Temptation Lecture 1

Mark Dean

Princeton University - Behavioral Economics

Plan for this Part of Course

- Bounded Rationality (4 lectures)
- Reference dependence (3 lectures)
- Temptation and Self control (3 lectures)
- Neuroeconomics (2 lectures)

Tentative Plan For Temptation

- Introduction: Why is temptation important?
- Evidence for temptation
- Models of temptation and self control
- Optimal behavior under temptation
 - Commitment vs Fleximility
 - Optimal control of visceral urges
- Applications
 - Contract design (yes, again)
 - Taxation

Tentative Plan For Today

- Why is temptation important?
- Evidence for temptation
 - Preference for Commitment
 - Dynamic Inconsistency
- Models of temptation and self control
 - Gul and Pesendorfer [2001]
 - Q-hyperbolic discounting [Laibson 1997]
 - Fudenberg and Levine [2006]
- Other interesting factoids
 - Willpower depletion
 - Sophistication

Why is Temptation and Self Control Important

- Temptation problems seem to be ubiquitous
- They effect the poor disproportionately
- 'Self Control' seems to be important in later life outcomes
- Roll Powerpoint!

Spotting Temptation and Self Control

- These behaviors seemed to be linked to temptation and self control
- But how would we know?
- As social scientists, when do we want to say we observed someone 'giving in' to temptation?

By the Nature of the Chosen Object?

- i.e. we identify self control problems with activities certain activities
 - Smoking
 - Drug taking
 - Undersaving (relative to some normative level)
- Claim "There is no 'rational' reason to take drugs, so anyone who takes drugs must be in the grip of a self control problem"
- This goes against standard economic methodology
- Very proscriptive maybe benefit of cigarette smoking is higher than long term costs for some people

By Comparing People's Stated Aims to their Actions?

- E.g., tell us that they want to quit smoking, but then carry on smoking
- Standard economic line: revealed preference
- If someone says they want to do a, but actually does b, we would generally consider this evidence that they prefer b over a
- Talk is cheap

By Observing Choices Over Time?

- For example:
 - People repeatedly quit smoking, then restart
 - People take drugs when they are younger but not when they are older
 - People smoke when drunk, but not when sober
- Hard to distinguish between temptation and changing tastes
- Maybe drinking and cigarette smoking are compliments?

Two Standard Ways

• Preference for Commitment

• Time inconsistentency

Preference for Commitment

- Imagine we saw the following behaviors:
 - A gambler asks to be banned from a casino
 - A drinker asks to be given a drug that makes them violently ill if they drink
 - A diner pays to have a smaller portion of fries with their meal
- In other words, people choose at time t to reduce their choice set at time t+1
- One interpretation: worried about temptation at time t+1
 - Will either have to resist temptation
 - Or will give in and choose something they shouldn't

Preference for Commitment

- Is Temptation Only Explanation for Preference for Commitment?
- Would not be exhibited by
 - Was perfectly happy with the amount they drank
 - Had changing preferences over drinking, but were happy to make a game-time decision
- Stops talk being cheap
- However, there are other possibile reasons to limit choice
 - Regret [Sarver 2008]

- Hauser et al. [2010]
- Basic Setup: Counting task

- Counting task appeared every 1, 2 or 3 minutes
- Experiment lasts 2 hrs
- Subjects earn \$15 if they get at least 70% of all counting tasks correct
- (This is a really unpleasant task)

 Every so often, (and to their surprise) subjects would face a temptation screen:

Phase	Duration	Number of counting tasks	Number of temptation screens	Commitment cost [in \$]	Final payoff if surfing [in \$]	Additional payoff for counting to end of experiment [in \$]
0	30 min	15	0			•
1	45 min	12	6	C	P_1	$W_1 = 15 - P_1$
2	45 min	12	6	C	P_2	$W_2 = 15 - P_2$

Field Evidence for Commitment Devices: Ashrad el at [2006]

- SEED fund accounts: Offered as well as normal accounts
 - No benefit other than commitment
- Client either sets a date or an amount that they want to save (202 of 842 took it up)
- · Cannot withdraw until that goal is met
- Two types of goal
 - Amount (142)
 - Date (60)
- Two types of additional commitment
 - Locked box (costs a small fee) which is then taken to the bank (167)
 - Automatic transfers (2)

Field Evidence for Commitment Devices: Ashrad el at [2006]

- There are commercially available commitment devices
 - SMarT
 - Stikk
 - Beeminder
- But surprisingly few
- Also hard to get temptation in the Lab
- Puzzle: If temptation is so ubiquitous, why are there so few commitment devices

Two Standard Ways

• Preference for Commitment

• Time inconsistentency

- Imagine you are asked to make a choice for today
 - 1 Salad or burger for lunch
 - 2 10 minute massage today or 11 minute massage tomorrow
 - 3 End class early today and move extra time to next week
- And a choice for next Thursday
 - 1 Salad or burger for lunch
 - 2 10 minute massage Thursday or 11 minute massage friday
 - 3 End class early on Thursday and move extra time to a week later
- Choice {burger,salad} or {10,11} is a 'preference reversal'
- Evidence that you are tempted by the burger, but would 'prefer' to choose the salad

- This is not consistent with standard intertemporal choice theory
- Preferences are Stationary and Separable
 - Implies exponential discounting
- Is it evidence for temptation?
- Not necessarily could be changing tastes

- But in many cases choices varied consistently
- Thirsty subjects
 - Juice now (60%) or twice amount in 5 minutes (40%)
 - Juice in 20 minutes (30%) or twice amount in 25 minutes (70%)
- Hard to explain with changing tastes
- Could potentially be explained by probability weighting
 - Halevy [2008]

Is Time Consistency Related to Preference for Commitment?

- A natural question: Do those who exhibit time inconsistency demand commitment?
- Evidence is not great (Caseri 2009)
 - Subjects asked to choose between \$100 in t days and \$110 in t+2 days
 - Preference reversal occurs if subjects switch from the former to the latter as t increases
 - 62% of subjects show preference reversal
 - Subjects who exhibited preference reversals offered the chance to commit
 - Either commit to later option now, or choose again in 2 days time
 - 65% of subjects would pay to commit if it were free
 - 17% would pay \$2 for commitment
- Also evidence from Ashraf et al. that time inconsistency related to commitment

Preference Over Menus

- In order to discuss preference for commitment we need to be able to discuss preferences over menus
- Let X be a set of alternatives and $\mathcal X$ be non empty subsets of X
- Let \succeq be a preference relation on ${\mathcal X}$
 - Interpretation: preference over menus from which you will later get to choose
- Let ≥ be a preference relation on X
 - Interpretation: preferences when asked to choose from a menu

Standard Model

• The Standard Model of Preference over Menus

$$U(A) = \max_{x \in A} u(x)$$

- Key behavioral implications
 - Sophistication

$$X \succ X \cup \{p\} \Rightarrow p \rhd x \ \forall \ x \in X$$

'Independence of Irrelevant Alternatives'

$$X \succeq Y \Rightarrow X \cup Y \sim X$$

Larger choice sets always weakly preferred

The Gul Pesendorfer Model

• Preference over menus given by

$$U(A) = \max_{x \in A} [u(x) + v(x)] - \max_{y \in A} v(y)$$

- *u* : 'long run' utility
 - Choice over singleton choice sets
- v : 'temptation' utility
 - · Can lead to preference for smaller choice sets
- Interpretation: :
 - Choose x to maximize u(x) + v(x)
 - Suffer temptation cost v(y) v(x)

• Consider x, y, such that

$$\begin{array}{rcl} u(x) & > & u(y) \\ u(y) + v(y) & > & u(x) + v(x) \end{array}$$

Then

$$U(\{x\}) = u(x)$$

 $U(\{x,y\}) = u(y) + v(y) - v(y) = u(y)$
 $U(\{y\}\} = u(y)$

- Interpretation: give in to temptation and choose y
- 'Weak set betweenness'

$$\{x\} \succ \{x,y\} \sim \{y\}$$

• Consider x, y, such that

$$u(x) > u(y)$$

$$v(y) > v(x)$$

$$u(x) + v(x) > u(y) + v(y)$$

Then

$$U(\{x\}) = u(x)$$

 $U(\{x,y\}) = u(x) + v(x) - v(y)$
 $U(\{y\}\} = u(y)$

- Interpretation: fight temptation, but this is costly
- 'Strict set betweenness'

$$\{x\} \succ \{x,y\} \succ \{y\}$$

Axiomatic Characterization of GP Model

• Set Betweenness: for any A, B

$$A \succeq A \cup B \succeq B$$

• Independence: for any A, B, C

$$\begin{array}{ccc} A & \succeq & B \\ \rho A + (1-\rho)C & \succeq & \rho B + (1-\rho)C \end{array}$$

Sophisitication

 We say that a decision maker exhibits self control at C if there exists A, B such that A∪B = C and

$$\{A\} \succ \{C\} \succ \{B\}$$

• implies that

$$\arg\max_{x\in A}u(x)+v(x)\neq\arg\max_{y\in A}v(y)$$

most tempting option not chosen

 Note that there is no 'willpower' distinct from long run and temptation preferences.

Implications of Linearity

Imagine

$$\{x\} \succ \{x, y\} \succ \{y\} \succ \{y, z\} \succ \{z\}$$

Implies

$$u(x) > u(y) > u(z)$$

 $v(z) > v(y) > v(x)$
 $u(x) + v(x) > u(y) + v(y) > u(z) + v(z)$

Which in turn implies

$$\{x\} \succ \{x, z\} \succ \{z\}$$

'Self Control is Linear'

Limiting Case: No Willpower

- Imagine that differences in v are large relative to differences in u
- In the limit, model reduces to

$$U(A) = \max_{x \in A} u(x) \text{ s.t. } v(x) \ge v(y) \ \forall \ y \in A$$

- This is the 'Strolz' model
- Implies not strict set betweenness

Preference Over Consumption Streams

• Object of choice are now consumption streams:

$$C = \{c_1, c_2,\}$$

- c_i is consumption at date i
- Standard model

$$U(C) = \sum_{i=1}^{\infty} \delta^{i} u(c_{i})$$

Exponential Discounting

Exponential Discounting

- Characterized by two conditions
- Separability

$$\{c_{1},...,c_{n-1},x,c_{n+1},....\} \succ \{c_{1},...,c_{n-1},y,c_{n+1},....\}$$

$$\Rightarrow$$

$$\{d_{1},...,d_{n-1},x,d_{n+1},....\} \succ \{d_{1},...,d_{n-1},y,d_{n+1},....\}$$

Stationarity

$$\{c_1, c_2,\} \rightarrow \{d_1, d_2, ...\}$$

 \Rightarrow
 $\{e, c_1, c_2, ...\} \rightarrow \{e, d_1, d_2, ...\}$

Violates Stationarity

$$\begin{cases} 10,0,0,... \end{cases} \;\; \succ \;\; \left\{ 0,11,0,... \right\} \\ \qquad \qquad \qquad \text{but} \\ \left\{ 0,10,0,0,... \right\} \;\; \prec \;\; \left\{ 0,0,11,0,... \right\}$$

- In general this is dealt with by replacing exponential discounting with some other form
 - Hyperbolic

$$U(C) = \sum_{i=1}^{\infty} \frac{1}{1+ki} u(c_i)$$

quasi hyperbolic

$$U(C) = u(c_1) + \sum_{i=2}^{\infty} \beta \delta^i u(c_i)$$

Quasi Hyperbolic Discounting

- Hyperbolic discounting is a pain to use, so people generally work with quasi hyperbolic discounting [Laibson 1997]
- Weaken stationarity to quasistationarity [Olea and Stralecki 2012]

$$\{f, c_1, c_2,\} \rightarrow \{f, d_1, d_2, ...\}$$

 \Rightarrow
 $\{f, e, c_1, c_2, ...\} \rightarrow \{f, e, d_1, d_2, ...\}$

- · Stationarity holds after first period
- Note that agent is only 'special' in the first period

Consumtion and Savings

- In general, we do not observe choice over consumption streams
- Instead, observe choices over consumption levels today, which determine savings levels tomorrow
- Three period cake eating problem, with initial endowment y
- Formulate two versions of the problem
 - a single agent chooses c_0 , c_1 and c_2 in order to maximize

$$U(C) = \sum_{i=0}^{2} \delta^{i} u(c_{i}) \text{ st } \sum_{i=0}^{2} c_{i} \leq 3y$$

• a game between 3 agents k=0,1,2 where agent k chooses c_k to max

$$U(C) = \sum_{i=k}^{2} \delta^{i} u(c_{i}) \text{ st } c_{k} \leq s_{k-1}$$

 where s_{k-1} is remaining cake, and taking other agents strategies as given

Consumption and Savings with Exponential Discounting

- Under exponential discounting, these two approaches give same outcome
- Assuming CRRA utility

$$c_1 = \frac{3y}{1 + (\delta)^{\frac{1}{\sigma}} + (\delta^2)^{\frac{1}{\sigma}}}$$

$$c_2 = (\delta)^{\frac{1}{\sigma}} c_1$$

$$c_3 = (\delta^2)^{\frac{1}{\sigma}} c_1$$

- No time inconsistency: period i agent will stick to the plan of period i-1 agent
- Only exponential discounting function has this feature [Strotz 1955]

Consumption and Savings with Quasi Hyperbolic Discounting

 Now assume that the agent has a quasi-hyperbolic utility function: agent k chooses ck to max

$$U(\mathcal{C}) = u(c_k) + \sum_{i=k+1}^2 eta \delta^i u(c_i) ext{ st } c_k \leq s_{k-1}$$

- Now the solutions are different:
- Need to decide what k_0 assumes about k_1 's behavior

Consumption and Savings with Quasi Hyperbolic Discounting

Under commitment

$$c_0 = \left(1 + (\beta \delta)^{\frac{1}{\sigma}} + (\beta \delta^2)^{\frac{1}{\sigma}}\right)^{-1} 3y$$

$$c_2 = \delta^{\frac{1}{\sigma}} c_1$$

Without commitment, but with sophistication

$$\bar{c}_{0} = \left[1 + \left(\frac{\beta\delta}{\left(1 + (\beta\delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}} + \frac{\delta(\beta\delta)^{\frac{1}{\sigma}}}{\left(1 + (\beta\delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}\right)^{\frac{1}{\sigma}}\right]^{-1} 3y$$

$$\bar{c}_{2} = (\beta\delta)^{\frac{1}{\sigma}} c_{1}$$

- Without commitment, period 2 consumption lower relative to period 1 consumption
- Period 0 consumption can be lower or higher

Consumption and Savings with Quasi Hyperbolic Discounting

• If subject is naive

$$c_0 = \left(1 + (\beta \delta)^{\frac{1}{\sigma}} + (\beta \delta^2)^{\frac{1}{\sigma}}\right)^{-1} 3y$$

$$c_2 = (\beta \delta)^{\frac{1}{\sigma}} c_1$$

- Period 0 consumption will be the same as commitment case
- Period 1 consumption will be unambiguously higher
- Period 2 consumption will be unambiguously lower

Observing Time Inconsistency in a Consumption/Savings Problem

- Spotting time inconsistency if we only obsere consumption and savings is tricky
- Under log utility they are identical
- This result is general [Barro 1999]
- However, a (sophisticated) time inconsistent agent will exhibit demand for commitment
- Strotz model no self control

- Q-hyperbolic model still difficult to solve for many periods
- Game between two long run players
- Multiple equilibria [Laibson 1997, Harris and Laibson 2004]
- Fudenberg and Levine come up with a simpler model

- Long run self plays a game against a sequence of short lived self
- Short run self gets to choose what action to take $a \in A$
- Long run self chooses 'self control' $r \in R$ which modifies utility function of short run self
- State y evolves according to some (stochastic) process depending on history of y,a and r
- $\Gamma(y)$ available options in state y

• Each short run player chooses an action a to maximize

 Long run player chooses a mapping from histories h to maximize

$$\sum_{i=1}^{\infty} \delta^{t-1} \int u(y(h), r(h), a(h)) d\pi(h)$$

where

- r(h) is the strategy of the long run player
- a(.) is strategy of each short run player
- y(.) is the state following history h
- \bullet π is the probability distribution over h given strategies

• Define C(y, a) as the self control cost of choosing a in state y

$$C(y, a) = u(y, 0, a) - \sup_{r \text{ s.t. } u(y, r, a) > u(y, r, b) \ \forall \ b \in \Gamma(y)} u(y, r, a)$$

- Then we can rewrite long run's self problem as a decision problem
- choose strategy to maximize

$$\sum_{i=1}^{\infty} \int u(y(h), 0, a(h)) - c(y(h), a(h)) d\pi(h)$$

- Further assume that self control costs are
 - Linear
 - Depend only on the chosen object and most tempting object in choice set

$$c(y, a) = \lambda(\max_{b \in \Gamma(y)} u(b, 0, y) - u(a, 0, y))$$

- This is a Gul-Pesendorfer type model
 - Reducing choice set reduces self control costs

A Consumption/Saving Example

- State y represents wealth
- a is fraction of wealth saved
- Return on wealth is R
- Instantaneous utility is log

$$u(y,0,a) = \log((1-a)y)$$

- Temptation utility in each period is log(y)
- Objective function becomes

$$\begin{split} \sum_{i=1}^{\infty} \delta^{t-1} \left[\log((1-a) \ y_i) - \lambda(\log(y_i) - \log((1-a_i) \ y_i)) \right] \\ &= \sum_{i=1}^{\infty} \delta^{t-1} \left[(1+\lambda) \log((1-a_i) \ y_i) - \lambda(\log(y_i)) \right] \\ &= \text{subject to} \\ a_i \in [0,1] \\ y_{i+1} = Ra_i y_i \end{split}$$

A Consumption/Saving Example

• Solution. It turns out (see web appendix) that optimal policy is constant savings rate, so $y_i = (Ra)^{i-1} y_1$

$$\begin{split} & \sum_{i=1}^{\infty} \delta^{t-1} \left[\begin{array}{c} (1+\lambda) \log((1-a) + (i-1) \log Ra + \log y_1) \\ -\lambda((i-1) \log Ra + \log y_1) \end{array} \right] \\ = & (1+\lambda) \frac{\log(1-a)}{(1-\delta)} + \frac{\log y_1}{(1+\delta)} + \frac{\delta \log(Ra)}{(1-\delta)^2} \end{split}$$

FOC wrt a

$$rac{(1+\lambda)}{(1-\delta)(1- extsf{a})} = rac{\delta}{(1-\delta)^2 extsf{a}}$$

A Consumption/Saving Example

$$a=rac{\delta}{1+(1-\delta)\lambda}$$

- As self control costs increase, savings go down
- As δ increases, effect of self control increases

Evidence for Sophistication

DellaVigna and Malmandier [2006]

- Test whether people have sophisticated beliefs about their future behavior
- Examine the contract choices of 7978 healthcare members
- Also examine their behavior (i.e. how often they go to the gym)
- Do people overestimate how much they will go the gym, and so choose the wrong contract? λ

Evidence for Sophistication

DellaVigna and Malmandier [2006]

Three contracts

- Monthly Contract automatically renews from month to month
- Annual Contract does not automatically renew
- Pay per usage

Puzzles

- 80% of customers who buy monthly contracts would be better off had they paid per visit (assuming same number of visits)
- Customers predict 9.5 visits per month relative to 4.5 actual visits
- Customers who choose monthly contracts are 18% more likely to stay beyond a year than those who choose annual contract

Shiv and Fedorkhin [1999]

- Subject enters room 1
- Asked to remember a number to be repeated in room 2
- Walks to room 2 via a tray of snacks
- Containing 2 types of snack
 - Chocolate Cake
 - Fruit
- Four treatments:
- Available processing capacity
 - High (2 digit number)
 - Low (7 digit number)
- Presentation mode
 - Real
 - Symbolic

Shiv and Fedorkhin [1999]

Galliot et al [2007]

Procedure

- Measure glucose level
- Watch video of woman talking (no sound)
- One syllable words appear in bottom left corner of screen
- Two treatments
- Watch normally
- Ignore words
- Glucose measured again
- Result: 'Self Control' reduced glucose
 - Glucose levels dropped significantly for 'Watch normally'
 - Not from 'watch normally' group
 - Fall in glucose level associated with worse performance in Stroop task

- Procedure
 - Subjects either consume a glucose drink or placebo
 - Watch video of woman talking (as before)
 - Four treatments
 - Glucose vs placebo
 - Watch normally vs Ignore words
- Subjects listened to an interview :
 - Young woman described how her parents were recently killed
 - Only one to care for her younger siblings.
 - Would have to drop out of college without help
- Participants were then told that the study had ended
- · Before they left, asked if they would help young woman
 - Participants the opportunity to help woman by volunteering time to complete various tasks (e.g., stuffing envelopes)
- Asked to Indicate the number of hours they were willing to help, ranging from 0 to 9

DeWall et al [2012]

- Results:
- Placebo condition
 - Those in depletion condition significantly less likely to help
- Glucose condition
 - No effect
- Looking within depletion condition, those who took glucose significantly more likely to help