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1 De�nitions

Economics is a science of optima. We maximize utility functions, minimize cost functions, and �nd
optimal allocations. In order to study optimization, we must �rst de�ne what maxima and minima
are.

Let f : X → Y be a function. Then

1. We say x ∈ X is a local maximum of f on X if there is r > 0 such that f(x) ≥ f(y) for all
y ∈ X ∩B(x, r). If the inequality is strict, then we have a strict local maximum.

2. We say x ∈ X is a local minimum of f on X if there is r > 0 such that f(x) ≤ f(y) for all
y ∈ X ∩B(x, r). If the inequality is strict, then we have a strict local minimum.

3. We say x ∈ X is a global maximum of f on X if f(x) ≥ f(y) for all y ∈ X. If the inequality
is strict, then we have a strict global maximum.

4. We say x ∈ X is a global minimum of f on X if f(x) ≤ f(y) for all y ∈ X. If the inequality
is strict, then we have a strict global minimum.

Optimization problems are often written in the form

max
x∈X

f(x)

In this notation max refers to the global maximum of f on X. The point at which the maximum is
achieved is called the maximizer of f on X and usually denoted x∗ or argmaxx∈Xf(x). If there are
multiple global maxima of f on X, then argmaxx∈Xf(x) denotes the whole set of them.

In the following we seek conditions whereby we can tell whether maxima or minima exist, and if a
point x∗ ∈ X is a local maximum or minimum.

2 Weierstrass Theorem

The Weierstrass Theorem is one of the most important in economics. It states conditions under which
we are guaranteed to �nd a global maximum. We state it here without proof.

Weierstrass Theorem Let D ⊂ RN be a compact set, and f : D → R a continuous function.
Then f attains a (global) maximum and a (global) minimum on D, i.e. ∃ z1, z2 ∈ D such that
f(z1) ≥ f(x) ≥ f(z2) ∀ x ∈ D.

The crucial part of this theorem is that the set D has to be compact, that is, bounded and closed.
f attains its maximum either at the boundary of D or in the interior. The following discussion will
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focus on extreme points to be found in the interior of a set (in fact, we will usually let the domain of
our function be an open set). But we should not forget that if a function's domain is compact, the
extreme points can also be attained on the boundary of the domain. These extreme points cannot be
found with the �rst order conditions that apply for open domains.

3 First Order Conditions

Let F : U → R1 be a continuously di�erentiable function de�ned on U an open subset of Rn. If x∗ is
a local maximum or minimum of F in U , then

DF (x∗) = 0.

Notice that the converse is not true, namely "if DF (x∗) = 0, then x∗ is a local maximum or a local
minimum". For example, consider the function f(x) = x3 on R1. Then Df = 3x2, which implies that
when x = 0, Df(0) = 0. However, x = 0 is not a local maximum or minimum since if x > 0 in any
ε-ball about 0 then f(x) > f(0), and if x < 0 in any ε-ball about 0 then f(x) < f(0).

A condition which only goes in the ⇒ direction such as this is called a necessary condition. A
condition which only goes in the⇐ direction is called a su�cient condition. Therefore, if a condition
goes in both directions, we say it is a necessary and su�cient condition. Note that our �rst order
condition for maxima or minima is a necessary condition, but not su�cient.

Examples

1. Let f : R→ R, f(x) = 2x3 − 3x2.
Then Df(x) = 6x2 − 6x = 6x(x− 1), which implies that the only candidates for a maximum or
minimum are x = 0 and x = 1. Without further conditions, however, we cannot say whether
these are actual maxima or minima.

2. Let F : R2 → R, F (x, y) = x3 − y3 + 9xy.
Then DF (x) = (3x2 + 9y,−3y2 + 9x), which implies that the only candidates for a maximum
or minimum are when 3x2 + 9y = 0 and −3y2 + 9x = 0. Solving the �rst equation for y yields
y = − 1

3x
2. Plugging this into the other equation we have:

0 = −3y2 + 9x = −3
(
−1

3
x2

)2

+ 9x = −1

3
x4 + 9x.

This equation can be re-written as:

−1

3
x4 + 9x = 27x− x4 = x(27− x3),

which implies that x = 0 and x = 3 are possible solutions. Plugging the x solutions into the
equation for y gives y = 0 and y = −3 respectively. Therefore, the only possible optima are at
(x, y) = (0, 0) and (x, y) = (3,−3). Without further conditions, however, we cannot say whether
these are actual maxima or minima.

4 Second Order Conditions

The following theorem provides a su�cient condition for �nding local maxima or minima:

Let F : U → R be twice continuously di�erentiable, where U is an open subset of Rn, and the �rst
order condition holds for some x∗ ∈ U :
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1. If the Hessian matrix D2F (x∗) is a negative de�nite matrix, then x∗ is a strict local maximum
of F .

2. If the Hessian matrix D2F (x∗) is a positive de�nite matrix, then x∗ is a strict local minimum
of F .

3. If the Hessian matrix D2F (x∗) is an inde�nite matrix, then x∗ is neither a local maximum nor
a local minimum of F In this case x∗ is called a saddle point.

Notice again, however, that this proof does not go both ways. For example, it is not true that all local
minima have positive de�nite Hessian matrices. For example, take the function f(x) = x4, which has
a local minimum at x = 0, but its Hessian at x = 0 is D2f(x) = 0, which is not positive de�nite.

The following theorem provides weaker necessary conditions on the Hessian for a local maximum or
minimum:

1. Let F : U → R be twice continuously di�erentiable, where U is an open subset of Rn, and x∗ is
a local maximum of F on U . Then DF (x∗) = 0, and D2F (x∗) is negative semide�nite.

2. Let F : U → R be twice continuously di�erentiable, where U is an open subset of Rn, and x∗ is
a local minimum of F on U . Then DF (x∗) = 0, and D2F (x∗) is positive semide�nite.

According to the weaker necessary conditions, if we can �nd x∗ such that DF (x∗) = 0 and D2F (x∗) =
0 is either negative (or positive) semide�nite, then that x∗ is a candidate for a local maximum (or
minimum). However, we cannot know for sure without further inspection.

Examples

1. Recall the function f : R→ R, f(x) = 2x3 − 3x2 has DF (x) = 0 when x = 0 or x = 1. We can
calculate that D2F (x) = 12x−6. When x = 0, then D2F (x) = −6 which is negative de�nite, so
we can be sure that x = 0 is a local maximum. However, when x = 1, then D2F (x) = 6 which
is positive de�nite, so we can be sure that x = 1 is a local minimum.

2. Recall the function F : R2 → R, F (x, y) = x3 − y3 + 9xy has DF (x, y) = 0 when (x, y) = (0, 0)
or (x, y) = (3,−3). We can calculate that

D2F (x) =

(
6x 9
9 −6y

)
.

When (x, y) = (0, 0), then

D2F (x) =

(
0 9
9 0

)
.

In this case, the �rst order leading principal minor (the determinant of the matrix left after we
delete the last row and column, or the determinant of the top left element) is 0, and the second
order principal minor (the determinant of the whole matrix) is −81. Therefore, this matrix is
inde�nite, and (x, y) = (0, 0) is neither a maximum or minimum.

When (x, y) = (3,−3), then

D2F (x) =

(
18 9
9 18

)
.

In this case, the �rst order leading principal minor is 18, and the second order principal minor
is 243. Therefore, this matrix is positive de�nite, and (x, y) = (0, 0) is a strict local minimum.
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5 Concavity, Convexity, and Global Optima

Let F : U → R be twice continuously di�erentiable, and U an open set. Then the function F is concave
i� D2F (x) is negative semide�nite for all x ∈ U , and is convex i� D2F (x) is positive semide�nite for
all x ∈ U .
If F is a concave function and DF (x∗) = 0 for some x∗ ∈ U , then x∗ is a global maximum of F on U .
If F is a convex function and DF (x∗) = 0 for some x∗ ∈ U , then x∗ is a global minimum of F on U .

Example

1. Inspect the function F (x, y) = x2 + y2, and �nd any maxima or minima. Can you tell whether
they are local or global?

DF (x, y) = (2x, 2y)⇒ DF (x, y) = 0 for x = 0 and y = 0

The Hessian is

D2F (x, y) =

(
2 0
0 2

)
Since this is a diagonal matrix with only strictly positive entries on the diagonal, it is positive
de�nite, independent of x and y. Therefore, it is positive de�nite at the critical point (0, 0), and
(0, 0) is a strict local min (second order condition). But we can say even more: The Hessian is
positive de�nite at all points, hence also positive semi-de�nite (a weaker condition) at all points.
Therefore F (x, y) is convex. By the theorem above, the point (0, 0) is a strict global minimum.

2. Consider the function f(x) = x4. Find the critical values and classify them.
f ′(x) = 4x3 so the only critical point is x∗ = 0. The Hessian is f ′′(x) = 12x2. Evaluated at
x∗, the Hessian is f ′′(x∗) = 0, so the second order condition does not tell us whether x∗ is a
maximum or a minimum. However, looking at the Hessian for all points in the domain gives us
more information: f ′′(x) = 12x2 ≥ 0 for all x, so the Hessian is positive semi-de�nite on the
whole domain and f is convex. Therefore, x∗ has to be a global minimum.

3. Consider F (x, y) = x2y2. Find the critical values and classify them.

DF (x, y) = (2xy2, 2x2y)⇒ DF (x, y) = 0 for x = 0 or y = 0

We have in�nitely many critical points which are of three di�erent forms:

z1 = (x, 0) with x 6= 0, z2 = (0, y) with y 6= 0, z3 = (0, 0)

The Hessian is

D2F (x, y) =

(
2y2 4xy
4xy 2x2

)
First of all, the Hessian is not always positive semide�nite or always negative de�nite (�rst oder
principal minors are ≥ 0, second order principal minor is ≤ 0), so F is neither concave nor
convex.
Let's determine the de�niteness of D2F (x, y) at critical points of the form (x, 0) with x 6= 0.
In this case the Hessian is NOT negative semide�nite, so these points cannot be local maxima.
The Hessian is positive semide�nite, but that is not su�cient to conclude anything else.
Similarly, at critical points of the form (0, y) with y 6= 0 the Hessian is NOT negative de�nite,
so these points cannot be local maxima either, but we can't say more.
At the critical point (0, 0), the Hessian is positive semide�nite and negative semide�nite, so we
can't say anything.
This is an example where the conditions on the Hessian do not provide a lot of information.
But we can use "common sense" instead: F (x, y) ≥ 0 for all x, y, so points at which F (x, y) = 0
have to be global minima. Therefore, all the critical points are global minima.
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6 Homework

1. For each function, determine whether the it de�nitely has a maximum, de�nitively does not have
a maximum, or that there is not enough information to tell, using the Weierstrass Theorem. If
it de�nitely has a maximum, prove that this is the case.

(a) f : R→ R, f(x) = x.

(b) f : [−1, 1]→ R, f(x) = x

(c) f : (−1, 1)→ R, f(x) = x

(d) f : [−1, 1]→ R, f(x) =
{

0 if x = 1
x otherwise

(e) f : R++ → R, f(x) =
{

1 if x = 5
0 otherwise

2. Consider the standard utility maximization problem

max
x∈B(p,I)

U(x), where B(p, I) = {x ∈ Rn
+| p · x ≤ I}

Prove a solution exists for any U(x) continuous, I > 0 and p ∈ Rn
++. Show a solution may not

necessarily exist if p ∈ Rn
+.

3. Search for local maxima and minima in the following functions. More speci�cally, �nd the points
where DF (x) = 0, and then classify then as a local maximum, a local minimum, de�nitely not a
maximum or minimum, or can't tell. Also, check whether the functions are concave, convex, or
neither. The answers (except for the concavity/convexity part) are found in the back of Simon
and Blume, Exercises 17.1 - 17.2.

(a) F (x, y) = x4 + x2 − 6xy + 3y2

(b) F (x, y) = x2 − 6xy + 2y2 + 10x+ 2y − 5

(c) F (x, y) = xy2 + x3y − xy
(d) F (x, y) = 3x4 + 3x2y − y3

(e) F (x, y, z) = x2 + 6xy + y2 − 3yz + 4z2 − 10x− 5y − 21z

(f) F (x, y, z) =
(
x2 + 2y2 + 3z2

)
e−(x

2+y2+z2)
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