Temptation Lecture 2

Mark Dean

Princeton University - Behavioral Economics

The Story So Far...

- Introduced methods for spotting temptation
 - Preference for commitment
 - Time inconsistency
- Presented some experimental evidence on both
- Discussed two models that try to capture aspects of temptation
 - Gul and Pesendorfer
 - $\beta\delta$ (quasi-hyperbolic) discounting

Plan For Today

- Discuss third model of Temptation and Self Control
 - Fudenberg and Levine [2006]
- Describe some further evidence on behavior of tempted people
 - Sophistication
 - Willpower Depletion
- Discuss two applications
 - Commitment vs Flexibility
 - Sin taxes

- Q-hyperbolic model still difficult to solve for many periods
- Game between two long run players
- Multiple equilibria [Laibson 1997, Harris and Laibson 2004]
- Fudenberg and Levine come up with a simpler model

- Long run self plays a game against a sequence of short lived self
- Short run self gets to choose what action to take $a \in A$
- Long run self chooses 'self control' $r \in R$ which modifies utility function of short run self
- State y evolves according to some (stochastic) process depending on history of y,a and r
- $\Gamma(y)$ available options in state y

• Each short run player chooses an action a to maximize

 Long run player chooses a mapping from histories h to R to maximize

$$\sum_{i=1}^{\infty} \delta^{t-1} \int u(y(h), r(h), a(h)) d\pi(h)$$

where

- r(h) is the strategy of the long run player
- a(.) is strategy of each short run player
- y(.) is the state following history h
- \bullet π is the probability distribution over h given strategies

• Define C(y, a) as the self control cost of choosing a in state y

$$C(y, a) = u(y, 0, a) - \sup_{r \text{ s.t. } u(y, r, a) > u(y, r, b) \ \forall \ b \in \Gamma(y)} u(y, r, a)$$

- Then we can rewrite long run's self problem as a decision problem
- choose mapping from h to A in order to maximize

$$\sum_{i=1}^{\infty} \int u(y(h), 0, a(h)) - c(y(h), a(h)) d\pi(h)$$

- Further assume that self control costs are
 - Linear
 - Depend only on the chosen object and most tempting object in choice set

$$c(y, a) = \lambda(\max_{b \in \Gamma(y)} u(b, 0, y) - u(a, 0, y))$$

- This is a Gul-Pesendorfer type model
 - Reducing choice set reduces self control costs

A Consumption/Saving Example

- State y represents wealth
- a is fraction of wealth saved
- Return on wealth is R
- Instantaneous utility is log

$$u(y, 0, a) = \log((1 - a) y)$$

- Temptation utility in each period is log(y)
- Objective function becomes

$$\begin{split} \sum_{i=1}^{\infty} \delta^{t-1} \left[\log((1-a) \ y_i) - \lambda(\log(y_i) - \log((1-a_i) \ y_i)) \right] \\ &= \sum_{i=1}^{\infty} \delta^{t-1} \left[(1+\lambda) \log((1-a_i) \ y_i) - \lambda(\log(y_i)) \right] \\ &= \text{subject to} \\ a_i \in [0,1] \\ y_{i+1} = Ra_i y_i \end{split}$$

A Consumption/Saving Example

• Solution. It turns out that optimal policy is constant savings rate, so $y_i = (Ra)^{i-1} y_1$

$$\begin{split} & \sum_{i=1}^{\infty} \delta^{t-1} \left[\begin{array}{c} (1+\lambda) \log((1-a) + (i-1) \log Ra + \log y_1) \\ -\lambda ((i-1) \log Ra + \log y_1) \end{array} \right] \\ = & (1+\lambda) \frac{\log(1-a)}{(1-\delta)} + \frac{\log y_1}{(1-\delta)} + \frac{\delta \log(Ra)}{(1-\delta)^2} \end{split}$$

FOC wrt a

$$rac{(1+\lambda)}{(1-\delta)(1- extsf{a})} = rac{\delta}{(1-\delta)^2 extsf{a}}$$

A Consumption/Saving Example

$$a=rac{\delta}{1+(1-\delta)\lambda}$$

- · As self control costs increase, savings go down
- As δ increases, effect of self control increases

- Rabin [2000] argued that lab risk aversion cannot be due to curvature of utility function
 - · Would lead to absurd levels of risk aversion in the large
- Can be explained by probability weighting
- F and L offer another explanation
 - Pocket Cash vs Bank Cash

- Each period split in two
- Bank
 - No consumption, but savings
 - No temptation (nothing to consume)
 - Choose amount x to take out of bank
- Casino
 - Choose how much of x to consume
 - Return remainder to the Bank

- If everything is deterministic then can implement first best outcome
 - Set $a^* = \delta$
- Now assume that with some small probability will be asked to choose between gambles at casino
- Assume probability is 'small' so still set $a^* = \delta$ in the bank
- Consider receiving prize z
- Wealth in period 2 given by

$$y_2 = R(y_1 + z_1 - c_1)$$

• Utility of y_2 in period 2 is given by

$$\begin{split} & \sum_{i=1}^{\infty} \delta^{t-1} \left[(1+\lambda) \log((1-a^*) + (i-1) \log Ra^* + \log y_2) \right] \\ = & \frac{\log(1-a^*)}{(1-\delta)} + \frac{\log y_2}{(1-\delta)} + \frac{\delta \log(Ra^*)}{(1-\delta)^2} \\ = & \frac{1}{(1-\delta)} \left[\log(1-\delta) + \log y_2 + \frac{\delta}{1+\delta} \log(R\delta) \right] \end{split}$$

Total utility from consuming c₁

$$(1+\lambda)\log c_1 - \lambda\log(x_1+z_1) + \frac{1}{(1-\delta)}\left[\log(1-\delta) + \log R(y_1+z_1-c_1) + \frac{\delta}{1+\delta}\log(R\delta)\right]$$

Gives First Order Conditions

$$c^* = \frac{(1-\delta)(1+\lambda)(y_1+z_1)}{\delta+(1+\lambda)(1-\delta)}$$

$$= \left(1-\frac{\delta}{\delta+(1+\lambda)(1-\delta)}\right)(y_1+z_1)$$

• Consumption is constrained by $x_1 + z_1 = (1 - \delta)y_1 + z_1$. Define z^* as

$$\left(1-rac{\delta}{\delta+(1+\lambda)(1-\delta)}
ight)(y_1+z^*)=(1-\delta)y_1+z^*$$

ullet For $z_1>z^*$, consume c^* , otherwise consume $(1-\delta)y_1+z_1$

• Utility of prize less than z*

$$\begin{aligned} &\log(x_1 + z_1) \\ &+ \frac{1}{(1 - \delta)} \left[\log(1 - \delta) + \log(y_1 - x_1) + \frac{\delta}{1 + \delta} \log(R\delta) \right] \end{aligned}$$

Utility of prize greater than z*

$$\begin{split} &(1+\lambda)\log\frac{(1-\delta)(1+\lambda)}{1+\lambda(1-\delta)}(y_1+z_1)-\lambda\log(x_1+z_1)\\ &+\frac{1}{(1-\delta)}\left[\log(1-\delta)+\log R\frac{\delta(y_1+z_1)}{1+\lambda(1-\delta)}+\frac{\delta}{1+\delta}\log(R\delta)\right] \end{split}$$

- For 'small' wins, constant relative risk aversion relative to pocket cash
- For 'large' wins (approximately) constant relative risk aversion relative to wealth

Evidence for Sophistication

DellaVigna and Malmandier [2006]

- Test whether people have sophisticated beliefs about their future behavior
- Examine the contract choices of 7978 healthcare members
- Also examine their behavior (i.e. how often they go to the gym)
- Do people overestimate how much they will go the gym, and so choose the wrong contract?

Evidence for Sophistication

DellaVigna and Malmandier [2006]

Three contracts

- Monthly Contract automatically renews from month to month
- Annual Contract does not automatically renew
- Pay per usage

Puzzles

- 80% of customers who buy monthly contracts would be better off had they paid per visit (assuming same number of visits)
- Customers predict 9.5 visits per month relative to 4.5 actual visits
- Customers who choose monthly contracts are 18% more likely to stay beyond a year than those who choose annual contract

Shiv and Fedorkhin [1999]

- Subject enters room 1
- Asked to remember a number to be repeated in room 2
- Walks to room 2 via a tray of snacks
- Containing 2 types of snack
 - Chocolate Cake
 - Fruit
- Four treatments:
- Available processing capacity
 - High (2 digit number)
 - Low (7 digit number)
- Presentation mode
 - Real
 - Symbolic

Shiv and Fedorkhin [1999]

Galliot et al [2007]

Procedure

- Measure glucose level
- Watch video of woman talking (no sound)
- One syllable words appear in bottom left corner of screen
- Two treatments
- Watch normally
- Ignore words
- Glucose measured again
- Result: 'Self Control' reduced glucose
 - Glucose levels dropped significantly for 'Watch normally'
 - Not from 'watch normally' group
 - Fall in glucose level associated with worse performance in Stroop task

- Procedure
 - Subjects either consume a glucose drink or placebo
 - Watch video of woman talking (as before)
 - Four treatments
 - Glucose vs placebo
 - Watch normally vs Ignore words
- Subjects listened to an interview :
 - Young woman described how her parents were recently killed
 - Only one to care for her younger siblings.
 - Would have to drop out of college without help
- Participants were then told that the study had ended
- · Before they left, asked if they would help young woman
 - Participants the opportunity to help woman by volunteering time to complete various tasks (e.g., stuffing envelopes)
- Asked to Indicate the number of hours they were willing to help, ranging from 0 to 9

DeWall et al [2012]

- Results:
- Placebo condition
 - Those in depletion condition significantly less likely to help
- Glucose condition
 - No effect
- Looking within depletion condition, those who took glucose significantly more likely to help

Fudenberg and Levine and Cognitive Load

- Assume that cost of self control in indexed by d cognitive load
- Assume $u^c > u^f$, but long run utility of fruit is higher than that of cake
- Assume

$$C(d, f) = g(d + uh - uf) + g(d)$$

• Where g' > 0 and g'' > 0

Amador Angelitos and Wernig [2005]

- So far, there has been no downside to commitment
- Tempted agents do better, non-tempted agents do the same
- This is unrealistic: what if the future is unknown?
 - e.g. preference shocks
- Then there is a trade off between commitment and flexibility

Amador Angelitos and Wernig [2005]

- One natural form of commitment is 'minimum savings rule'
 - Must save a minimum amount s
 - Free to choose any level of consumption that is consistent with this
- AAW provide conditions under which minimum savings rule is optimal
- More generally, optimal commitment always exhibits 'bunching at the top'

- Two periods with c consumed in the first period and k consumed in the second
- Total resource constraint is y, B(y) is the budget set
- Utility of time 1 self is given by

$$\theta U(c) + \beta W(k)$$

Utility of time 0 self is given by

$$E\left[\theta U(c) + W(k)\right]$$

- θ is an (uncontractible) taste shock, unknown at time 0, distributed according to F
- (Similar results hold for G and P Set up)

Set Up

- Time 0 self gets to choose $C \subset B(y)$
- Does so to maximize

$$\int \left[\theta U(c(\theta) - W(k(\theta))\right] dF(\theta)$$

subject to

$$c(\theta), k(\theta) \in \arg\max_{\{c.k\} \in \mathcal{C}} \theta U(c(\theta)) - \beta W(k(\theta))$$

A Principle Agent Problem

- Assume distribution of types is represented by continuous θ on $\Theta = [\theta, \bar{\theta}]$
- For convenience, assume we are choosing $u(\theta) = U(c(\theta))$ and $w(\theta) = W(k(\theta))$ directly
- Value of plan for type θ is

$$V(heta) = \max_{ heta' \in \Theta} \left[rac{ heta}{eta} u(heta') + w(heta')
ight]$$

Assuming truth telling, and by envelope theorem

$$V'(\theta) = \frac{u(\theta)}{\beta}$$

A Principle Agent Problem

• Integrating $V'(\theta)$ tells us that

$$V(\theta) = \frac{\theta}{\beta}u(\theta) + w(\theta)$$
$$= \int_{\theta}^{\theta} \frac{1}{\beta}u(\theta')d\theta' + \frac{\theta}{\beta}u(\underline{\theta}) + w(\underline{\theta})$$

 As is standard in principle agent problems, this condition plus monotonicity are necessary and sufficient for incentive compatibility

The Principle's Problem

• Choose $\{u, w\}$ to maximize

$$\int (\theta u(\theta) + w(\theta)) f(\theta) d(\theta)$$

subject to

$$\frac{\theta}{\beta}u(\theta) + w(\theta)$$

$$= \int_{\underline{\theta}}^{\theta} \frac{1}{\beta}u(\theta')d\theta' + \frac{\theta}{\beta}u(\underline{\theta}) + w(\underline{\theta})$$

$$C(u(\theta)) + K(w(\theta)) \le y$$

$$u(\theta') \ge u(\theta) \text{ for } \theta' \ge \theta$$

The Principle's Problem

- Can use the IC constraint to get rid of w
- Objective function becomes

$$\frac{\theta}{\beta}u(\underline{\theta}) + \underline{w} + \frac{1}{\beta}\int_{\theta}^{\overline{\theta}} (1 - G(\theta))u(\theta)d\theta \tag{1}$$

subject to

$$W(y - Cu(\theta)) + \frac{\theta}{\beta}u(\theta) - \int_{\underline{\theta}}^{\theta} \frac{1}{\beta}u(\theta')d\theta' - \frac{\theta}{\beta}u(\underline{\theta}) - w(\underline{\theta}) \ge 0$$

and monotonicity, where

$$G(\theta) = F(\theta) + \theta(1 - \beta)f(\theta)$$

Bunching at the Top

It is always optimal to have some bunching at the top

Theorem

An optimal allocation (w, u^*) satisfies $u^*(\theta) = u^*(\theta_p)$ for $\theta \ge \theta_p$, where θ_p is the lowest value in Θ such that

$$\int_{\theta}^{\theta} (1 - G(\theta')) d(\theta') \le 0$$

for $\theta \geq \theta_p$

It is always optimal to have some bunching at the top

Theorem

Proof.

The contribution of $\theta \geq \theta_p$ to the objective function is

$$\frac{1}{\beta}\int_{\theta_p}^{\bar{\theta}}(1-G(\theta)u(\theta)d\theta)$$

rewriting
$$u(\theta) = u(\theta_p) + \int_{\theta_p}^{\theta} u'(\theta) d(\theta)$$
 gives

$$\frac{1}{\beta}u(\theta_{\rho})\int_{\theta_{\rho}}^{\bar{\theta}}(1-G(\theta)u(\theta)d\theta+\int_{\theta_{\rho}}^{\bar{\theta}}\int_{\theta_{\rho}}^{\theta'}(1-G(\theta''))u'(\theta'')d\theta''d\theta'$$

Minimal Savings Rule

- It is always optimal for all types above a certain threshold consume the same amount
- This does not imply that a minimum savings rule is necessarily optimal
- For that we need one further condition

$$G(\theta) = F(\theta) + \theta(1 - \beta)f(\theta)$$

is increasing for all $\theta \leq \theta_p$

 If (and only if) this condition is satisfied, a simple minimal savings rule is optimal

Optimal Sin Taxes

- Intuitively, if temptation and self control lead to overconsumption, 'sin taxes' could improve welfare
 - Measuring welfare in a multiple selves model not easy
- If there is heterogeneity in temptation this may come at the cost of hurting rational agents
- O'Donoguhe and Rabin [2006] explore this trade off

Set Up

- Two goods
 - Sin good (potato chips) xt
 - Composite normal good zt
- Quasi-Linear per period preferences

$$u_t = v(x_t; \rho) - c(x_{t-1}; \gamma) + z_t$$

- Sin good has initial benefit (v) and long run cost (c)
- ullet ho and γ preference parameters
- v well behaved

Intertemporal Preferences are quasi-hyperbolic

$$U(u_1,...u_T) = u_1 + \sum \beta \delta^t u_t$$

- Simplifying assumptions
 - No borrowing
 - Prices equal to 1
 - δ = 1
 - Income is I
- Assume that 'true' welfare should be measured net of β . FOC imply

$$v'(x^{**}; \rho) - c(x^{**}; \gamma) - 1 = 0$$

 $z^{**} = I - x^{**}$

Individual Behavior

- Assume government levies a tax t on the sin good that they return as a lump sum transfer I
- FOC for the agent becomes

$$v'(x(t)^*; \rho) - \beta c(x(t)^*; \gamma) - (1+t) = 0$$

 $z(t)^{**} = I + I - (1+t)x(t)^*$

 If consumers are homogeneous (or tax rates can be individually tailored), first best can be achieved by setting

$$t^{**} = (1 - \beta)c(x^{**}; \gamma)$$

Heterogeneous Individuals

• Assume that agents are distributed according to

$$F(\rho, \gamma, \beta) = G(\rho, \gamma)H(\beta)$$

 Assume a social welfare function that puts equal weight on all agents

$$\Omega(t) = E_F[u(x^*(t), z^*(t, I(t))]
= E_F[v'(x(t)^*; \rho) - c(x(t)^*; \gamma) + I + I(t) - (1+t)x(t)^*]$$

- ullet Optimal Sin tax is zero if eta=1 for all individuals
- ullet Optimal sin tax positive if $eta \leq 1$ for all and eta < 1 for some

- Consider Pareto efficient policies in the class of uniform tax rate and lump sum transfers
 - A tax t is pareto superior to t' if $u^*(t|\rho,\gamma,\beta) \ge u^*(t'|\rho,\gamma,\beta)$ for all feasible ρ,γ,β (strict for some)
 - A tax is quasi pareto superior to t' if $E_G(u^*(t|\rho,\gamma,\beta)) \geq E_G(u^*(t'|\rho,\gamma,\beta))$ all feasible β (strict for some)
- General problem: a tax rate that helps people with low β but hurts people with $\,\beta=1\,$
- Is this generally true?

• For any given tax rate, the long run utility of an agent

$$u^*(t) = v'(x(t)^*; \rho) - c(x(t)^*; \gamma) - x(t)^* + I + I(t) - tx(t)^*$$

- Two effects of a tax
 - 1 Distorts $x(t)^*$
 - 2 Redistributes income towards agents for whom

$$tx(t)^* \le I(t) = tX^*(t)$$

- Intuition: people with high β (low self control problems) don't consume many potato chips
- Tax redistributed money towards them
- People with low β (high self control problems) benefit from distortion of $x(t)^*$
- Potentially both groups could be winners

Theorem

Assume that $\beta \leq 1$ (strict for some), and that

$$v_{xxx} - \beta c_{xxx} \ge \frac{2c_{xx}}{c_x} (v_{xx} - \beta_{xx})$$

then

- 1 If G is degenerate, there exists a t > 0 that is pareto superior to 0
- 2 If G is not degenerate, there exists a t>0 that is quasi pareto superior to t
- Condition guarantees that consumption responses of tempted individuals are 'strong enough'
- Satisfied for linear and quadratic costs (assuming $v_{xxx} > 0$)