utility model significant at the 5 percent level.
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TABLE 5—AGGREGATEHM INDICES FOR RESERVATIONBASED SEARCH(EXPERIMENT 1)

Complexity

Set size 3 7
10 0.94 0.74
20 0.83 0.74
40 0.77 0.73

shows, the reservation utility is lower in experiment 1 timexperiment 2 in four of six treat-
ments. This difference is significant in only two cases, antdth cases experiment 1 has the
lower reservation level. Lower reservation levels coukbatxplain why subjects in the choice
process experiment finished searching more quickly thasetimothe standard choice environ-
ment.

While differing incentives could explain why final choicerflrmance is worse in the choice
process environment than in the standard choice enviropraeather possibility is more mun-
dane — experiment 2 had a time limit while experiment 1 did ri&tperiment 4 allows us to
determine which of these is the case, as it replicates theghaice environment of experiment
1, but with a 2 minute time limit. The results suggest thattitme limit is responsible for some,
but not all of the difference. The average failure rate a&dbtreatments is 33.7 percent for
the standard choice experiment, 39.5 percent in the stamtiice with time limit experiment,
and 43.6 percent in the choice process experirfieiihe difference in incentives does appear to
impact performance in experiment 2 relative to that in expent 1, over and above the effect of
the time limit.

The theoretical model shows that, while a fixed reservatiiegy is optimal in the standard
choice data case, a declining reservation strategy is aptimthe choice process environment.
We use a revealed preference approach to test for the gditggiba declining reservation level.
The revealed preference implication of a declining regermdevel is straightforward. If a sub-
ject stops searching and chooses an objeat timet, but continues searching having found
objecty at times > t, it must be the case thatis preferred toy. This is because the value »f
must be above the reservation value at tijm@hich is in turn above the reservation level at time
s. Moreover, the value of must be below the reservation level at timas search is continuing.
Thusx must be preferred tg. In contrast, the revealed preference implication of a fibesbr-
vation level is thatx is preferred toy if search stops withx at some time but continues with
y at some times, regardless of the relationship between t and\iote that the fixed reservation
model is a special case of the declining reservation model.

Armed with these observations, we can ask whether the deglieservation model helps to
explain more of the choice process data than the fixed ragmrvaodel, by asking how many
times the relevant revealed preference condition is \edla¥Ve classify data as violating a par-
ticular revealed preference condition if optivtis revealed preferred to optign but the value of
y is greater than the value &f It turns out that the declining reservation model does ffet a
better description of choice process data. While the dedireservation model by definition has
fewer violations in absolute terms, themportionof observations that violate revealed preference
is higher — 24 percent for the fixed reservation model ver@useBcent for the declining reserva-
tion. Thus, our revealed preference approach finds litikegice that our subjects are responding
to the choice process environment by implementing a degjireservation strategy.

2570 calculate the average across all treatments, we calcillataverage loss for each treatment and average across
these.
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D. Comparing Behavior across Treatments

Assuming that search costs are higher for more complex @hjear model of optimal search
implies that reservation utility should be lower in the héglecomplexity environment. It implies
also that optimal reservation levels are independent o$itreeof the choice set. The compara-
tive statics properties of our experimentally estimategsing rules do not align perfectly with
those of the optimal stopping rule. While subjects reduedr tleservation level in response to
higher search costs, they also tendncreasetheir reservation level as the size of the choice set
increases.

One possible reason for this discrepancy is that subjecysbaasearching “too much” in
larger choice sets relative to smaller ones. This may rétefiedings from the psychology and
experimental economics literature that show that peopleprafer smaller choice sets (lyengar
and Lepper [2000], Seuanez-Salgado [2086])t is also possible that satisficing is followed as
a rule of thumb, as Simon [1955] suggested. In the more eagrgdntext with unknown object
values, subjects may search more in larger sets in ordeffitee iheir understanding of what
is available. They may then import this behavior into theesipental lab, despite being fully
informed about the distribution of object values.

VI. A Pure Random Error Model

Our explanation for subjects’ failure to pick the objechivbeest option is based on incomplete
sequential search. However, another possibility is thegdHailures result from calculation errors
— subjects search the entire choice set but make errors wh&raéng each option. In order to
test this alternative explanation, we consider a simpleghoficomplete search with calculation
errors. We put a simple structure on the error process —asldiee modeled as if they see the true
value of each object with an error that is drawn indepengdim an extreme value distribution.
The mode of this distribution is 0, and the scale factor oretiner term is allowed to vary with
complexity level and set size. With these assumptions, wweestimate the scale factor for each
treatment using logistic regression. Specifically, we fimel $cale factor that best predicts the
actual choice in each choice gétWe allow for scale factors to differ between treatments.

Table 6 shows the estimated standard deviations from tloellesibn error model. This pro-
vides the first piece of evidence to suggest that the calonlatror model is implausible. In large
and complicated choice sets, the standard deviation ndedédhe data becomes very large —
for example, in the size 40, complexity 3 treatment, the edoefween minus one and plus one
standard deviation is around $7, while the mean value of ledice objects is just $4.

Despite these large standard deviations, the calculationmodel significantly underpredicts
both the frequency and magnitude of our subjects’ losseshasn in table 28 The prediction of
subject performance under the estimated calculation erooiel was based on 1,000 simulations
of each observed choice set, in which a draw from the estandistribution was added to the
value of each option and the object of highest total valueiderstified as being chosen.

A final problem with the calculation error model is that it shiblead to far more violations
of sequential search than we in fact observe. Were subjedis making calculation errors of

260ne factor that potentially links these two findings is theaapt of regret. Zeelenberg and Pieters [2007] show
that decision makers experience more regret in larger efssts and suggest that this can lead them to search for more
information.

27For example, if a value of 10 was chosen by a subject ffei0, 12}, then our estimation strategy would find the
scale factor that gives the highest probability to choodiBggiven that all options are seen with their own error. With
this approach, enough error must be applied so that the sigiegl of 10 appears larger than the noisy signal of 12, but
not so much error that the noisy signal of 7 appears largerttienoisy signal of 10.

28p\|ternatively, we could have estimated the scale factorest match the number of mistakes or magnitude of mis-
takes found in the data, but this would ignore the actualagwihat subjects made, which may contain other unpredicted
patterns.
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TABLE 6—ESTIMATED STANDARD DEVIATIONS (IN DOLLARS) FOR THE CALCULATION ERROR MODEL(EXPERF
MENT 1 AND EXPERIMENT 2)

Complexity

Set size Set size 3 7
10 Choice process 1.91 5.32
Standard choice 1.90 3.34
20 Choice process 2.85 5.23
Standard choice 2.48 4.75
40 Choice process 3.54 7.25
Standard choice 3.57 6.50

TABLE 7—PERFORMANCE OF ACTUAL CHOICES AND SIMULATED CHOICES USING TH CALCULATION ERROR
MODEL (EXPERIMENT 2)

Failure rate (percent)

Complexity
Set size Set size 3 7
10 Actual choices 11.38 46.53
Simulated choices 8.35 32.47
20 Actual choices 26.03 58.72
Simulated choices 20.13 37.81
40 Actual choices 37.95 80.86

Simulated choices 25.26 44.39
Absolute loss (dollars)

Complexity
Set size Set size 7
10 Actual choices 0.42 3.69
Simulated choices  0.19 1.86
20 Actual choices 1.62 451
Simulated choices  0.62 1.78
40 Actual choices 2.26 8.30

Simulated choices  0.75 2.48

the magnitude required to explain final choices, we wouldeekpo see them switch to worse
objects more often than they do. We demonstrate this in figufeor this figure, the prediction
of subject performance under the estimated calculatiar enodel is based on simulations of
choice process data assuming that values are observededtment-specific erréf. Note that

29Simulated data was generated as follows. For each sequénheice process data observed in experiment 2, we
simulated 1,000 sequences of the same length. For eachneeq@edraw from the value distribution (rounded to the
nearest integer) was treated as the initial selection. Theaf this value and a draw from the treatment-specific error
distribution was then compared to the sum of a second draw fne value distribution and a draw from the treatment-
specific error distribution. If the latter sum was highentltlae initial sum, then we assumed a switch occurred, and the
value of the second draw from the value distribution wasiedforward as the current selection. Otherwise we assumed
that no switch occurred, and so the initial selection reexhiie current selection. Another draw from the value araterr
distributions was then made, and compared to the curresttsmh plus error. This process was then repeated until the
number of simulated switches was equal to the length of bstitches in sequence taken from experiment 2. We then
calculated the ratio of correct switches (where the truaevalf the new selection was higher than the true value of the
current selection) to the total number of switches.
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FIGURE 7. COMPARISON OF THE PROPORTION OF SWITCHES TO LARGER VALUE FORCAUAL DATA AND SIMU -
LATED DATA FROM CALCULATION ERROR MODEL (EXPERIMENT 2)

the predicted success rates for the calculation error nmisdleélow the lower bounds of the 95
percent confidence interval bars for all treatments.

VII. Concluding Remarks

We introduce a choice-based experiment that bridges thbefaeen revealed preference the-
ory and the theory of search. We use it to classify searchviaisan various decision making
contexts. Our central finding concerns the prevalence dffisittg behavior. Models of sequen-
tial search based on achievement of context dependenvatiser utility closely describe our
experimental data, suggesting the value of the searchatietens in systematizing our under-
standing of boundedly rational behavior.
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Figure 1: A typical choice round

Round Current selection:

2 of 30 | four plus sight minus four

Choose ane:
O | zern |
O | three plus five minus seven |
O | four plus two plus zerg |
O | four plus three minus six |

2 | four plus eight minus feur |

| three minus three plus ane |
O | five plus one minus one |
O | eight plus two minus five |
O | three plus six minus five |
O | four minus two minus one |
O | five plus five minus one |

Figure 2: Distribution of HM indices for actual and random data (experiment 2)
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Figure 3: Proportion of final choices where the best option was found and largest proportion of selections
to higher value (experiment 2)
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Figure 4. Average value by selection (experiment 2
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Figure 5: Average time by switch (experiment 2)
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Figure 6: Average value by switch (experiment 1)
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Figure 7: Comparison of the proportion of switchesto larger value for actual data and
simulated data from calculation error model (experiment 2)
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Note: Interval bars represent 95 percent confidence intervals




