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1 Introduction

As a warm-up exercise, we are going to begin discussing what we mean by �real numbers�. This will

be useful for two reasons �one of which is that real numbers are pretty foundational to what we

do, so it is useful for you to know a bit more about them. Second, it will help us to highlight the

di¤erence between various �types�of numbers; natural numbers, integers, rationals and reals. For

the remainder of the course I�ll be assuming that you know what these are, and their properties,

so it is worth refreshing our memory in this regard. We are not going to go through a formal

construction of the various number systems (we don�t have time). Rather, we are going to give

some notion of where they come from, and de�ne some of these properties. For more information,

see Ok Chapter A part 2.

2 Ordered Fields

To start with we are going to de�ne the algebraic structure of the number system. Roughly speaking,

an algebraic structure is a set of objects, and a set of operations de�ned on these objects. First, a

couple of de�nitions:

De�nition 1 Let X be a non-empty set. A binary operation is a function � : X �X ! X. For

convenience, we will write x � y rather than �(x; y) for any x; y 2 X.

For the natural numbers (i.e the counting numbers 1; 2; 3; 4:::) obvious binary operations include

addition and multiplication, but not subtraction (why not?).
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Now we can de�ne the concept of a �eld.

De�nition 2 A �eld is a non-empty set X and two binary operations, + and �, that obey the

following rules:

� Commutativity: x+ y = y + x and x� y = y � x for all x; y 2 X

� Associativity : (x+ y) + z = x+ (y + z) and (x� y)� z = x� (y � z) for all x; y 2 X

� Distributivity: x� (y + z) = x� y + x� z

� Existence of Identity Elements: There exist elements 0 and 1 in X such that 0 + x = x

and 1x = x for all x 2 X

� Existence of Inverse Elements: For each element x 2 X there exists an element �x 2 X

such that x+(�x) = 0 (the additive inverse) and for each x 2 X=0 there exists an element

x�1 such that x� x�1 = 1 (the multiplicative inverse).

Of course, you are used to dealing with addition and multiplication operations since you were

about 4 years old, so much so that they are probably second nature to you. There is, in that sense,

nothing really new here. However, there are two points worth noting.

1. A �eld is a general concept - the set X does not have to be numbers, and the concepts of

addition and multiplication do not have to be de�ned as we are used to.

2. To do most of the standard algebra we usually do, we only need these properties.

To see this second point, we can use the above structure to de�ne the concepts of �subtraction�

and �division�, as x� y := x+ (�y) and x=y = x� (y�1) (assuming y 6= 0). Furthermore, we can

derive other algebraic laws from these results, such as:

� x+ y = x+ z if and only if y = z

� �(�x) = x

� �(x+ y) = �x+�y
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These results are relatively easy to prove (you should check you can do it). We will do the �rst

one as an example:

Proof ((x+y) = (x+z) if and only if y = z). Note that there are two things to prove. However,

the �if�part is trivial, so we concentrate on the �only if�part. First, note that

y = 0 + y (Existence of Identity Element)

= (�x+ x) + y (Existence of Inverse Element)

= �x+ (x+ y) (Associativity)

So, if (x+ y) = (x+ z) we have that

y = �x+ (x+ y)

= �x+ (x+ z) (by assumption)

= (�x+ x) + z (Associativity)

= 0 + z (Inverse Element)

= z (Identity Element)

The concept of a �eld gives us the algebraic structure that we associate with numbers.1 However,

numbers have something else - an order structure. We �know�that 1 is smaller than 2, 700 is bigger

that 600 and so on. However, there is nothing in the de�nition of a �eld that captures this notion

(remember that X may not be numbers, they could be anything - types of fruit, for example). To

introduce the concept of ordering, we need to introduce the notion of a binary relation.

De�nition 3 Let X be a non-empty set. A binary relation R on X is a subset of X �X. We

write xRy to indicate that (x; y) 2 R.

You will have used binary relations before. In fact, the binary relation that you will be most

used to is the �greater than�relation for numbers. The binary relation de�nes a �property�, and

all pairs in R possess this property, while the pairs not in R do not.
1Of course, a �eld is only one type of algebraic structure. We could demand less structure - for example we could

drop the requirement of inverses for multiplication. This is called an integral domain. We could additionally drop the

requirement of multiplicative inverse and identity element, which gives us a ring.

We can also have algebraic structures that have more properties, as we will see below.
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De�nition 4 A linear order � is a binary relation on a set X which is

1. Transitive: x � y � z implies x � z

2. Complete: x � y or y � x for all y; x 2 X

3. Antisymmetric: x � y and y � x implies that x = y

Note that completeness implies x � x (re�exivity). An order that satis�es only re�exivity but

not completeness is called a partial order. The standard �weakly greater than�relation on the real

numbers is a linear order. However, one could think of other binary relations that have the same

properties.

We are now in a position to de�ne the concept of an ordered �eld.

De�nition 5 An ordered �eld consists of a �eld (X;+;�) and a linear order � that is consistent

with the �eld operations + and �:

1. x � y implies x+ z � y + z for all x; y; z 2 X

2. x � y implies xz � yz for x; y; z 2 X and z � 0

We also de�ne the following sets:

X+ = fx 2 Xjx � 0g

X++ = fx 2 X=0jx � 0g

X� = fx 2 Xj0 � xg

X�� = fx 2 X=0j0 � xg

An ordered �eld is rich enough to establish pretty much all the algebraic properties that we

use. In other words, most of the algebraic results we use derive from the fact that we have a

number system that has well behaved addition and multiplication properties, and a linear order

that respects these operations. For example, the de�nition of an ordered �eld implies things such
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as

�x � 0 � x or x � 0 � �x for all x 2 X

x � y implies xz � yz for all z � 0

0x = 0 8 x 2 X

A slightly richer example is the following.

Example 1 Let (X;+;�;�) be an ordered �eld. The absolute value function j:j : X ! X is

de�ned as

jxj = x if x � 0

jxj = �x if x � 0

Then the triangle inequality must hold:

jx+ yj � jxj+ jyj:

Proof. Homework

3 Natural Numbers, Integers and Rationals

We can now start describing the properties of some of the number sets that we are interested in.

First, the natural numbers, denoted by N. These are sometimes called the �counting numbers�,

because they are the numbers 1; 2; 3; :::etc. A formal basis for these numbers was provided by

Giuseppe Peano. Informally, the Peano axioms de�ne the concept of a successor relation, which

de�nes the immediate successor of each natural number. The axioms then state that (i) there is an

element 1 that is not the successor of any element (ii) if i 2 N, then the successor to i 2 N and (iii)

if x and y have the same successor, then x = y. Addition, multiplication and ordering are de�ned

using this successor relation.

The property of natural numbers that we are most interested in is the Axiom of Induction:

De�nition 6 The Axiom of Induction: If S is a subset of N such that 1 2 S and i + 1 2 S

whenever i 2 S then S = N:
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Consider a sequence of propositions P1; P2; P3; ::. If we can show that P1 is true, and that, if

Pi is true then so is Pi+1, the we can use the principle of mathematical induction to conclude that

each proposition in the sequence is true.

Now note that N is not an ordered �eld with the standard addition and multiplication operations

(why?). What about the integers? In order to get from the natural numbers to the integers, we

need to do two things:

1. Add a zero. We de�ne the resulting set as Z+ = f0; 1; 2; 3; ::g

2. Add negative numbers. We de�ne the resulting set as Z = f:::;�3;�2;�1; 0; 1; 2; 3; ::g

Is Z an ordered �eld? Unfortunately not - it does not contain multiplicative inverse elements

(e.g. there is no integer such that x2 = 1). Thus, if we want to be able to solve such equations

(which often we do) we are going to have to extend Z to be a �eld. The minimal way of doing this

(i.e. the smallest �eld that contains Z) are the Rational Numbers Q. This set is constructed

based on the multiplication operation.

Q =
n
x =

m

n
jm 2 Z; n 2 Z=0

o

We can extend addition and multiplication to Q in the standard way (i.e. using the rules you

learned in high school, plus the rules of arithmetic on the integers), and we can also extend our

ordering, in the sense than m
n �

k
l i¤ml � nk. Note that this de�nition is a little informal, as the

function = (division) is not de�ned on Z, but we can get round this with some simple tricks. Now

we have an ordered �eld.

Proposition 1 Q is an ordered �eld.

We don�t have enough information to prove this formally, but it should feel true. That means

we can perform many of the algebraic operations that we would like to do using just the rational

numbers.
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4 Real Numbers

Unfortunately, while the rational structure is quite rich, it is not rich enough for all the things that

we would like to do, as the following example shows.

Example 2 Imagine we want a number system that will allow us to consider the length of the

hypotenuse of a right angled triangle where the length of each other side is 1. As we know, this

means the length of the hypotenuse is given by r2 = 2. Can r be a rational number? The answer is

no, and we can show this as follows. If r is a rational number, then it can be written as m
n where

m and n are integers without a common factor. But as m2 = 2n2, we know that m2 is even, and

so m is even, meaning m = 2k for some k 2 Z. But as

m2 = 2n2

4k2 = 2n2

) 2k2 = n2;

implying that n2 is even, and so n is even. Thus, 2 is a common factor of m and n, a contra-

diction.

This shows that there are �holes� in the rational numbers. Informally, what we want to do

is �complete� the rational numbers to include numbers like r above. We call numbers in R=Q

irrational numbers.

There are two broad approaches to this. One is to de�ne the reals as an ordered �eld that

satis�es one more property, which we will de�ne below. It turns out that all such ordered �elds are

the �same�in the sense that they are isomorphic to each other. The other is to generate the real

numbers from the rationals and extend the additive, multiplicative and order elements in a nice

way. We will not pursue either approach here, just note the following.

Proposition 2 R is an ordered �eld.

In order to de�ne the property that separates R from Q, we need to introduce the concept of

an upper bound and a supremum.
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De�nition 7 An upper bound of the subset S of an ordered set X is an element x 2 X such that

s � x 8 s 2 S

De�nition 8 A set is bounded from above if it has an upper bound.

De�nition 9 The supremum of the subset S of an ordered set X is the least upper bound of S.

i.e. it is an element x 2 X such that

1. x is an upper bound of S

2. x � y for all other upper bounds y of S

We write x = supS.

The key thing about R is that any subset that is bounded from above will have a supremum.

This is the Completeness axiom.

De�nition 10 The Completeness Axiom: For any non-empty subset S of R that is bounded

from above, there exists s 2 R such that s = supS.

An immediate corollary are the following (very useful) properties of the set R.

Proposition 3 The completeness axiom implies the following two properties

1. (The Archimedean Property) For any fa; bg 2 R++ � R there is an m 2 N such that

b < ma

2. For any a; b 2 R, such that a < b, there exists a q 2 Q such that a < q < b (this is sometimes

described as Q being order-dense in R).

Proof. We will do each in turn

1. Assume not, then for some a, the set fmajm 2 Ng is bounded from above by b. As this is a

set of real numbers, this implies that this set has a sup s. Thus s� a is not an upper bound

of fmajm 2 Ng, implying there exists an m such that ma > s � a. But this implies that

(m+ 1)a > s, a contradiction.
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2. Homework

Without giving a formal proof (this is an exercise in Ok), note that the completeness axiom

also implies that the irrational numbers are order-dense in R, that is, for any two numbers in R,

there exists a number in R/Q between them.

We will use both properties in proposition 3 during the course. In fact, we can use them here

to show that Q is not complete. We �rst prove the following claim:

Claim 1 Consider the set S =
�
q 2 Qjq2 < 2

	
. This is a subset of R that is bounded from above

and therefore has a supremum s = supS. We claim that s2 = 2.

Proof. Step 1: suppose s2 > 2. Then s2� 2 > 0, and so, by the Archimedean property, there exists

an m 2 N such that m(s2 � 2) > 2s. Then�
s� 1

m

�2
= s2 � 2s

m
+

1

m2

> s2 � (s2 � 2) + 1

m2

> s2 � (s2 � 2) = 2

So s� 1
m is a lower upper bound, a contradiction.

Step 2: now assume that s2 < 2, and use the Archimedean property to �nd an m 2 N such that

m(2� s2) > 4s and m > 1
2s . This implies that�

s+
1

m

�2
= s2 +

2s

m
+

1

m2

< s2 +
2s

m
+
2s

m

< s2 + 2� s2

= 2

But, by the second part of proposition 3, there must exist q 2 Q such that s < q < (s + 1
m),

and so q2 < (s + 1
m)

2 < 2. This is a contradiction of the fact that s is an upper bound. Thus we

conclude that s2 = 2.
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We can now use this result to show that there is no supremum of S within the rational numbers.

Claim 2 There is no �q 2 Q such that

1. �q is an upper bound of
�
q 2 Qjq2 < 2

	
2. for any r 2 Q such that r is an upper bound of

�
q 2 Qjq2 < 2

	
, �q � r

Proof. Assume that such a �q exists. We already know that �q2 6= 2, and Step 2 above showed that it

cannot be that �q2 < 2. We also know that there exists a real number s s.t. s2 = 2. Suppose �q2 > 2;

then there is a q 2 Q such that s < q < �q, and q2 > 2. Thus �q is not a least upper bound.

Note the di¤erence between the sup of a set and the maximum of a set (which you are probably

already familiar with). The maximum of a set is de�ned as follows

De�nition 11 The maximum of a set S � R is

maxS = fx 2 Sjx � y 8 y 2 Sg

Note that, unlike the sup operator, not every S that is bounded above has a max (for example,

the set S = fx 2 Rjx < 2g has a sup but not a max). However, if the max does exist for a set S,

then it will be the case that maxS = supS (can you prove this?).

The preceding discussion should suggest in an informal way that the set of real numbers is

�bigger�than the set of rational (and indeed natural) numbers. There is a formal sense in which

this is true (though we are not going to have time to go into the details - see OK Chapter B for

more). In order to state this, we need to de�ne the concept of countability.

De�nition 12 A set is countably in�nite if there exists a bijective function (i.e. one to one

mapping) between that set and the natural numbers. A set is countable if there exists an injective

function from the set to the natural numbers (i.e. each element in the set can be mapped to a

di¤erent number).

Any countably in�nite set can therefore be enumerated as X = fx1; x2; :::; g. Moreover
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� any subset of a countable set is countable, and

� any countable union of countable sets is countable.

In terms of the sets we have come across, clearly N and Z are countable. Perhaps more sur-

prisingly, Q is countable. This comes from the fact that we can describe Q as a countable union of

countable sets. This is a very important result, particularly when combined with the second part

of proposition 3, as we will see. One immediate corollary of this is the following:

Theorem 3 Let I be a set of non-degenerate intervals on R such that jI \J j � 1 for any I; J 2 I.

Then I is countable.

We will not go through the proof formally here, but you should get an intuitive idea of how

it works. These are intervals that do not overlap. Each of them must contain a distinct rational

number, thus if we have an uncountable number of intervals, then there would be an uncountable

number of distinct rational numbers, which we know we do not have.

Finally, the most important result here (that we will not prove) is that the real numbers are

not countable - i.e. there is no bijection between the real and natural numbers.

Proposition 4 The real numbers are not countable.

This is the sense in which there are �more�real numbers than rationals.

As a last note, observe that not all the properties of the number system we typically use are

determined by the properties given by an ordered �eld. For example, the decimal system that we

use to label our numbers is an added property (something that should be clear from the fact that we

could equivalently use a binary system or other base). We also assume that there are no duplicates,

that is, there are no �redundant�real numbers that act exactly the same as the �original�numbers

with respect to the various operations we allow, but are distinct.

5 Intervals and Extended Reals

Some notation that you are probably already used to is the following. Let a; b be real numbers such

that a < b. Then
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� (a; b) = ft 2 Rja < t < bg

� [a; b) = (a; b) [ a

� (a; b] = (a; b) [ b

� [a; b] = ft 2 Rja � t � bg

These de�ne bounded intervals. Note that we may also want to consider unbounded intervals,

for example of the form ft 2 Rjt > ag. Such sets are not bounded from above, and so do not have

a sup in R. We may sometimes use the notation (a;1) to describe such sets, but at the moment,

this is just notational convenience, as 1 is not a real number.

It is possible to make the concept of 1 more than just notation, and extend the notion of the

real numbers to include 1 and �1. We call such a set the extended real line, and denote it by
�R = R[f�1;1g. In order to do this (moderately) formally, we need to extend the order relation

we have on R to 1 and �1 in the following way.

1 > �1 and 1 > t > �1 8 t 2 R

Thus, we have a complete partial (linear) order of �R. Moreover, �R obeys the completeness

axiom, and now every set in �R has a sup (if S is not bounded above in R, then the above means

that supS =1).

We need to do one more thing in order to make the extended reals useful �we need to de�ne

arithmetic operations involving �1 and 1. We do this as follows for any t 2 R

� t+1 =1+ t =1

� t+�1 = �1+ t = �1

� 1+1 =1

� �1+�1 = �1

� t�1 =1� t =

8<: 1 if 0 < t � 1

�1 if �1 � t < 0

9=;
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� t��1 = �1� t =

8<:�1 if 0 < t � 1

1 if �1 � t < 0

9=;
Does this make the extended reals a �eld? Unfortunately not, as we have not de�ned all the

various operations, such as 1� 0.
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