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Apparently mistaken decisions are ubiquitous. To what extent does this

reflect irrationality, as opposed to a rational trade-off between the costs

of information acquisition and the expected benefits of learning? We de-

velop a revealed preference test that characterizes all patterns of choice

“mistakes” consistent with a general model of optimal costly informa-

tion acquisition and identify the extent to which information costs can

be recovered from choice data.

Limits on attention impact choice. Shoppers may buy unnecessarily expensive prod-

ucts due to their failure to notice whether or not sales tax is included in stated prices

(Chetty, Looney and Kroft (2009)). Buyers of second-hand cars focus their attention on

the leftmost digit of the odometer (Lacetera, Pope and Sydnor (2012)). Purchasers limit

their attention to a relatively small number of websites when buying over the internet

(Santos, Hortacsu and Wildenbeest (2012)).

While apparently mistaken decisions are ubiquitous, this does not imply that decision

makers are irrational. The standard theory of choice asserts only that individuals act

optimally, given what they know. At least since the work of Hayek (1945) and Stigler

(1961), there has been a focus on the optimization of knowledge itself, with decision mak-

ers trading off the cost of learning against improved decision quality. As the universality

of knowledge constraints has been increasingly recognized, so the range of information

cost functions used to model them has expanded. Verrecchia (1982) models choice of

variance of a normal signal; Sims (2003) an unrestricted choice of information structure

with costs based on Shannon entropy; and Reis (2006) the binary choice on whether or

not to become fully informed.1

An important open question is how to test a model of optimal behavior in the face

of costly information. Information costs imply that many patterns of apparently mis-

taken choices can be rationalized. Are there any patterns of choice error that cannot
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be explained by some underlying information cost function, or is such a general theory

vacuous? We answer this question by characterizing all patterns of stochastic choice con-

sistent with rational decision making in the face of information costs. Since we make no

specific assumptions about the costs and constraints that the decision maker faces when

gathering information, our tests encompass all existing models of optimal information

acquisition.

Our non-parametric approach is motivated by the unobservability of costs of informa-

tion acquisition and acquired knowledge, just as revealed preference theory was moti-

vated by the unobservability of preferences (Samuelson (1938)). To overcome the result-

ing observational constraint requires rich choice data. The tests that we develop apply

to “state dependent” stochastic choice data, which identifies the probability of choos-

ing each available action in each state of the world. Such data allows us to directly

observe choice “mistakes”, in which a sub-optimal alternative is chosen given the true

state. While only recently introduced into revealed preference analysis (see Caplin and

Martin (2015), henceforth CM15), this data set is standard in psychometric research on

perceptual errors.2 It is also common in the econometric analysis of discrete choice. For

example, it is in just such data that Chetty, Looney and Kroft (2009) find evidence of

incomplete state awareness among buyers.

We identify two intuitive conditions that render such data consistent with optimal ac-

quisition of costly information. A “no improving action switches” (NIAS) condition

ensures that choices are optimal given what was learned about the state of the world, as

in CM15. A “no improving attention cycles” (NIAC) condition ensures that total utility

cannot be raised by reassigning information structures across decision problems. Our

main result is that these conditions are both necessary and sufficient for any arbitrary

finite data set to be consistent with a model of costly information acquisition.

In section III we show how observed choice data bounds the relative costs of chosen

information structures. We also show that adding the assumptions that more informa-

tion is more costly, that mixed strategies are feasible, and that inattention is costless

put no additional restrictions on the data.3 In contrast, commonly used parametric cost

functions have significant additional implications for behavior. We consider the case of

information costs based on the expected reduction in Shannon entropy between prior and

posterior (Sims (2003)), which has been heavily used in the applied literature.4 We out-

line key behavioral properties implied by this cost function, which are significantly more

restrictive than NIAS and NIAC alone (see also Caplin and Dean (2013)).

As detailed in section 5, our paper is most closely related to that of de Oliveira et al.

(2013), which derives similar results in the setting of choice over menus. Other au-

thors have considered the implications of more specific models of costly information

acquisition (Caplin and Dean (2011), Ellis (2012), Matejka and McKay (2015)). Our

work also fits into a growing literature aimed at identifying the behavioral implications

2In the mid-19th century, Ernst Weber pioneered its use in the experimental assessment of how accurately individuals

could differentiate between objectively different stimuli (see Murray (1993)).
3This result is in the spirit of Afriat (1967).
4e.g. Sims (2006), Woodford (2009), van Nieuwerburgh and Veldkamp (2009) Mackowiak and Wiederholt (2010),

Matejka (2010), Martin (2013).
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of boundedly rational models in which the information state of the decision maker is

unknown (Masatlioglu, Nakajima and Ozbay (2012), Bergemann and Morris (2013b),

Dillenberger et al. (2014), Manzini and Mariotti (2014)). Analogous revealed prefer-

ence approaches have recently been applied to various behavioral models of individual

and group decision making (Crawford (2010), Cherchye, Rock and Vermeulen (2011),

de Clippel and Rozen (2012)).

Section 2 introduces the costly information representation. Section 3 provides our key

characterization theorem. Section 4 establishes limits on the identifiability of information

costs. Section 5 reviews related literature.

I. A Costly Information Representation

A. Data

We consider a decision maker (DM) who chooses among actions, the outcomes of

which depend on which of a finite number of states of the world ω ∈ � eventuates. Each

action a is a mapping from � to a prize space X . We let F = X� denote the grand

set of actions and F ≡ {A ⊂ F ||A| < ∞} the set of decision problems (i.e. available

alternatives from which the DM must choose).

The behavior of the DM is observed in a finite set of such decision problems. In each

decision problem we observe state dependent stochastic choice data, which describes

the probability of choosing each available action in each state of the world. Such data

is richer than standard stochastic choice data (e.g. Gul and Pesendorfer (2006)), as it

conditions choice probabilities on the state.

DEFINITION 1: A state dependent stochastic choice data set is a collection of decision

problems D ⊂ F and related set of state dependent stochastic choice functions P =
{PA}A∈D where PA : � → 1(A). We denote as PA(a|ω) the probability of choosing

action a conditional on state ω in decision problem A.

In addition to the pair (D, P), the DM’s prior beliefs µ ∈ 0 = 1(�) are treated as

known. Note that, in our data set, the empirical frequency of each state is observable.

Hence an alternative interpretation of the observability of prior beliefs is that we assume

µ to be equal to this empirical frequency, in which case our theory incorporates the

hypothesis that the DM’s prior matches the objective likelihood of each state.5

For simplicity we assume that the expected utility function u : X −→ R is known,

with u(a(ω)) denoting the utility of action a in state ω. This allows us to focus exclu-

sively on the implications of unobserved information costs. We address the case in which

beliefs and preferences are unobservable in section II.F.

Our data set allows us to observe the pattern of choice “errors” made by a decision

maker - i.e. cases when they chose one option when another had a higher payoff given

the state. Our goal is to characterize what form such errors must take if they are to be

consistent with rationality of attentional choice.

5Although in principle our model allows for the DM’s prior beliefs to be different from the true probability of each

state.
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State dependent stochastic choice data can be readily gathered in the laboratory (see

for example Caplin and Dean (2014)). By aggregating across individuals, such data can

also be extracted from field settings in which fluctuations in an underlying state (for

example prices or tax rates) may or may not be fully understood by the DM.

EXAMPLE

We illustrate the concept of state dependent stochastic choice data with an example

which we will use throughout the paper (and which forms the basis of the experimental

tests reported in Caplin and Dean (2014)). Risk neutral6 subjects are faced with a screen

on which there are 100 balls, each of which may be either red or blue. Ex ante, subjects

are informed that there is an equal chance that there will be either 49 or 51 red balls on

the screen. They choose between action a, which pays $10 if there are 49 red balls and

$0 otherwise, and action b, which pays $10 if there are 51 red balls on the screen and $0

otherwise. In our framework, this setting can be described as a decision problem with

two states {ω1, ω2}, prior probabilities µ(ω1) = µ(ω2) = 0.5, choice set A = {a, b},
and utility function u(a(ω1)) = u(b(ω2)) = 10 and u(b(ω1)) = u(a(ω2)) = 0.

Subjects make repeated choices in this environment, with a new state and realized array

of balls drawn each time. On each trial, the experimenter observes both the true state,

and the choice made by the subject. This reveals the empirical frequency with which the

subject chooses each action in each state. These frequencies provide an estimate of PA,

the state dependent stochastic choice data for set A.

B. Model

We model the behavior of a DM who can gather information about the state of the

world prior to choosing an action. Importantly, the DM can choose what information to

gather conditional on the decision problem they are facing. In the example above, the

DM observes the contingent payoffs of the two actions they must choose between before

deciding how much effort to exert in estimating the number of red balls on the screen.

We assume that there are costs associated with gathering information: in our running

example, these costs might represent the cognitive effort of counting red balls, or the

opportunity cost of the time spent doing so. The DM must therefore trade off these costs

against the benefit of better information, and therefore better subsequent choices. We

assume that the DM solves this trade off optimally.

We take an abstract approach to modelling the DM’s choice of information. In each

decision problem, the DM chooses an information structure: a stochastic mapping from

objective states of the world to a set of subjective signals. Having selected an information

structure, the DM can condition choice of action only on these signals. Since we are

characterizing expected utility maximizers, we identify each subjective signal with its

associated posterior beliefs γ ∈ 0, which is equivalent to the subjective information

6An alternative to the assumption of risk neutrality would be to estimate a subject’s utility function for money using

choices over objective lotteries and use the estimated utility function instead. See Caplin and Dean (2013) for an example

of this approach.
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state of the DM following the receipt of that signal. As in Kamenica and Gentzkow

(2011), feasible information structures satisfy Bayes’ rule.

DEFINITION 2: The set of information structures 5 comprises all mappings π :

�→1(0) that have finite support 0(π) ⊂ 0 and that satisfy Bayes’ law, so that for

all ω ∈ � and γ ∈ 0(π),

γ (ω) = Pr(ω|γ ) =
Pr(ω ∩ γ )

Pr(γ )
=

µ(ω)π(γ |ω)∑
υ∈�

µ(υ)π(γ |υ)
,

where π(γ |ω) is the probability of signal γ given state ω.

We assume that there is a cost associated with the use of each information structure.

DEFINITION 3: An information cost function is a mapping K : 5→ R̄ with K (π) ∈
R for some π ∈ 5. We let K denote the class of such functions.

We put no restrictions on the cost function, meaning that our model nests all standard

models of information acquisition. This includes the rational inattention model in which

K is proportional to the Shannon mutual information between prior and posterior infor-

mation states (e.g. Sims (2003)).7 We allow costs to be infinite to cover hard constraints

on information acquisition - as when a bound is imposed on the mutual information

between prior and posteriors (Sims (2003)), or when the DM can choose only certain

partitional information structures (Ellis (2012)) or specific types of signal (for example

Verrecchia (1982), in which the DM can choose only normal signals).

We define G : F×5 → R as the gross payoff of using a particular information

structure in a particular decision problem. This is calculated assuming that actions are

chosen optimally following each signal,

G(A, π) ≡
∑
γ∈0(π)

[∑
ω∈�

µ(ω)π(γ |ω)

][
max
a∈A

∑
ω∈�

γ (ω)u(a(ω))

]
.

Here the first bracketed term is the probability of each signal, and the second is the

maximum achievable expected utility from A given the resulting beliefs.

We model a DM who, for any given decision problem, chooses an information struc-

ture to maximize gross payoffs net of information costs. We use 5̂(K , A) to refer to the

set of optimal information structures in decision problem A given cost function K :

5̂(K , A) = arg max
π∈5
{G(A, π)− K (π)} .

While we focus on the case of a static, once-off choice of information structure, we show

in Caplin and Dean (2014) that our results extend directly to the case of sequential choice

of information.

7See section III.C for further details of this model.
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C. Representation

Our aim is to understand the conditions under which state dependent stochastic choice

data can be represented as resulting from costly information acquisition. Such a repre-

sentation consists of three unobserved elements: (i) an information cost function which

captures the subjective cost of different types of information; (ii) an attention function

which captures the DM’s choice of information structure in each decision problem; (iii) a

choice function which captures the DM’s choice of action following the receipt of each

signal.8

Because we wish to model the behavior of a DM who behaves rationally given their

information costs, both the attention function and the choice function must be optimal in

order to form part of a costly information acquisition representation. This means that the

choice of information structure in each decision problem must be optimal given infor-

mation costs, and an action can only be chosen with positive probability after the receipt

of a signal if it maximizes expected utility given the resulting beliefs. Furthermore, in

order to represent a given data set, the information structure and choice function for each

decision problem must give rise to the observed pattern of state dependent stochastic

choice.

DEFINITION 4: Given µ ∈ 0 and u : X −→ R, a state dependent stochastic choice

data set (D, P) has a costly information representation if there exists information cost

function K ∈ K, attention function {π A}A∈D and choice function {CA}A∈D such that, for

all A ∈ D:

1) Information is optimal: π A ∈ 5̂(K , A) ≡ arg maxπ∈5 {G(A, π)− K (π)} .

2) Choices are optimal: the choice function CA : 0(π A)→ 1(A) is such that, given

a ∈ A and γ ∈ 0(π A) with CA(a|γ ) ≡ Pr(a|γ ) > 0,∑
ω∈�

γ (ω)u(a(ω)) ≥
∑
ω∈�

γ (ω)u(b(ω)) all b ∈ A.

3) The data is matched: given ω ∈ � and a ∈ A,

PA(a|ω) =
∑

γ∈0(π A)

π A(γ |ω)CA(a|γ ).

II. Characterization

We establish two conditions as necessary and sufficient for a state dependent stochastic

choice data set to have a costly information representation. The first ensures optimality of

the information structure with regard to some cost function and applies to the collection

of decision problems. The second ensures optimality of final choice given an information

structure and applies to each decision problem separately.

8We allow the DM to randomize their choices of actions conditional on each signal.



VOL. VOL NO. ISSUE REVEALED PREFERENCE AND RATIONAL INATTENTION 7

A. The Revealed Information Structure

The key to our approach is the observation that one can learn much about a DM’s at-

tention strategy from state dependent stochastic choice data. For each decision problem,

we construct a “revealed information structure”, which replaces the actual information

structure the DM used in a decision problem with an information structure that can be

inferred directly from the data. We do this by imagining that each action is chosen in at

most one subjective information state. If this assumption holds then the revealed infor-

mation structure will be identical to the true information structure used by the DM. If not,

then the revealed information structure is still related to the true information structure, as

we discuss below.

We begin by identifying the revealed posterior beliefs γ̄ a
A associated with each cho-

sen action. This specifies probabilities over states of the world conditional on action a

being chosen in data set PA. If the DM chooses each action in at most one subjective

information state then the revealed posteriors are the same as their true posterior belief

when each action is chosen.9 If they choose the same action in more than one subjective

state then the revealed posterior is the appropriate weighted average of the corresponding

beliefs.

DEFINITION 5: Given µ ∈ 0, A ∈ D, PA ∈ P, and a ∈ Supp(PA), the revealed

posterior γ̄ a
A ∈ 0 is defined by,

γ̄ a
A(ω) ≡ Pr(ω|a chosen from A)

=
µ(ω)PA(a|ω)∑

υ∈�

µ(υ)PA(a|υ)
.

In order to construct the revealed information structure, we use the set of revealed

posteriors as the set of signals. The probability of signal γ in state of the world ω is then

calculated by adding up the choice probabilities in state ω of all actions that have γ as

their revealed posterior.

DEFINITION 6: Given µ ∈ 0, A ∈ D, and PA ∈ P, the revealed information struc-

ture π̄ A ∈ 5 satisfies,

π̄ A(γ |ω) =
∑

{a∈Supp(PA)|γ̄ a
A
=γ }

PA(a|ω).

Even if the DM is behaving according to the model described in section I.B, their

revealed information structure may not be the same as their true information structure

if they choose the same action following two different signals.10 However, it must be

9Note that we are here assuming that µ specifies both the DM’s beliefs and the true probability of each state. If not,

the revealed posterior refers to the DM’s subjective belief of the likelihood of each state after the choice of each act,

which may be different from the true probability.
10An optimal DM would never choose to do this if more informative signals (in the sense described below) are more

expensive, but might do so if, for example, they are restricted to using normal signals.
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the case that the revealed information structure is weakly less informative (in the sense

of statistical sufficiency) than the true information structure, and in fact any information

structure consistent with the data. Intuitively, this means that the revealed information

structure can be obtained by “adding noise” to the true information structure. This notion

is formalized in the following definition, adapted from Blackwell (1953).

DEFINITION 7: Information structure ρ ∈ 5 is sufficient for information structure

π ∈ 5 (equivalently π is a garbling of ρ) if there exists a |0(ρ)| × |0(π)| matrix B ≥ 0

with
∑

γ j∈0(π) bi j = 1 all i and such that, for all γ j ∈ 0(π) and ω ∈ �,

π(γ j |ω) =
∑

ηi∈0(ρ)

bi jρ(ηi |ω).

This definition states that information structure ρ is sufficient for information structure

π if π can be obtained by applying a stochastic matrix B to ρ. One way to interpret the

concept of garbling is by considering a procedure by which π is constructed by first ap-

plying ρ, then adding noise by combining the resulting information states together using

the weights bi j . Example 1 below includes an application of the concept of sufficiency.

Lemma 1 establishes that any information structure which is consistent with the state

dependent stochastic choice data in a given decision problem must be sufficient for the

revealed information structure.

LEMMA 1: If π ∈ 5 is consistent with PA ∈ P, 11 then it is sufficient for π̄ A.
PROOF:

All proofs can be found in appendix 1.

Thus, while we cannot guarantee that the revealed information structure is the same as

the true information structure, we do know that it must be more informative than the true

information structure. The following section makes use of this observation to identify a

necessary condition for the costly information representation.

The following example demonstrates the construction of the revealed information

structure and its relationship with the true information structure.

EXAMPLE 1: Consider a DM who, when faced with the decision problem A defined

in section I.A employs an information structure with three signals, α, β, δ ∈ 0 such that

the resulting posterior beliefs are:

α = (α(ω1), α(ω2)) =

(
3

4
,

1

4

)
; β =

(
1

4
,

3

4

)
; δ =

(
1

2
,

1

2

)
.

11i.e. there exists C : 0(π)→ 1(A) such that, for each γ ∈ 0(π),

C(a|γ ) > 0 H⇒
∑
ω∈�

γ (ω)u(a(ω)) ≥
∑
ω∈�

γ (ω)u(b(ω)) all b ∈ A,

and for each ω ∈ � and a ∈ A,

PA(a|ω) =
∑

γ∈0(π)

π(γ |ω)C(a|γ ).
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The conditional probabilities of receiving each signal are:

π A(α|ω1) =
1

2
; π A(β|ω1) =

1

6
; π A(δ|ω1) =

1

3
;

π A(α|ω2) =
1

6
; π A(β|ω2) =

1

2
; π A(δ|ω2) =

1

3
.

Suppose that after the receipt of signal α the DM chooses action a for sure and after the

receipt of β they choose action b for sure. After the receipt of signal δ they randomize

between the two actions:

CA(a|α) = CA(b|β) = 1;

CA(a|δ) = CA(b|δ) =
1

2
.

This behavior gives rise to state dependent stochastic choice data:

PA(a|ω1) = π A(α|ω1)+
1

2
π A(δ|ω1) =

2

3
;

PA(a|ω2) = π A(α|ω2)+
1

2
π A(δ|ω2) =

1

3
;

The resulting revealed information structure has two revealed posteriors, one associated

with the choice of a and the other with the choice of b:

γ̄ a
A =

(
2

3
,

1

3

)
and γ̄ b

A =

(
1

3
,

2

3

)
.

The corresponding revealed information structure is then given by

π̄ A(γ̄
a
A|ω1) = PA(a|ω1) =

2

3
;

π̄ A(γ̄
a
A|ω2) = PA(a|ω2) =

1

3
.

Clearly, the revealed information structure is not the same as the true information

structure, but the true information structure is sufficient for the revealed information

structure. This can be seen by applying the stochastic matrix B to to π A, in order to

obtain π̄ A,

B =


1 0

0 1
1
2

1
2

 .
The rows relate to signals α, β and δ respectively, while the columns relate to signals
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γ̄ a
A and γ̄ b

A respectively. Thus, for example

π̄ A(γ̄
a
A|ω1) = b1,1π A(α|ω1)+ b2,1π A(β|ω1)+ b3,1π A(δ|ω1) = 1 ∗

1

2
+

1

2
∗

1

3
=

2

3
,

as required. Note that the stochastic matrix B is closely related to the choice function

CA: bi j is the probability of choosing the action associated with the revealed posterior

in column j following the receipt of the signal associated with row i.

B. No Improving Attention Cycles

Our first condition restricts choice of information structure across decision problems to

ensure consistency with a fixed underlying information cost function. Essentially, total

gross utility cannot be increased by reassigning information structures across decision

problems. To illustrate, consider again the two state, two action decision problem of

section I.A in which the DM earns 10 for choosing action a in state ω1 or b in state ω2

and zero otherwise. Suppose, as in the example above, that the observed choice behavior

is,

PA(a|ω1) =
2

3
= PA(b|ω2).

Now consider a second decision problem A′ =
{
a′, b′

}
in which the DM earns 2 for

choosing the “correct” action and zero otherwise, so u(a′(ω1)) = u(b′(ω2)) = 2 and

u(b′(ω1)) = u(a′(ω2)) = 0, with corresponding data,

PA′(a
′|ω1) =

3

4
= PA′(b

′|ω2).

Intuitively, these data should not have a costly information representation. Action set A

provides greater reward for discriminating between states, yet the DM is more discerning

under action set A′. To crystallize the resulting problem, note that, for behavior to be

consistent with costly information acquisition for some cost function K it must be the

case that DM’s true choice of information structures satisfies:

G(A, π A)− K (π A) ≥ G(A, π A′)− K (π A′);

G(A′, π A′)− K (π A′) ≥ G(A′, π A)− K (π A).

Hence,

G(A, π A)− G(A, π A′) ≥ K (π A)− K (π A′) ≥ G(A′, π A)− G(A′, π A′),

implying finally that,

(1) G(A, π A)+ G(A′, π A′) ≥ G(A, π A′)+ G(A′, π A).

We conclude that, for this data to be rationalizable, gross benefit must be maximized by

the assignment of the chosen information structure to the corresponding decision prob-
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lem. We translate this into a testable condition by noting that the corresponding inequal-

ity remains valid when we replace the true with the revealed information structure. To

do so, we make use of Blackwell’s theorem (Blackwell (1953)), which establishes the

equivalence of the statistical notion of sufficiency and the economic notion “more valu-

able than”. If information structure π is sufficient for ρ, then it yields (weakly) higher

gross payoffs in any decision problem.

REMARK 1: Given decision problem A ∈ F and π, ρ ∈ 5 with ρ sufficient for π ,

G(A, ρ) ≥ G(A, π).

Combined with observation that the true information structure must be sufficient for

the revealed information structure, this implies that G(i, π j ) ≥ G(i, π̄ j ) for i. j ∈
{A, A′}. Furthermore, it is clear that G(i, π i ) = G(i, π̄ i ) for i ∈ {A, A′} since the

resulting state dependent choices are identical. As a result, we can replace equation 1

with a testable condition,

(2) G(A, π̄ A)+ G(A′, π̄ A′) ≥ G(A, π̄ A′)+ G(A′, π̄ A).

In the above example G(A, π̄ A)+G(A′, π̄ A′) = 8 1
6
, while G(A, π̄ A′)+G(A′, π̄ A) = 8 5

6
.

Thus, there is no cost function that can be used to rationalize this data.

Our explanation so far has considered only bilateral reassignments of information

structures. The NIAC condition ensures that gross utility cannot be increased by re-

assigning information structures along any cycle of decision problems. It is analogous

to the cyclical monotonicity condition discussed in Rockafellar (1970), and has been

used in other recent work examining the revealed preference implications of behavioral

models (see for example Crawford (2010)).

Condition D1 (No Improving Attention Cycles) Givenµ ∈ 0 and u : X → R, (D, P)
satisfies NIAC if, for any set of decision problems A1, A2, ...., AJ ∈ D with

AJ = A1,
J−1∑
j=1

G(A j , π̄ A j ) ≥
J−1∑
j=1

G(A j , π̄ A j+1),

In section II.E we demonstrate the application of the NIAC condition to the simple

case of two actions and two states.

C. No Improving Actions Switches

Our second condition is based on the fact that a DM’s choices must be optimal given

posterior beliefs. Thus when one identifies in the data the revealed posterior associated

with any chosen action, that action must be optimal given those beliefs. This implies

that, for any A ∈ D, a ∈ Supp(PA), and b ∈ A,

(3)
∑
ω∈�

γ̄ a
A (ω) u(a(ω)) ≥

∑
ω∈�

γ̄ a
A (ω) u(b(ω)).
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This statement follows directly from the optimality of choice if each action is chosen

in at most one state, and so the revealed posterior is equal to the true posterior. It also

holds true if the same action is chosen in many given information states: the action must

be optimal at each information state at which it is chosen, and so also must be optimal

at any convex combination of those beliefs, including the revealed posterior. CM15

show that this condition characterizes Bayesian behavior regardless of the rationality of

attentional choice. The strategic analog is derived by Bergemann and Morris (2013b) in

characterizing Bayesian correlated equilibria.

Equation 3 can be rewritten directly in terms of state dependent stochastic choice data:

Condition D2 (No Improving Action Switches) Given µ ∈ 0 and u : X → R, data

set (D, P) satisfies NIAS if, for every A ∈ D, a ∈ Supp(PA), and b ∈ A,∑
ω∈�

µ(ω)PA(a|ω) (u(a(ω))− u(b(ω))) ≥ 0.

Section II.E contains a simple application of NIAS to the two state, two action case.

CM15 contains many further illustrative examples.

D. Characterization

The above analysis shows that both NIAC and NIAS are necessary for the existence of

a costly information representation. Our central result is that they are also sufficient. We

establish this by following the approach that Koopmans and Beckmann (1957) developed

to solve the problem of locating indivisible factories across sites so as to maximize total

profits. They show that the solution to this allocation problem can be found by solving a

linear program in which one imagines the factories to be divisible. Their key observation

is that there is an extreme point solution, which corresponds to placing each factory in

one and only one location. Associated with the solution to the linear programming prob-

lem are shadow prices (either rents on locations or prices of factories) that decentralize

the allocation. By direct analogy, the NIAC conditions states that the DM has allocated

revealed information structures to decision problems in such a manner as to maximize

total gross expected utility. The cost function K that we introduce is based directly on

the shadow prices that decentralize this optimal allocation (see also Rochet (1987)).

THEOREM 1: Given µ ∈ 0 and u : X → R, data set (D, P) has a costly information

acquisition representation if and only if it satisfies NIAS and NIAC.

E. NIAC and NIAS: the 2× 2 Case

We now provide a concrete application of the NIAC and NIAS conditions to the simple

case of two actions and two equally likely states. Consider first a single decision problem

A = {a, b} with two equally likely states of the world, and with action a better than

action b in state ω1, and vice versa in state 2: u(a(ω1)) > u(b(ω1)) and u(b(ω2)) >
u(a(ω2)) (this represents a generalization of the example from section I.A). To apply
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NIAS, note that posterior beliefs can be summarized by γ (ω1), the probability of state

1. The value of choosing action a is increasing and the value of choosing action b is

decreasing in this probability. There is therefore a threshold on γ (ω1) such that above

the threshold it is optimal to choose a and below it is optimal to choose action b. NIAS

translates this observation into the following condition on the state dependent stochastic

choice data,

(4) PA(a|ω1) ≥ max {αPA(a|ω2), αPA(a|ω2)+ β} ,

where

α =
u(b(ω2))− u(a(ω2))

u(a(ω1))− u(b(ω1))

β =
u(a(ω1))+ u(a(ω2))− u(b(ω1))− u(b(ω2))

(a(ω1))− u(b(ω1))

Thus the relative cost of mistakes in the two states puts a bound on the relative likelihood

of choosing action a in the two states.

Given two analogous decision problems Ai =
{
ai , bi

}
for i = 1, 2 with u(ai (ω1)) >

u(bi (ω1)) and u(bi (ω2)) > u(ai (ω2)), the NIAC condition reduces to,

(5)

1P(a|ω1) (1 (u(a(ω1))− u(b(ω1))))+1P(b|ω2) (1 (u(b(ω2))− u(a(ω2)))) ≥ 0,

where1 indicates the change in the relevant variable between the two decision problems.

The first term is equal to the product of change in the probability of making the correct

choice in state ω1, with the change in the value of making the correct choice in that state.

The second term is the same product for state ω2.

F. Unobservable Utility and Prior Beliefs

So far we have assumed that the DM’s expected utility function and prior beliefs over

states of the world are both known to the researcher - only information structures, choice

functions and costs are not directly observable. We now outline two ways to adapt our

approach to allow for an unknown utility function and/or prior.

One approach is to enrich the data set to allow for the recovery of beliefs and prefer-

ences from choices that are unaffected by information costs. These beliefs and prefer-

ences could then be used as a starting point for our representation. In order to recover

utility, we could replace the “Savage style” actions we use in this paper (which map de-

terministically from states of the world to prizes) with “Anscombe-Aumann” acts that

map states of the world to probability distributions over the prize space. Assuming the

DM does maximize expected utility, u could then be recovered by observing choices

over degenerate acts (i.e. acts whose payoffs are state independent).12 If we further add

12An applied variant of this approach involves separately identifying a subject’s utility function for money using, for

example, a multiple price list method - see for example Caplin and Dean (2013).
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to our data set the choices of the DM over acts before the state of the world is determined

(or at least in a situation in which they cannot exert any effort to determine that state)

then we can also recover the DM’s prior over objective states (again assuming expected

utility maximization). This method is pursued in de Oliveira et al. (2013).13

A second approach is to directly identify testable implications when utility, prior be-

liefs, and information costs are all unobserved. In Caplin and Dean (2014) we show that,

in such cases, the model is consistent with the data if and only if there exists a utility

function and set of prior beliefs such that NIAC and NIAS hold. This gives rise to a set

of inequality constraints to which a solution must exist if the data is to be rationalizable

with a costly information representation (such a result is similar in spirit to Crawford

(2010)). In the case in which the prior is known but the utility function is not, these con-

straints are linear and easy to check (see CM15 for the implications of NIAS alone). If the

prior is also unknown, then the conditions are non-linear, but still non-vacuous. CM15

provide an example of data that is incompatible with NIAS for any utility function and

prior. Caplin and Dean (2014) provide an example of behavior that is commensurate

with NIAS but is not commensurate with NIAC for any non-degenerate utility function

and prior.

III. The Information Cost Function

In this section we discuss what can be learned about information costs from state

dependent stochastic choice data, as well as the behavioral implications of placing further

restrictions on the information cost function.

A. Recoverability and Uniqueness

Theorem 1 tells us the conditions under which there exists an information cost function

that will rationalize the data. We now identify all such cost functions, in the spirit of

Varian (1984) and Cherchye, Rock and Vermeulen (2011). We restrict ourselves to cost

functions in which more information is at least weakly more costly, so that we can treat

revealed information structures as optimal. The key observation is that the choice of

π̄ A in decision problem A puts an upper bound on its cost relative to that of any other

strategy π ∈ 5,

(6) K (π̄ A)− K (π) ≤ G(A, π̄ A)− G(A, π).

This directly implies an upper and lower bound on the relative costs of any two revealed

information structures π̄ A, π̄ B for A, B ∈ D,

G(B, π̄ A)− G(B, π̄ B) ≤ K (π̄ A)− K (π̄ B) ≤ G(A, π̄ A)− G(A, π̄ B).

An obvious corollary of theorem 1 is that a weakly monotonic information cost func-

tion can rationalize a data set if and only it satisfies this inequality for every A,B ∈ D,

13Ellis (2012) also uses this method to identify the DM’s utility function, but takes a different approach to identifying

prior beliefs.
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and the costs of unchosen information structures are high enough to satisfy inequality 6.

This condition implies potentially tighter bounds on the relative cost of any two re-

vealed information structures. Consider the corresponding inequalities in the sequence

A1...An ∈ D with A1 = A and An = B,

K (π̄ A1)− K (π̄ A2) ≤ G(A1, π̄ A1)− G(A1, π̄ A2);

K (π̄ A2)− K (π̄ A3) ≤ G(A2, π̄ A2)− G(A2, π̄ A3);
...

K (π̄ An−1)− K (π̄ An ) ≤ G(An−1, π̄ An−1)− G(An−1, π̄ An ).

Summing these inequalities yields a bound on K (π̄ A)− K (π̄ B). This relative cost must

obey such bounds for all cycles,

(7) K (π̄ A)− K (π̄ B) ≤ min
{A1...An∈D|A1=A,An=B}

n−1∑
i=1

[
G(Ai , π̄ Ai )− G(Ai , π̄ Ai+1)

]
.

Considering the reverse sequence A1, ..., An ∈ D with A1 = B and An = A,

(8) K (π̄ A)− K (π̄ B) ≥ max
{A1...An∈D|A1=B,An=A}

n−1∑
i=1

[
G(Ai , π̄ Ai+1)− G(Ai , π̄ Ai )

]
.

Note also that if one considers cost functions for which inattention is free (as discussed

below), the above inequalities can be used to place absolute bounds on the level of costs.

B. Untestable Restrictions on Information Costs

We now introduce three natural restrictions on K : weak monotonicity with respect to

sufficiency, feasibility of mixed strategies, and costless inattention. In principle these re-

strictions might tighten requirements for rationalizability of stochastic choice data, since

they constrain the costs of unchosen strategies. Theorem 2 establishes that this is not the

case: if state dependent stochastic choice is rationalizable, then it is rationalizable by a

cost function that satisfies these three conditions.

A partial ranking of the informativeness of information structures is provided by the

notion of statistical sufficiency (see definition 7). Our first, apparently natural condition

for an information cost function is that more information is (weakly) more costly. This

is implied, for example, by free disposal of information.

Condition K1 K ∈ K satisfies weak monotonicity in information if, for any π, ρ ∈ 5
with ρ sufficient for π ,

K (ρ) ≥ K (π).

A second natural condition is that DMs can choose to mix information structures and

pay the corresponding expected costs. For example, they could flip a coin and choose
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strategy π if the coin comes down heads and strategy η if it comes down tails. In ex-

pectation the cost of this strategy would be half that of π and half that of η. Note that

the resulting mixing is not of the posteriors themselves, but of the odds of the given

posteriors. To illustrate, consider again a case with two equiprobable states. Let infor-

mation structure π be equally likely to produce posteriors (.3, .7) and (.7, .3), with η
equally likely to produce posteriors (.1, .9) and (.9, .1). Then the mixture strategy 0.5◦
π + 0.5 ◦ η is equally likely to produce all four posteriors.

DEFINITION 8: Given information structures π, η ∈ 5, and α ∈ [0, 1], the mixture

strategy α ◦ π + (1− α) ◦ η ≡ ψ ∈ 5 is defined by

ψ(γ |ω) = απ(γ |ω)+ (1− α)η(γ |ω),

all ω ∈ � and γ ∈ 0(π) ∪ 0(η).

Allowing mixtures between strategies π, η ∈ 5 puts an upper bound on the cost of the

information structure α ◦ π + (1− α) ◦ η in terms of K (π) and K (η). However, it does

not pin down the cost precisely, since there may be a more efficient way of constructing

the mixed information structure.

Condition K2 Mixture Feasibility: For any two strategies π, η ∈ 5 and α ∈ (0, 1),
the cost of the mixture strategy ψ = α◦ π + (1− α) ◦ η ∈ 5 satisfies,

K (ψ) ≤ αK (π)+ (1− α)K (η).

It is typical in the applied literature to allow inattention at no cost, and otherwise to

have costs be non-negative. This is our third condition.

Condition K3 Define I ∈ 5 as the strategy in which π(µ|ω) = 1 all ω ∈ �. Infor-

mation cost function K ∈ K satisfies normalization if it is non-negative where

real-valued, with K (I ) = 0.

Theorem 2 states that, whenever a costly information representation exists, one also

exists in which the cost function satisfies conditions K1 through K3. Even if any of the

above conditions is false, any data set that can be rationalized can equally be rationalized

by a cost function that satisfies them all.

THEOREM 2: Given µ ∈ 0 and u : X → R, data set (D, P) satisfies NIAS and NIAC

if and only if it has a costly information representation with conditions K1 to K3 satisfied.

Necessity is immediate from theorem 1. As detailed in the appendix, the proof of

sufficiency proceeds in three steps, starting with a costly information acquisition rep-

resentation
(
K , {π A}A∈D , {CA}A∈D

)
of the form produced in the proof of theorem 1,

which assigns infinite information costs to all non-used information structures. The first

step is to expand the domain on which K is real-valued to be closed under mixtures

and garbling. The second step is to define a candidate function K on this larger domain
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that satisfies conditions K1 through K3. The final step is to confirm that this function

provides a costly information representation.

Theorem 2 has the flavor of the Afriat characterization of rationality of choice from

budget sets (Afriat (1967)), which states that choices can be rationalized by a non-satiated

utility function if and only if they can be rationalized by a non-satiated, continuous,

strictly monotone, and concave utility function. Not all restrictions on the form of the

cost function can be so readily absorbed. For example, we cannot strengthen condition

K1 to cover the case of strict monotonicity with respect to sufficiency. We show in

appendix 2 that there are data sets satisfying NIAS and NIAC for which there exists no

cost function that produces a costly information acquisition representation with a cost

function that is strictly monotonic with the informativeness of the information structure.

Theorem 2 has interesting implications for identification. For example, individuals

may in reality be curious to learn in various contexts, meaning that the “utility cost” of

becoming better informed is negative. Theorem 2 implies that our data set is insuffi-

ciently rich to identify such curiosity should it exist: such a person would be indistin-

guishable from one whose costs were weakly monotonic with respect to informativeness.

C. The Shannon Cost Function

The Shannon mutual information cost function for an information structure is defined

as,

K (π) = λ

[
H(µ)−

∑
γ∈0(π)

(∑
ω∈�

π(γ |ω)

)
H(γ )

]
.

Here H(µ) = −
∑

ω∈� µ(ω) lnµ(ω) is the Shannon entropy function14 and λ > 0 scales

the cost of information. This highly parameterized special case of the costly information

model was introduced into the economics literature by Sims (2003), and has been justi-

fied on both information theoretic and axiomatic grounds. As noted in the introduction,

this model has been widely used in applied work.

Caplin and Dean (2013) and Matejka and McKay (2015) characterize the pattern of

state dependent stochastic choice associated with the model. An “invariant likelihood

ratio” (ILR) condition relates revealed posteriors to the utilities of chosen actions. For

any A ∈ D and a, b ∈ Supp(PA):

(9)
γ̄ a

A(ω)

exp(u(a(ω))/λ)
=

γ̄ b
A(ω)

exp(u(b(ω))/λ)
.

A further complementary slackness condition identifies the set of actions which are cho-

sen with positive probability. For any A ∈ D and a ∈ Supp(PA), b /∈ Supp(PA):

(10)
∑
ω∈�

[
γ̄ a

A(ω)

exp(u(a(ω))/λ)

]
exp(u(b(ω))/λ) ≤ 1.

14Extended to boundary points using the limit condition limγ↘0 γ ln γ = 0.
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Clearly equations 9 and 10 impose significant behavioral restrictions in addition to

NIAS and NIAC, as discussed in Caplin and Dean (2013). The ILR condition pins down

the rate at which a DM’s choice accuracy responds to incentives for making the correct

decision. The Shannon model also imposes cross-prior restrictions: once one identifies

the revealed posteriors for one prior, these same posteriors will be used for any prior in

their convex hull. Restrictions of this form are entirely absent in the general case, which

requires only validity of NIAS and NIAC for each prior.

IV. Existing Literature

Many approaches have been taken to modelling information acquisition in economic

applications, including sequential search (e.g. McCall (1970)), selection of the variance

of a normal signal (Verrecchia (1982)), the binary choice to either be fully informed or

not (Reis (2006)), and rational inattention with information costs based on Shannon mu-

tual information (Sims (2003)). Our approach allows for all of the above costs functions.

The costs of feasible attention strategies can be captured by K , while the cost of inadmis-

sible strategies can be set to infinity. The NIAS and NIAC conditions therefore provide

a test of the entire class of costly information acquisition models currently in use.

The paper closest in spirit to ours is de Oliveira et al. (2013) (henceforth DDMO),

which also identifies the behavioral implications of costly information acquisition with-

out making strong assumptions about the form of information costs. Rather than state

dependent stochastic choice, DDMO use preference over menus as their evidentiary base.

They show in this setting that a model of optimal costly information acquisition is char-

acterized by a preference for flexibility and for early resolution of uncertainty. DDMO

show also that a result similar to Theorem 2 holds in this setting, essentially for the same

reasons. For example, in both cases, if information structure ρ is more informative than

π , the latter will (weakly) never be chosen at any cost K (π) ≥ K (ρ) and so it is without

loss of generality to assume for all such cases that the relationship holds at equality.

We see the two approaches as complementary. The main difference between our work

and DDMO involves the underlying data set. We consider only data on patterns of fi-

nal choice from available actions, without considering how the set of available actions

themselves may have been chosen at an earlier stage. In contrast, they consider only

preference over menus without considering the resulting patterns of final choice. Our

approach therefore focuses directly on patterns of observed mistakes rather than how

anticipation of such mistakes impacts choice of menu. An analogy can be drawn with

the random utility literature, in which Kreps (1979) and Dekel, Lipman and Rustichini

(2001) consider the implications for menu preferences, and Gul and Pesendorfer (2006)

for stochastic choice.15 Another distinction lies in our focus on conditions which are nec-

essary and sufficient for finite data sets, and theirs on a data set rich enough to uniquely

identify utilities and prior beliefs as well as costs (though see section II.F).

15The task analogous to that of Ahn and Sarver (2013) - i.e. to understand when both stochastic choice and menu

preference can be modelled as coming from the same underlying optimization problem, is an interesting avenue for

future work.
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Other recent literature has considered the behavioral implications of specific models

of information acquisition. Caplin and Dean (2013) and Matejka and McKay (2015) an-

alyze the ramifications of rational inattention with Shannon mutual information costs for

state dependent stochastic choice data. Ellis (2012) works with state dependent determin-

istic choice data to characterize choice among available information partitions. Caplin

and Dean (2011) and Caplin, Dean and Martin (2011) consider the case of optimal se-

quential information search, using an extended data set to derive behavioral restrictions.

Again our work nests all these models as special cases.

Our work forms part of a broader effort to characterize choice behavior when the in-

ternal information state of the agent is not directly observable. Caplin and Martin (2015)

introduce the NIAS condition to characterize subjective rationality in a single decision

problem. Manzini and Mariotti (2014) consider a model in which the decision maker

has a stochastic consideration set, and makes choices to optimize preferences given what

they have paid attention to. Masatlioglu, Nakajima and Ozbay (2012) characterize “re-

vealed attention”, using the identifying assumption that removing an unattended item

from the choice set does not affect attention. Lu (2013) models the stochastic choice

of a DM who has some unobserved (but fixed) information structure. Dillenberger et al.

(2014) consider a dynamic problem in which the DM receives information in each period

which is externally unobservable, characterizing the resulting preference over menus. In

a strategic setting, Bergemann and Morris (2013a) and Bergemann and Morris (2013b)

consider the related problem of identifying all patterns of play that are consistent with

some underlying information structure for all players.

In approach, our work is related to the recent resurgence in use of revealed preference

methods to understand the observable implications of models of behavior - examples

include sequential application of criteria (Manzini and Mariotti (2007)), habit forma-

tion (Crawford (2010)), and collective consumption behavior (Cherchye, Rock and Ver-

meulen (2011)). See also de Clippel and Rozen (2012) for the explicit application of

some of these techniques to finite data.
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