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Note: Some of the data presented here are reported as a portion of another article 
currently in press at an economics journal (Caplin, Dean, Glimcher & Rutledge. 
Measuring beliefs and rewards: a neuroeconomic approach. Forthcoming at the Quarterly 
Journal of Economics). That article was provided to the editors. The cover letter 
submitted to the editors details the degree of overlap between these two manuscripts. To 
summarize briefly: Figures 1, 2, 3a, and 3c, which explain the task, axiomatic model, 
present an example of a traditional regression-based analysis, and show the anatomical 
definition and trial averages for the nucleus accumbens are similar to figures in the QJE 
paper. Finally, figure 4a, although a unique analysis, shows a result similar to a figure 
panel in the QJE paper. Of 80 statistical tests in Table 1 and the 12,000 statistical tests 
summarized in figure 5, analysis related to 10 of those tests are included in the QJE 
paper. All salience-related analyses including figure 7, the 224 statistical tests in Table 2, 
and the 33,600 statistical tests summarized in figure 8, and all axiom-related analyses for 
the other 10 brain areas besides the nucleus accumbens are unique to this manuscript. We 
also respectfully point out to our reviewers that there is very little overlap between the 
readers of the Quarterly Journal of Economics and the Journal of Neuroscience. While 
we share the conviction of many that double publication must be avoided at all costs, we 
urge the reviewers to consider the differences between the neurobiological analyses and 
conclusions and the economic theories developed as two separate goals of this joint 
interdisciplinary research program. 
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Abstract 

Neuroimaging studies typically identify neural activity correlated with the predictions of 

highly parameterized models, like the many reward prediction error (RPE) models used 

to study reinforcement learning. Identified brain areas might encode RPEs or 

alternatively simply have activity correlated with RPE model predictions. Here we use an 

alternate axiomatic approach rooted in economic theory to formally test the entire class of 

RPE models on neural data. We show that measurements of neural activity from the 

striatum, medial prefrontal cortex, amygdala, and posterior cingulate cortex satisfy 

necessary and sufficient conditions for the entire class of RPE models. However, activity 

measured from the anterior insula falsifies the axiomatic model and therefore no RPE 

model can account for this activity. Further analysis suggests the anterior insula might 

instead encode something related to the salience of an outcome. As cognitive 

neuroscience matures and models proliferate, formal approaches that assess entire classes 

of models rather than specific model exemplars may take on increased significance.
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Introduction 

Our understanding of the natural world progresses through the development of 

explanatory models designed to capture compact descriptions of physical events. Within 

neuroscience, models tend to develop through a process of competitive evolution in 

which highly specified models are tested against each other. Other disciplines, including 

physics and economics, often employ an alternative approach, dividing the space of all 

possible models into subdomains and then attempting to falsify the hypothesis that one or 

more members of an entire class of models can account for a set of empirical 

observations. These model classes are typically defined by sets of testable rules called 

axioms. Popper (1959) argued that the most powerful test of any theory derives from 

formal efforts aimed at falsification. In this tradition, the axiomatic approach explicitly 

attempts to falsify entire model classes. 

Dopamine neurons are thought to encode a reward prediction error (RPE) signal, 

the difference between experienced and predicted rewards. Numerous studies have fit 

specific parameterized RPE models to measurements of dopamine neuron activity 

(Schultz et al., 1997; Hollerman and Schultz, 1998; Nakahara et al., 2004; Bayer and 

Glimcher, 2005; Joshua et al., 2008; Matsumoto and Hikosaka, 2009) and fMRI 

measurements of neural activity in dopamine target areas (McClure et al., 2003; 

O’Doherty et al., 2003, 2004; Seymour et al., 2004; Abler et al., 2006; Li et al., 2006; 

Pessiglione et al., 2006; Behrens et al., 2008; D’Ardenne et al., 2008; Hare et al., 2008). 

Model competitions have shown that parameterized temporal-difference approaches 

(Sutton and Barto, 1990) better account for electrophysiological data (e.g., Schultz et al., 

1997) than RPE models related to the approach of Rescorla and Wagner (1972). 
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Unfortunately, comparing correlation coefficients for different RPE models cannot tell us 

whether key features of dopamine-related activity are fundamentally incompatible with 

specific critical features of the entire class of all possible RPE models. The regression 

approach cannot, in principle, falsify the hypothesis that dopamine neurons encode some 

kind of RPE signal. 

 Caplin and Dean recently examined the necessary and sufficient properties of a 

RPE signal (Caplin and Dean, 2008a, 2008b), finding that any such signal must possess 

three critical features. They showed that if any one of these features is absent, the 

observed signal cannot represent a RPE regardless of whether it is correlated with 

parameterized RPE models. If all of these features are present then the measured signal 

meets criteria of both necessity and sufficiency for representing a RPE. By empirically 

testing these formal mathematical axioms, it is possible to test the entire class of RPE 

models for a neural signal measured from any brain area.  

 To axiomatically test the hypothesis that specific neural signals can encode RPEs, 

we used fMRI to measure blood-oxygen-level dependent (BOLD) activity as subjects 

played monetary lotteries for real money. We asked whether BOLD responses in specific 

candidate RPE brain areas satisfied the necessary and sufficient criteria for encoding a 

RPE signal. Any signal falsifying one or more axioms cannot in principle encode any 

type of RPE. Such a signal cannot be accounted for by any model in the entire RPE 

model class. We also tested whether any candidate RPE areas might alternatively encode 

the absolute value of the RPE signal, a quantity related to saliency. 
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Materials and Methods 

Subjects. Fourteen paid volunteers participated in the experiment (9 women, 5 men, all 

right-handed, mean age = 26.0 years). All subjects participated in two scanning sessions. 

Two subjects were excluded from further analysis due to excessive head motion during 

the scanning sessions. Participants gave informed consent in accordance with the 

procedures of the University Committee on Activities involving Human Subjects of New 

York University. 

Experimental task. Prior to scanning, subjects were endowed with $100 in cash. 

Subjects also received a show-up fee of $35 at the end of each scanning session, 

regardless of task earnings. On each trial, subjects chose between two monetary lotteries 

where the probability of each prize was represented by the area of that prize’s slice (Fig. 

1A). To test the axiomatic model, it was necessary to collect data with two prizes 

available (+$5, -$5) at a variety of probabilities (0% to 100% in 25% increments). Thus 

the observation set consisted of five lotteries and eight possible trial types (lottery-prize 

pairs). A lottery from the observation set appeared in every trial. To ensure that subjects 

usually chose from the observation set, the decoy lottery always had a lower 

mathematical expected value (ranging from $1.25 to $5 lower). The decoy set also 

included additional prizes (+$0, -$10). Subjects were given a choice between options to 

ensure that they were actively engaged in the task. After a 12.5 s fixation period, options 

were presented for 5 s. The fixation cross was extinguished, indicating that the subject 

had 1.25 s to make their selection by button press. After a 7.5 s delay period, the prize 

was revealed for 3.75 s as a change in the color of that prize’s slice in the chosen lottery. 

If a subject failed to make a button press in the required time window, they lost $10. Out 
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of 3,024 total trials completed, subjects missed 21 trials and chose the decoy lottery in 28 

trials, completing 2,975 trials to the observation set. 

Imaging. Imaging data were collected with a Siemens Allegra 3-Tesla head-only 

scanner equipped with a head coil from Nova Medical. T2*-weighted images were 

collected using an EPI sequence. We collected 23 slices oriented parallel to the AC-PC 

plane (TR = 1.25 s, TE = 30 ms, ascending interleaved order, 3 x 3 x 3 mm, 64 x 64 

matrix in a 192-mm FOV). This volume provided coverage of the subcortical, frontal, 

and midbrain regions of interest while omitting part of the parietal lobe and the crown of 

the skull in all subjects. Each scan consisted of 396 images. The first four images were 

discarded to avoid T1 saturation effects. There were 16 choice trials during each scan. 

Each trial lasted 30 s (Fig. 1A). Each subject completed 13-16 scans over two sessions, 

with most subjects (n = 9) completing eight scans in each session. The data set consisted 

of 74,844 volumes, with an average of 130 min of functional data per subject. We also 

collected high-resolution T1-weighted anatomical images using a MP-RAGE pulse 

sequence (144 sagittal slices, TR = 2.5 s, TE = 3.93 ms, TI = 900 ms, flip angle = 8°, 1 x 

1 x 1 mm, 256 x 256 matrix in a 256-mm FOV) for coregistration of functional data. 

Data analysis. Functional imaging data were analyzed using BrainVoyager QX 

(Brain Innovation, Maastricht, the Netherlands), with additional analyses performed in 

MATLAB (MathWorks, Natick, MA) and STATA (StataCorp, College Station, TX). We 

sinc-interpolated functional data in time to adjust for staggered slice acquisition. We 

corrected for any head movement by realigning all images to the first volume of the 

session using six-parameter rigid-body transformations. We detrended and high-pass 

filtered (cutoff of 3 cycles per scan) to remove low-frequency drift in the signal. We then 
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co-registered images to each subject’s high-resolution anatomical scan, rotated into the 

AC-PC plane, and normalized into Talairach space using piecewise affine Talairach grid 

scaling using trilinear interpolation. Data were spatially and temporally unsmoothed, 

except for the group random-effects analysis. 

To demonstrate the standard regression approach, we performed group random-

effects analysis using the summary statistics approach. For this analysis we spatially 

smoothed all data with an 8-mm FWHM Gaussian kernel. The regression model 

consisted of a single regressor of interest with the “predicted RPE” on each trial during 

the outcome period. This was defined for these purposes as the difference between the 

reward received in dollars and the expected value of the lottery. Three additional 

regressors modeled the options, button, and outcome onset for all trials. All four 

regressors were convolved with the canonical two-gamma (τ1 = 6 s, τ2 = 15 s, ratio of 

peak to undershoot = 6) hemodynamic impulse response function. A statistical map was 

then generated for the regressor of interest using one-sample t-tests. This map is shown 

for demonstration purposes without any minimum cluster threshold or corrections for 

multiple comparisons (Fig. 1B). 

For further analysis, we independently defined anatomical regions of interest 

(ROIs) in individual subjects for 11 brain regions: the nucleus accumbens, anterior insula, 

caudate, putamen, medial prefrontal cortex, amygdala, posterior cingulate cortex, 

thalamus, ventral tegmental area, substantia nigra, and habenula. These regions were 

chosen because they have been found to have activity consistent with specific RPE 

models in previous neuroimaging and neurophysiological studies. Criteria for these 

structural definitions, primarily using those established by the Center for Morphometric 



 9

Analysis (Rademacher et al., 1992; Caviness et al., 1996), are described in the 

Supplemental Data and distributions for these definitions across subjects are shown (Fig. 

3 and supplemental Fig. 1 and 3). 

Our ROIs were largely located in subcortical and midbrain areas. The amygdala 

and posterior cingulate cortex ROIs were located near the boundaries of our acquisition 

volume, making these ROIs particularly susceptible to artifacts from the motion 

correction algorithm. To limit these artifacts, we excluded from our ROIs any voxel from 

a given scan for which the standard deviation of percent signal change exceeded 2%, a 

degree of variance incompatible with a continuous BOLD signal (see supplemental Table 

1). In practice, this excluded < 5% on average for all structures except the amygdala 

(12%) and posterior cingulate cortex (23%). We limited the effects of motion on BOLD 

activity in individual voxels using a regression model that included the six motion 

predictor regressors and their temporal derivatives. We then averaged data across each 

anatomical ROI to produce a mean time course for each ROI which was converted to 

percent signal change using two baseline TRs as indicated in the text and figures. 

We made no assumptions about the shape of the hemodynamic response functions 

in our anatomical ROIs, but removed correlations between timepoints at the subject and 

trial type level using an AR4 autoregressive model while maintaining consistent 

timepoint averages. We then averaged activity within the 5-TR window, weighting each 

timepoint equally. We computed parameter estimates by ordinary least squares for each 

of the eight trial types for the 2,975 trials in the observation set controlling for subject-

level differences in activity. We evaluated the following axiomatic RPE model and RPE 

absolute value model, testing for differences between parameter estimates using Wald 



 10

tests of linear restriction. We tested the robustness of our results by evaluating a wide 

range of baselines and starting times for the 5-TR analysis window. 

Axiomatic RPE model. To determine whether the BOLD signal measured in the 

striatum and other possible RPE areas meets the criteria of necessity and sufficiency for 

encoding a RPE signal, we formally tested the RPE hypothesis using the axiomatic model 

developed by Caplin and Dean (2008a). This approach makes no specific assumptions 

about the precise form of subjective variables like “reward” and “expectation” that are 

not part of the RPE hypothesis, but that the traditional regression approach requires. 

Using this model, we can thus explicitly test whether a given neural signal falsifies or 

satisfies the three conditions of necessity and sufficiency for the entire class of RPE 

models. For example, all RPE models assume that a RPE signal responds similarly to any 

fully anticipated outcome, whether it be winning or losing $5 or winning an apple or an 

orange, and the model’s third axiom formally captures that intuition. Surprisingly, this 

assumption has never been tested on dopamine neurons for prizes with relatively similar 

sensory properties, like apple juice and orange juice. If any neural signal does not satisfy 

this or either of the other two axioms then it cannot, in principle, represent a RPE signal. 

For the two-prize case we tested, the three axioms are necessary and sufficient criteria for 

the RPE model class (Caplin et al., in press).  

We tested our measures of neural activity against the three axioms: consistent 

prize ordering (axiom 1), consistent lottery ordering (axiom 2), and no surprise 

equivalence (axiom 3). The three axioms are as follows, where δ(z, p) is neural activity 

associated with receiving prize z (e.g., winning $5) from lottery p (e.g., 50% probability 

of winning $5). δ (z) is the one-prize “lottery” where prize z has 100% probability: 
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Axiom 1: consistent prize ordering. Consider two different lotteries p and p’ (they 

have 25% and 75% probabilities of winning $5, respectively, in Figure 2A). Caplin and 

Dean (2008a) demonstrated that if a RPE signal responds with higher activity to winning 

than losing $5 from lottery p, then it must be the case, according to the RPE hypothesis, 

that winning $5 has a higher experienced reward than losing $5. Therefore, the signal 

must also respond with higher activity to winning than losing $5 from lottery p’. Figure 

2A shows a hypothetical result that would falsify this first criterion. Hypothetical neural 

activity (for example, BOLD activity from some brain area) is plotted against the 

probability of winning $5; each point represents activity associated with receiving a 

particular prize (+$5 in red, -$5 in blue) from one of the five lotteries in the observation 

set. Open circles represent unobservable outcomes; for example, observing the activity 

associated with losing $5 when the probability of winning $5 is 100% is impossible. 

Higher activity for winning than losing $5 from lottery p implies that winning $5 has the 

higher experienced reward (Fig. 2A). Higher activity for losing than winning $5 from 

lottery p’ implies the opposite, and this contradiction violates the first axiom. Any 

crossing of the red and blue lines contradicts consistent prize ordering and proves that the 

activity under study cannot, in principle, encode any form of RPE signal. This is true for 

any two prizes, for example, comparing apples and oranges; for a RPE signal, if the 

activity is higher for apples than oranges for one lottery, it must be higher for all lotteries. 

Axiom 2: consistent lottery ordering. Consider again lotteries p and p’ (they again 

have 25% and 75% probabilities of winning $5, respectively, in Figure 2B). A RPE signal 
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that responds with lower activity to losing $5 from lottery p’ than from lottery p implies 

that, according to the RPE hypothesis, p’ has higher predicted reward. Therefore, it must 

also respond with lower activity to winning $5 from lottery p’ than from lottery p. Figure 

2B shows a violation of this axiom. Lower activity for losing $5 from lottery p’ than 

lottery p implies that lottery p’ (the lottery with a 75% chance of winning $5) has the 

higher predicted reward. Higher activity for winning $5 from lottery p’ than from lottery 

p implies the opposite. The blue line’s downward slope implies that the lotteries with a 

higher probability of winning $5 have higher predicted reward. The red line’s upward 

slope implies the opposite. For any two lotteries, any difference in signs of slopes 

between red and blue lines contradicts consistent lottery ordering and proves that the 

activity under study cannot, in principle, encode any form of RPE signal. The activity for 

a prize received from two different lotteries can be identical, implying that two lotteries 

have equal predicted reward, as long as the activity for receiving the other prize from the 

same two lotteries is also identical. 

Axiom 3: no surprise equivalence. The final criterion of necessity and sufficiency 

identified by Caplin and Dean (2008a) was that RPE signals must respond identically to 

all fully predicted outcomes, conditions under which the reward prediction error is zero. 

If there is no reward prediction error, the signal must always generate the same response 

regardless of the prediction. Consider the two one-prize “lotteries” shown as the filled 

endpoints of the red and blue lines in Figure 2C. If, as shown in the plot, the signal 

responds with less activity to losing than winning $5 when both outcomes are fully 

anticipated, this violates the third axiom and proves that the activity under study cannot, 

in principle, encode any form of RPE signal. 
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These three representational constraints that must be obeyed by any member of 

the class of RPE models (Caplin and Dean, 2008a, 2008b; Caplin et al., in press), whether 

a Rescorla-Wagner model, a temporal-difference model, a RPE model with a high or low 

learning rate, or a RPE model with any arbitrary utility function. If an observed neural 

signal fails to meet any of these criteria, then the proposition that it can encode a RPE 

signal can be considered formally falsified. In contrast, a neural signal that demonstrates 

all three properties is one that, in the two-prize case, meets the sufficient criteria for 

encoding a RPE signal (as proven for the two-prize case by Caplin and Dean, 2008). A 

pattern of activity satisfying all three axioms is shown in Figure 2D. 

 We do not make any assumptions about the magnitude of experienced and 

predicted rewards for prizes or lotteries, nor about the hemodynamic response function of 

subjects or brain areas. However, since our analysis is performed at the group level, we 

do assume that subjects have the same ordering over prizes and lotteries. For example, we 

assume that all subjects either prefer winning to losing $5 or alternatively prefer losing to 

winning $5. Although the theory itself does not require this, if we additionally assume 

that subjects prefer winning to losing $5 and also prefer lotteries with a higher probability 

of winning $5, then we can predict that the axioms will be satisfied specifically in the 

way indicated in the left-most column in Table 1. They could be satisfied in many other 

ways, including if all the signs in the left-most column were reversed (Caplin and Dean, 

2008). We looked for signals that satisfied the axioms in this manner by counting the 

number of tests with the predicted sign at p < 0.05 for a wide range of baselines and 

analysis windows. Baselines were selected around the end of the fixation period and the 

end of the delay period. BOLD activity in all areas was observed to be relatively similar 
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across trial types during these periods. A range of analysis windows were tested starting 

before the outcome period and lasting into the next trial. For the habenula, we also tested 

the axiomatic RPE model with the signs of all statistical tests reversed, as 

electrophysiological data has suggested this area may encode a sign-reversed RPE signal 

(Matsumoto and Hikosaka, 2007). 

RPE absolute value model. To test whether a signal can represent the magnitude 

of the RPE signal for the two-prize case we tested, we must make two assumptions about 

how the RPE is constructed. First, we assume that the RPE is the mathematical difference 

between the experienced and predicted reward. Second, we assume (for the two-prize 

case) that the predicted reward is equal to pz uz + (1-pz) uz’ where pz, uz, and uz’ are the 

probability and utility of prize z and the utility of prize z’ respectively. Thus the RPE 

absolute value when prize z is received is (1-pz) abs(uz-uz’). When prize z’ is received, it 

is (1-pz’) abs(uz’-uz). Since the second term is always the same for the two-prize case, the 

RPE absolute value should be a decreasing function of probability. We test whether 

activity decreases with prize probability with the following condition: 

1) The activity associated with receiving prize z from lottery p is higher than for 

receiving prize z’ from lottery p’ if and only if the probability of receiving 

prize z from lottery p is higher than the probability of receiving prize z’ from 

lottery p’. 

In this way we examine the possibility that how surprising an outcome is whether for 

good or bad, a property related to salience, can be encoded by the BOLD response in a 

particular brain area. For the habenula we also tested for a sign-reversed RPE absolute 

value signal.
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Results 

Traditional regression-based analysis 

A number of previous studies have examined the RPE hypothesis by selecting a fully 

parameterized member of the RPE model class and correlating some element of the 

model with measured BOLD activity. We first completed a standard random-effects 

regression analysis of this type (Fig. 1B) to allow comparison with the results of our 

axiomatic RPE model analysis. To accomplish this we had to make several assumptions 

about concepts like “reward” and “expectation”, variables which cannot be measured 

directly. We therefore assumed, as have previous studies (e.g., D’Ardenne et al., 2008), 

that the utility function for gains and losses was a linear function of monetary reward 

with no change in slope at the origin (Pascal’s utility function), and that the predicted 

reward was equal to the utilities of the prizes weighted by their objective probabilities 

(expected utility theory’s independence axiom). These assumptions imply that the RPE 

signal would be proportional to the difference in dollars between the outcome received 

and the lottery’s expected value. We also assumed, as have previous studies (e.g., Li et 

al., 2006), that the BOLD response in all areas would follow the canonical two-gamma 

hemodynamic impulse response function which has been well validated in sensory and 

motor cortex (e.g., Vazquez and Noll, 1998; Friston et al., 1999). We found that BOLD 

activity in the striatum (including parts of the nucleus accumbens, putamen, and caudate) 

was significantly correlated (p < 0.001, uncorrected) with the predicted RPE specified in 

this way. This result is consistent with numerous previous studies (e.g., McClure et al., 

2003; O’Doherty et al., 2003, 2004; Pessiglione et al., 2006) that have shown that activity 

in this area is well correlated with specific RPE models. At a more liberal threshold (p < 
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0.01), BOLD activity in the medial prefrontal cortex was also correlated with the 

predicted RPE, but not activity in other candidate RPE areas including the anterior insula, 

amygdala, and posterior cingulate cortex. While these data clearly indicate that BOLD 

activity in the striatum is correlated with the predictions of this particular RPE model, 

they cannot tell us whether the data is actually compatible with the RPE hypothesis. Is the 

observed correlation limited by a fundamental and insurmountable mismatch between 

critical properties of the signal and the model? To answer that question we turned next to 

a test of the necessary and sufficient signal properties required for a RPE representation. 

 

Neuroimaging test of the RPE hypothesis by the axiomatic method 

Neuroimaging studies have identified activity in numerous brain areas that is correlated 

with the predictions of particular RPE models. To test the hypothesis that BOLD activity 

in these brain areas can actually encode a RPE signal, we first anatomically defined ROIs 

and then computed estimates of the average BOLD activity for each of the eight trial 

types from the observation set of lotteries. This allowed us to produce plots of the kind 

shown in Figure 2 for each brain area. We then performed statistical tests on these data in 

an effort to falsify one or more of the axioms. 

We first extracted BOLD responses from the nucleus accumbens and the anterior 

insula in all subjects (Fig. 3A-B), both regions identified as possible RPE areas in 

previous studies (e.g., Pessiglione et al., 2006; Voon et al., 2010). We then plotted the 

average BOLD responses for the eight trial types (Fig. 3C-D) converted to percent signal 

change relative to a baseline selected as the last two TRs of the fixation period (TR 9-10). 

The outcome of each trial was presented on the screen for 3 TRs (TR 22-24). Due to the 
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lag in the hemodynamic response (approximately 5 s or 4 TRs), we specified our initial 

analysis window as TR 26-30 (later analyses relax this assumption). For each brain area, 

we then estimated parameters for each trial type, averaging activity across the analysis 

window, weighting timepoints equally. Our methodology assumes that all subjects have 

the same ordering of prizes and lotteries. For example, we assume that all subjects either 

prefer winning to losing $5 or alternatively all prefer losing to winning $5. We make no 

assumptions about the shape of the hemodynamic response function in different brain 

areas. The resulting parameter estimates are plotted for the nucleus accumbens (Fig. 4A) 

and anterior insula (Fig. 4B). For each area, we then performed 10 Wald tests of linear 

restriction (Wald, 1943) on the relations between these parameter estimates which 

instantiate the three critical axiomatic criteria. Test results are shown in Table 1. 

For BOLD activity in the nucleus accumbens (Fig. 4A), a subregion of the ventral 

striatum, axiom 1 is satisfied, with higher activity for winning than losing $5 for the three 

two-prize lotteries (all p < 0.001). Axiom 2 is satisfied with all lines significantly 

downward sloping (all p < 0.05). Finally, axiom 3 is satisfied, with activity not 

significantly different for the two fully anticipated outcomes (p = 0.29). This signal thus 

satisfies all three necessary and sufficient conditions of the axiomatic RPE model and can 

unambiguously encode a RPE signal. 

Perhaps surprisingly, the data for the anterior insula indicate a very different 

conclusion (Fig. 4B). Axiom 1 is falsified at p < 0.05; the activity is higher for losing 

than winning $5 from the 75% lottery (p < 0.001), but this is not true for the other 

lotteries at p < 0.05. Axiom 2 is also falsified at p < 0.05 in two different ways: activity is 

higher for losing $5 from the 50% than the 25% lottery (p = 0.032) but this is not true for 
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winning $5, and activity is lower for winning $5 from the 75% than the 25% lottery (p < 

0.001), but this is not true for losing $5. Finally, axiom 3 is also falsified; the activity is 

significantly higher for losing $5 than winning $5 for the fully anticipated outcomes (p < 

0.001). Therefore, this signal falsifies all three necessary and sufficient conditions of the 

axiomatic RPE model, and cannot possibly encode any type of RPE signal. BOLD 

activity in the anterior insula, despite the fact that it is correlated with the predictions of 

specific RPE models in some studies, cannot in principle encode a RPE signal under the 

conditions we have examined. 

 We also tested several other areas that previous studies suggest might encode RPE 

signals. Anatomical definitions and BOLD time series for six additional areas are shown 

in supplemental Figure 1 with tests presented in Table 1. BOLD activity in the caudate 

also satisfies all three axioms at p < 0.05 and can encode a RPE signal. Activity in the 

putamen, medial prefrontal cortex, and amygdala, but not the posterior cingulate cortex, 

satisfies the first axiom at p < 0.05. However, activity in all four areas falsifies the second 

axiom, so these signals cannot, in principle, represent a RPE if the representation is 

constrained at the time of our analysis window relative to this specific baseline. The 

signal in the thalamus also falsifies all three axioms and cannot encode a RPE signal for 

this specific baseline and analysis window. 

 Although testing the axioms requires no assumptions about the precise ordering of 

prizes or lotteries, we predicted that subjects would both prefer winning to losing $5 and 

would prefer lotteries with a higher probability of winning $5 and that BOLD activity 

would be related to this preference. This led us to predict that the axioms would be 

satisfied in the specific way specified in the left-most column in Table 1. For any lottery, 
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winning $5 should lead to higher activity than losing $5. Winning either prize should lead 

to lower activity from lotteries with a higher probability of winning $5. Although, for 

example, the medial prefrontal cortex falsifies the second axiom, most of the tests for this 

signal had the predicted sign. Because measurements of BOLD activity are noisy, 

whether or not a signal satisfies the axioms might depend on the baseline and analysis 

window used to estimate the responses. To test this possibility, and to examine the 

robustness of our findings, we analyzed signals for a wide range of baselines and analysis 

windows. 

 

Assessing the robustness of axiomatic RPE model tests 

In the preceding section, to estimate neural signals to test the axiomatic RPE model, we 

averaged the signal across a 5-TR analysis window (TR 26-30) beginning around the 

expected peak of the hemodynamic response. We also converted the raw signal to percent 

signal change using the last two TRs of the fixation period as a baseline. This standard 

practice in fMRI time series analysis adjusts for magnetic field drift that detrending and 

high-pass filtering fail to correct. To assess the robustness of our results, we counted the 

number of tests which were significant at p < 0.05 with the predicted sign for a range of 

baselines and analysis windows. We plot the results of this analysis in Figure 5, with 

results for 11 possible baselines (including no baseline) plotted against the starting time 

of the 5-TR analysis window. Color indicates the number of significant tests with the 

predicted sign for that particular baseline and analysis window, with more significant 

tests indictated in red colors and fewer in blue colors.  
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 BOLD activity in the nucleus accumbens, caudate, amygdala and posterior 

cingulate cortex (Fig. 5) had the predicted sign for all 10 tests of the axiomatic model. 

Swaths of red in Figure 5 indicate that most tests had the predicted sign for a range of 

baselines and analysis windows, suggesting that the RPE model is robustly appropriate 

for these areas. Signals measured from each of these areas satisfy the axioms in exactly 

the way predicted, and these signals thus can encode a RPE (supplemental Fig. 2). 

Although BOLD activity in the putamen and medial prefrontal cortex did not have the 

predicted sign for all 10 tests for any baseline or analysis window (Fig. 5D-E), there are 

signals for both areas which satisfy all three axioms at p < 0.05 (supplemental Fig. 2). For 

example, for a baseline TR 8-9 and analysis window TR 28-32, the medial prefrontal 

cortex satisfies all three axioms; all tests have the predicted sign except tests 2.1 and 2.2. 

The signs of these two tests are both equal (rather than minus) and therefore satisfy the 

second axiom. The putamen signal for a baseline TR 22-23 and analysis window TR 25-

29, for example, also satisfies all three axioms. For all these areas, the majority of tests 

have the predicted sign for a wide range of analysis windows and baselines. 

 In contrast, the anterior insula does not appear to satisfy the criteria for a RPE for 

any baseline or analysis window. There is only a single baseline and analysis window 

over the entire range tested for which this area (Fig. 5B) even has the predicted sign for 

the majority (six) of the tests. There exists no baseline and no analysis window within the 

range of TR 22-36 for which all three axioms are satisfied for either the anterior insula or 

the thalamus; the signal from both areas cannot possibly encode a RPE representation 

under the conditions we examined and this result is robust to choice of baseline and 

analysis window. 
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 Because our traditional random-effects regression analysis revealed correlations 

with our particular RPE model only in the striatum (Fig. 1B) and, at a more liberal 

threshold (p < 0.01, uncorrected), the medial prefrontal cortex, we were surprised to see 

several other brain areas from which signals satisfied the axiomatic RPE model, some of 

which (amgydala and posterior cingulate cortex) are rarely identified in neuroimaging 

studies of the RPE hypothesis. Plotting the average BOLD response to positive and 

negative outcomes from the three two-prize lotteries reveals that the hemodynamic 

responses in the amygdala and posterior cingulate cortex, and also the medial prefrontal 

cortex, bear little similarity to the canonical hemodynamic response function (Fig. 6). For 

example, all three signals terminate at a higher level than they started. This may suggest 

that prior regression-based analyses have failed to identify several of these RPE signals 

due to incorrect assumptions about hemodynamics. In fact, we note that even in the 

nucleus accumbens the hemodynamic prediction appears to fit the data poorly, with the 

signal rising initally for all outcomes and then dipping well below the starting level. As 

shown here, our analysis methods circumvent these issues. 

 Although imaging the dopaminergic midbrain structures is notoriously difficult 

and few studies have reported success at identifying possible RPE signals in the midbrain 

(although see D’Ardenne et al., 2008), we tested whether signals extracted from the 

ventral tegmental area and substantia nigra might satisfy the axiomatic RPE model. We 

found no evidence of RPE signals in BOLD responses in either area (supplemental Fig. 

4), although we cannot address here whether spiking patterns are consistent with the RPE 

theory. We also tested whether BOLD responses in the habenula might encode a RPE 

signal or alternatively a sign-reversed RPE signal, as a recent electrophysiological study 
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has suggested is carried by spiking activity (Matsumoto and Hikosaka, 2007). We found 

no evidence for either a RPE or a sign-reversed RPE BOLD signal (supplemental Fig. 4). 

Supplemental Figure 3 displays ROI definitions and trial averages for all three areas. 

 

Understanding the anterior insula: RPE absolute value signals 

Given the previous reports indicating that BOLD activity in the anterior insula is often 

correlated with the predictions of specific RPE models and our finding that anterior 

insula activity cannot serve as a RPE signal, we examined whether the signal in the 

anterior insula might encode some other reward-related information. One possibility is 

that the signal encodes something about how surprising or salient an outcome is to a 

subject. Although there is little formal agreement regarding the definition of the term 

“salience”, one natural assumption would be that an outcome is more salient if it is less 

likely. In our experimental setting, a greater response to an outcome with lower 

probability is equivalent to encoding the absolute value of the RPE signal, if we assume 

that subjects form their expectations by linearly combining the utilities of prizes weighted 

by their probabilities. A RPE absolute value (“salience”) model has a testable restriction 

that it places on our two-prize data set. Activity associated with receiving a prize z must 

be higher than activity for z’ if and only if the probability of receiving prize z is less than 

the probability of receiving prize z’. Testing this restriction requires evaluating the 28 

pairwise comparisons between all pairs of outcomes. 

We replot the parameter estimates against the probability of the prize received for 

the nucleus accumbens and anterior insula for baseline TR 22-23 and analysis window 

TR 24-28 (Fig. 7). For this baseline and analysis window, we found that the anterior 
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insula signal was largely a decreasing function of prize probability as would be predicted 

for a salience signal (Fig. 7B). This was not the case for the nucleus accumbens (Fig. 7A). 

We evaluated the 28 tests of the RPE absolute value model for eight brain areas (Table 

2). We found that in the anterior insula, 27 of 28 tests had the predicted sign at p < 0.05. 

In the nucleus accumbens only 15 of 28 tests had the predicted sign at p < 0.05. 

We conducted our tests of the RPE absolute value model on neural signals 

estimated with a range of baseline and analysis windows, as we did for the axiomatic 

RPE model. For each baseline and analysis window, we counted how many of the 28 

statistical tests were significant at p < 0.05 with the predicted sign. In Figure 8, we plot 

the results of this analysis, using the conventions in Figure 5. While most tests have the 

predicted sign for a range of baseline and analysis windows for the anterior insula (Fig. 

8B), this is not the case for the nucleus accumbens (Fig. 8A) or amygdala (Fig. 8F). Some 

evidence for a RPE absolute value signal was present in other areas, including the 

thalamus and caudate in particular (Fig. 8) and the substantia nigra (supplemental Fig. 5). 

 

Discussion 

Neuroimaging studies have identified numerous brain areas where BOLD activity is 

correlated with the predictions of highly specified RPE models, most frequently including 

the ventral striatum. Here we used an axiomatic model to show that BOLD activity in the 

nucleus accumbens, a subregion of the ventral striatum, satisfies necessary and sufficient 

conditions for the RPE model class. This signal can represent RPEs in tasks like ours, as 

previous studies have suggested but never formally tested. This is also true for signals 

measured from the other subregions of the striatum, the caudate and putamen, as well as 
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the amygdala, medial prefrontal cortex, and posterior cingulate cortex. For each area, 

there must exist some RPE model that accounts for the BOLD responses measured in our 

experiment. This axiomatic approach required none of the auxiliary assumptions about 

unobservable variables like reward and expectation necessary with the traditional 

regression approach and rather than simply looking for any correlation it specifically tests 

the properties critical to the RPE model class. The importance of this distinction is 

highlighted by the fact that traditional regression-based studies have also found activity in 

the anterior insula correlated with the predictions of specific RPE models. This observed 

correlation could arise either because the BOLD activity encodes some type of RPE 

signal or alternatively because the BOLD activity is correlated with features of some RPE 

models. We show here that the latter is the case. The signal in the anterior insula falsifies 

the axiomatic model and cannot, in principle, encode a RPE signal under these 

conditions. This activity may instead encode the absolute value of the RPE signal, a 

signal that is correlated with the predictions of some RPE models, and this quantity may 

be referred to as salience. 

 

Reward prediction error models and the anterior insula 

Perhaps the most surprising result presented here is that the signal measured in the 

anterior insula falsifies the axioms of the RPE model. There is no way of defining or 

parameterizing a RPE model to account for the BOLD signal measured in this area in our 

task. This is a critical logical feature of the axiomatic approach, allowing us to 

unambiguously contradict the hypothesis presented in several previous studies that 

BOLD activity in the anterior insula might encode some kind of RPE signal (Seymour et 
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al., 2004; Pessiglione et al., 2006; Wittman et al., 2008; Voon et al., 2010). This does not 

mean that the findings reported in those papers are in error. There can be no doubt that 

the activity in the anterior insula is correlated with the predictions of some RPE models. 

However, our tests suggest that the limits of those observed correlations arise from 

properties of the signal that are fundamentally incompatible with any RPE representation. 

 

Reward prediction error absolute value models 

Many studies identifying correlations with RPE models involved painful stimuli 

(Seymour et al., 2004) or financial losses (Pessiglione et al., 2006; Voon et al., 2010), 

which may be particularly salient outcomes. Neuroimaging studies have also found 

evidence for a role for the anterior insula in representing uncertainty (Huettel et al., 2005; 

Grinband et al., 2006), prediction errors related to the variance in rewards (Preuschoff et 

al., 2006, 2008), and in processing salient stimuli (Jensen et al., 2007; Seeley et al., 

2007). Ullsperger and von Cramon (2003) identified the anterior insula as having greater 

activity for negative than positive feedback in a task in which negative feedback is the 

less frequent (and thus more salient) class of feedback. 

To explore this possibility, we tested BOLD activity in the anterior insula with a 

RPE absolute value model. Anterior insula activity measured in our task almost 

completely satisfied this model. BOLD activity in the anterior insula is largely a 

decreasing function of prize probability and might encode the absolute value of RPE, 

consistent with some notions of salience. 

This possibility is of particular importance because it has been argued that 

dopamine neurons, and BOLD activity in dopamine target areas, may actually encode 
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salience either in addition to or instead of RPEs (Berridge and Robinson, 1998; Redgrave 

et al., 1999; Horvitz, 2000; Zink et al., 2003, 2004). A recent electrophysiology study has 

identified an anatomically distinct subpopulation of neurons in dorsolateral substantia 

nigra that increases their activity in response to unexpected appetitive and aversive events 

(Matsumoto and Hikosaka, 2009) and it has been suggested that these are dopamine 

neurons although this has not been verified pharmacologically or histologically. Another 

study has identified a subset of dopamine neurons in anesthetized rats in the ventral 

tegmental area that responds to aversive events (Brischoux et al., 2009), although the 

relationship of these findings to the hypothesis that all dopamine neurons encode RPEs 

remains unclear. However, although we found that BOLD activity in the anterior insula 

may encode the absolute value of the RPE, we did not find signals in any other area that 

satisfied the constraints of the RPE absolute value model.  

 

Relating BOLD activity to dopamine  

Electrophysiological results suggest that midbrain dopamine neurons encode a RPE 

signal (Schultz et al., 1997; Hollerman and Schultz, 1998; Nakahara et al., 2004; Bayer 

and Glimcher, 2005; Joshua et al., 2008; Matsumoto and Hikosaka, 2009; Zaghloul et al., 

2009) and the regions in which we identified BOLD activity that could encode RPEs are 

all regions to which dopamine neurons are known to project. Although dopaminergic 

drugs influence learning rates associated with RPE signals (Rutledge et al., 2009; Voon et 

al., 2010) and also modulate the magnitude of BOLD activity for putative RPE signals in 

the striatum (Pessiglione et al., 2006; Voon et al., 2010), it is important to note that we 
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cannot conclude that the RPE signals we measured using fMRI are due to dopaminergic 

activity.  

Although we did not find that BOLD activity in the midbrain dopamine structures 

can encode a RPE signal, imaging these structures is notoriously difficult. Whether this 

reflects the widely acknowledged discrepancy between BOLD activity and spiking 

activity or the limitations of our imaging protocol is unclear. D’Ardenne and colleagues 

(2008) found evidence for positive (but not negative) RPE signals in the ventral 

tegmental area using high-resolution imaging and midbrain-specific alignment 

algorithms. The habenula is another difficult-to-image structure which might encode a 

sign-reversed RPE signal (Matsumoto and Hikosaka, 2007), although we were unable to 

find evidence for this here using a standard imaging protocol. 

 

Medial prefrontal cortex, amygdala, and posterior cingulate cortex 

Our finding of RPE signals in all three regions of the striatum (nucleus accumbens, 

caudate, and putamen) is not surprising. However, there are far fewer reports consistent 

with RPE signals in the medial prefrontal cortex (Behrens et al., 2008), amygdala 

(Yacubian et al., 2006), and posterior cingulate cortex (de Bruijn et al., 2009), although 

electrophysiological studies have found activity consistent with RPE signals in all three 

areas (McCoy et al., 2003; Belova et al., 2007; Matsumoto et al., 2007). Our traditional 

random-effects correlation analysis using a typical RPE model convolved with the 

canonical two-gamma hemodynamic response function (HRF) revealed correlations in 

the striatum and, at a very liberal threshold, the medial prefrontal cortex, but not the 

amygdala or posterior cingulate cortex. Inspection of the BOLD time series in Figure 6 
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suggests one possible explanation. The apparent HRFs for the amygdala and posterior 

cingulate cortex appear to bear little similarity to the canonical two-gamma HRF used 

most commonly in standard regression analyses. This is also true for the nucleus 

accumbens and medial prefrontal cortex, although BOLD responses in these areas are 

likely strong enough to still produce significant correlations. This finding may suggest 

that future regression-based studies of reward areas should either use HRFs demonstrated 

to be appropriate for the regions under study or should use deconvolution or 

autoregressive methods that are less susceptible to the differences in the HRFs between 

brain areas. 

Another problem with the standard regression approach is apparent in the BOLD 

time series for all six areas that can encode RPEs. Previous studies have always assumed 

that the responses to outcomes received from one-prize “lotteries” (like a tone followed 

by a juice reward) are intermediate between responses to positive and negative outcomes, 

but inspection of the BOLD time series reveals that this is not the case for our data (Fig. 

3C and supplemental Fig. 1). Although an advantage of our axiomatic methodology is 

that we make no assumptions about how these responses relate to responses for two-prize 

lotteries, these qualitatively different signals identify another failing of the standard 

regression approach. 

 

The axiomatic approach 

The axiomatic methodology is of particular interest because it adds an additional tool to 

neuroscientific methodologies. Where we can falsify all the axioms, as we did for the 

anterior insula, we can reject the entire class of RPE models and look instead for alternate 
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hypotheses that might account for data. Where all three axioms are satisfied, additional 

axioms can be specified to refine our model. One direction for future research would be 

to establish whether the quantity of dopamine released in these areas, which can be 

measured with electrochemical methods (Phillips et al., 2003; Day et al., 2007), satisfies 

the axiomatic model. Such data would test the linkage between the RPE representation 

and dopamine most directly. Future research could also further investigate the anterior 

insula signal we identified by axiomatizing one of the many salience hypotheses and 

designing an experiment specifically to test the conditions of necessity and sufficiency 

for that specific axiomatic model. 

 

Conclusion 

This study introduces axiomatic modeling to neuroscience and shows the value of that 

approach. We formally tested the RPE hypothesis, showing both that signals from 

dopamine target areas satisfy the axioms of a RPE representation and that the signal from 

the anterior insula falsifies the axioms and cannot possibly encode a RPE signal under the 

conditions we examined. In contrast, the standard regression approach that dominates 

fMRI today relies on highly parameterized models with specific assumptions about 

reward, beliefs, and learning when it examines a theory like the RPE hypothesis. Such an 

analysis yields a correlation coefficient but no direct test of the actual hypothesis under 

scrutiny. The axiomatic approach provides a powerful alternative in the Popperian 

tradition of testing a hypothesis by attempting to falsify it. By breaking hypotheses down 

into their basic assumptions, not only can entire classes of models be tested, but these 

assumptions identify the possible ways in which the model can be proven false and 
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suggest how these assumptions can be tested experimentally. This approach also points 

the way for further model development. When the data falsifies a specific axiom, new 

theoretical approaches are suggested. This is not the case when low correlations are 

observed in traditional region-based analyses. In this sense, the axiomatic approach offers 

novel benefits that complement existing approaches to the analysis of brain function. 
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Figure Legends and Tables 

 

Figure 1. Experimental task and group reward prediction error (RPE) analysis. A, 

Experimental task design with timing indicated. On each trial, subjects were presented 

with two options, lotteries with the probability of each prize indicated by the area of the 

prize’s slice. After 5 s, the fixation cross was extinguished and the subject had 1.25 s to 

indicate their decision by pressing a button. After a delay period, the prize was revealed 

by a change in the color of the associated slice, here winning $5 from a lottery with a 

50% chance of doing so. B, Areas in which neural activity was correlated with predicted 

RPE in a random-effects group analysis. At a threshold of p < 0.001 (uncorrected), areas 

of correlation were found in the bilateral nucleus accumbens (coronal and axial images at 

y = +5 and z = -4, respectively), left putamen (coronal image), and right caudate. 

Predicted RPE was defined as the mathematical difference in dollars between the prize 

received and the lottery’s expected value. The color scale indicates the t-value of the 

contrast testing for a significant effect of predicted RPE during the outcome period. Data 

are overlayed on the mean normalized image and shown in radiological convention, with 

the right hemisphere on the left. 

 

Figure 2. The axiomatic RPE model. Hypothetical neural activity is shown for two prizes 

(winning $5 in red and losing $5 in blue) received from five lotteries with probabilities of 

winning from 0% to 100%. Only two prizes are possible so, for example, the lottery with 

a 50% probability of winning $5 also has a 50% probability of losing $5. A, Example of a 
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violation of axiom 1. B, Example of a violation of axiom 2. C, Example of a violation of 

axiom 3. D, A pattern of activity with no axiomatic violations. 

 

Figure 3. BOLD responses in the nucleus accumbens and anterior insula. A, B, ROIs 

were defined in individual subjects by anatomical criteria for the nucleus accumbens 

(coronal image) and anterior insula (axial image). The color scale indicates the number of 

subjects containing a particular voxel in the individual ROI definitions. Data are 

overlayed on the mean normalized image and shown in radiological convention, with the 

right hemisphere on the left. C, D, Data were averaged across all voxels in the individual 

anatomical ROIs and replotted as trial averages. Trial averages are color-coded by 

predicted RPE for each of the eight trial types. The outcome period (TR 22-24) is 

indicated. The window (TR 26-30) for which the axioms were tested is shown in gray. 

The largest standard error is shown on the right. Anatomical ROIs and trial averages for 

additional areas are shown in supplemental Figures 1 and 3. 

 

Figure 4. Testing the axiomatic RPE model. A, B, Parameter estimates and 95% 

confidence intervals are plotted for each trial type for the two prizes (winning $5 in red 

and losing $5 in blue) against the probability of winning $5. The data from the nucleus 

accumbens satisfies all three axioms at p < 0.05. The data from the anterior insula 

falsifies all three axioms at p < 0.05. Test results are shown in Table 1. Results for 

additional areas are shown in supplemental Figure 2. 
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Figure 5. Assessing the robustness of axiomatic RPE model analyses. A-H, Heatmaps 

show results of the axiomatic analysis for a variety of baselines and starting times for the 

5-TR analysis window. Testing the axiomatic model across areas requires 10 statistical 

tests. The first TR of the baseline is indicated for each 2-TR baseline. The color scale 

indicates the number of tests with the predicted result for a RPE signal at p < 0.05. The 

baseline and analysis windows used for the analyses in Figure 4 and Table 1 is indicated 

by rectangles. All ROIs are defined by anatomical criteria in individuals. The neural 

activity in the nucleus accumbens, caudate, putamen, medial prefrontal cortex, amygdala, 

and posterior cingulate cortex has the predicted result for the majority of tests for a 

variety of baseline and analysis windows. The neural activity in the anterior insula and 

thalamus does not have the predicted result for a RPE signal regardless of the choice of 

baseline and analysis window. Nb, no baseline. Dopaminergic midbrain and habenula 

results are shown in supplemental Figure 4. 

 

Figure 6. BOLD responses to positive and negative outcomes. A-H, BOLD responses for 

positive (red) and negative (blue) outcomes are plotted against model fits with the 

canonical two-gamma hemodynamic response function. Results are for the three two-

prize lotteries. Error bars reflect ± SEM across subjects. Dotted lines represent best fits 

for a regression model with regressors modeled for options, choice, and outcome onset, 

convolved with the canonical two-gamma hemodynamic impulse response function. 

 

Figure 7. Testing the RPE absolute value model. A, B, Parameter estimates and 95% 

confidence intervals are plotted for the two prizes (winning $5 in red and losing $5 in 
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blue) against the probability of receiving that prize for the anatomical ROIs shown in 

Figures 3A and 3B. The baseline is TR 22-23 and the analysis window TR 24-28. The 

neural activity in the anterior insula is a largely decreasing function of prize probability, 

consistent with encoding the absolute value of the RPE signal, a quantity related to some 

notions of salience. The neural activity in the nucleus accumbens does not appear to be a 

decreasing function of prize probability. 

 

Figure 8. Assessing the robustness of RPE absolute value model analyses. A-H, 

Heatmaps show results of the analysis for a variety of baselines and starting times for the 

5-TR analysis window. Testing the RPE absolute value model requires 28 statistical tests. 

The first TR of the baseline is indicated for each 2-TR baseline. The color scale indicates 

the number of tests with the predicted result for a RPE signal at p < 0.05. The baseline 

and analysis window used for the analyses in Figure 7 and Table 2 is indicated by 

rectangles. All ROIs are defined by anatomical criteria in individuals. The neural activity 

in the anterior insula has the predicted result for a RPE absolute value signal for most 

tests for a variety of baseline and analysis windows. The nucleus accumbens and 

amygdala do not have the predicted result for a RPE absolute value signal regardless of 

the choice of baseline and analysis window. Nb, no baseline. Dopaminergic midbrain and 

habenula results are shown in supplemental Figure 5. 
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Axiom NAcc AI Caud Put MPFC Am PCC Thal 

1.1 + + = + + + + + + 
1.2 + + = + + + + = = 
1.3 + + - + + + + + = 
2.1 - - = - - - = = - 
2.2 - - + - - + - + = 
2.3 - - - - - - - - - 
2.4 - - - - = - = - - 
2.5 - - - - - - - - - 
2.6 - - = - - - - - - 
3 = = - = - = = = - 
Table 1. Axiomatic RPE model statistical tests. Testing the three axioms of the axiomatic 

RPE model on our data requires 10 statistical tests. Wald tests of linear restriction were 

performed on parameter estimates computed with a baseline of TR 9-10 and an analysis 

window of TR 26-30 (parameter estimates for the nucleus accumbens and anterior insula 

are shown in Figure 4) with the sign of all significant tests indicated (p < 0.05). We 

predicted that RPE signals would satisfy the axioms in the way indicated by the signs in 

the left-most ‘predicted sign’ column. At p < 0.05, the nucleus accumbens and caudate 

each satisfy all three axioms. The anterior insula and thalamus falsify all three axioms. 

The amygdala and medial prefrontal cortex each satisfy two axioms and the putamen and 

posterior cingulate cortex each satisfy one axiom. Axiomatic statistical test 1.1, {+$5, 

25% probability of winning $5} - {-$5, 25%}; 1.2, {+$5, 50%} - {-$5, 50%}; 1.3, {+$5, 

75%} - {-$5, 75%}; 2.1, {+$5, 50%} - {+$5, 25%}; 2.2, {-$5, 50%} - {-$5, 25%}; 2.3, 

{+$5, 75%} - {+$5, 50%}; 2.4, {-$5, 75%} - {-$5, 50%}; 2.5, {+$5, 75%} - {+$5, 

25%}; 2.6, {-$5, 75%} - {-$5, 25%}; 3, {+$5, 100%} - {-$5, 0%}. NAcc, nucleus 

accumbens; AI, anterior insula; Caud, caudate; Put, putamen; MPFC, medial prefrontal 

cortex; Am, amygdala; PCC, posterior cingulate cortex; Thal, thalamus. 
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Condition NAcc AI Caud Put MPFC Am PCC Thal 
1.1 + = + + + + = + + 
1.2 + + + + = + = + + 
1.3 + + + + + + + + + 
1.4 + + + + + + + + + 
1.5 + + + + + + + + + 
1.6 + + + + + + + + + 
1.7 + - + = - - - - = 
1.8 + - + + - - - - = 
1.9 + + + + + + - - + 
1.10 + = + + + = = - = 
1.11 + = + + = = - - + 
1.12 + = + + + + = = + 
1.13 + + + + - = = = = 
1.14 + + + + + + + + = 
1.15 + + + + + + + = + 
1.16 + + + + + + + + + 
1.17 + - + - - - - = = 
1.18 + + + + + + - + = 
1.19 + - + - - = - = + 
1.20 + = + + + + = + + 
1.21 + + + + + + + + + 
1.22 + + + + + + + + + 
1.23 + + + + + + = + + 
1.24 + + + + + + + + + 
1.25 = + = + + + + + + 
1.26 = + = + + + + = = 
1.27 = + = + + + + = = 
1.28 = - - - = - = + = 
Table 2. RPE absolute value model statistical tests. Testing the RPE absolute value 
model requires 28 tests. Wald tests of linear restriction were performed on parameter 
estimates with an analysis window of TR 24-28 and a baseline of TR 22-23 (parameter 
estimates for the nucleus accumbens and anterior insula are in Figure 7) with the sign of 
all significant tests indicated (p < 0.05). The left-most column indicates the predicted 
signs for a RPE absolute value signal. Tests 1.1-1.24 compare outcomes to other 
outcomes with lower probability. Tests 1.25-1.28 compare outcomes to other outcomes 
with the same prize probability. Tests are listed in Supplemental Data. ROI abbreviations 
are as in Table 1.
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Figure 1. Experimental task and group reward prediction error (RPE) analysis. A, 
Experimental task design with timing indicated. On each trial, subjects were presented 
with two options, lotteries with the probability of each prize indicated by the area of the 
prize’s slice. After 5 s, the fixation cross was extinguished and the subject had 1.25 s to 
indicate their decision by pressing a button. After a delay period, the prize was revealed 
by a change in the color of the associated slice, here winning $5 from a lottery with a 
50% chance of doing so. B, Areas in which neural activity was correlated with predicted 
RPE in a random-effects group analysis. At a threshold of p < 0.001 (uncorrected), areas 
of correlation were found in the bilateral nucleus accumbens (coronal and axial images at 
y = +5 and z = -4, respectively), left putamen (coronal image), and right caudate. 
Predicted RPE was defined as the mathematical difference in dollars between the prize 
received and the lottery’s expected value. The color scale indicates the t-value of the 
contrast testing for a significant effect of predicted RPE during the outcome period. Data 
are overlayed on the mean normalized image and shown in radiological convention, with 
the right hemisphere on the left. 
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Figure 2. The axiomatic RPE model. Hypothetical neural activity is shown for two prizes 
(winning $5 in red and losing $5 in blue) received from five lotteries with probabilities of 
winning from 0% to 100%. Only two prizes are possible so, for example, the lottery with 
a 50% probability of winning $5 also has a 50% probability of losing $5. A, Example of a 
violation of axiom 1. B, Example of a violation of axiom 2. C, Example of a violation of 
axiom 3. D, A pattern of activity with no axiomatic violations. 
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Figure 3. BOLD responses in the nucleus accumbens and anterior insula. A, B, ROIs 
were defined in individual subjects by anatomical criteria for the nucleus accumbens 
(coronal image) and anterior insula (axial image). The color scale indicates the number of 
subjects containing a particular voxel in the individual ROI definitions. Data are 
overlayed on the mean normalized image and shown in radiological convention, with the 
right hemisphere on the left. C, D, Data were averaged across all voxels in the individual 
anatomical ROIs and replotted as trial averages. Trial averages are color-coded by 
predicted RPE for each of the eight trial types. The outcome period (TR 22-24) is 
indicated. The window (TR 26-30) for which the axioms were tested is shown in gray. 
The largest standard error is shown on the right. Anatomical ROIs and trial averages for 
additional areas are shown in supplemental Figures 1 and 3. 
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Figure 4. Testing the axiomatic RPE model. A, B, Parameter estimates and 95% 
confidence intervals are plotted for each trial type for the two prizes (winning $5 in red 
and losing $5 in blue) against the probability of winning $5. The data from the nucleus 
accumbens satisfies all three axioms at p < 0.05. The data from the anterior insula 
falsifies all three axioms at p < 0.05. Test results are shown in Table 1. Results for 
additional areas are shown in supplemental Figure 2. 
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Figure 5. Assessing the robustness of axiomatic RPE model analyses. A-H, Heatmaps 
show results of the axiomatic analysis for a variety of baselines and starting times for the 
5-TR analysis window. Testing the axiomatic model across areas requires 10 statistical 
tests. The first TR of the baseline is indicated for each 2-TR baseline. The color scale 
indicates the number of tests with the predicted result for a RPE signal at p < 0.05. The 
baseline and analysis windows used for the analyses in Figure 4 and Table 1 is indicated 
by rectangles. All ROIs are defined by anatomical criteria in individuals. The neural 
activity in the nucleus accumbens, caudate, putamen, medial prefrontal cortex, amygdala, 
and posterior cingulate cortex has the predicted result for the majority of tests for a 
variety of baseline and analysis windows. The neural activity in the anterior insula and 
thalamus does not have the predicted result for a RPE signal regardless of the choice of 
baseline and analysis window. Nb, no baseline. Dopaminergic midbrain and habenula 
results are shown in supplemental Figure 4.
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Figure 6. BOLD responses to positive and negative outcomes. A-H, BOLD responses for 
positive (red) and negative (blue) outcomes are plotted against model fits with the 
canonical two-gamma hemodynamic response function. Results are for the three two-
prize lotteries. Error bars reflect ± SEM across subjects. Dotted lines represent best fits 
for a regression model with regressors modeled for options, choice, and outcome onset, 
convolved with the canonical two-gamma hemodynamic impulse response function. 
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Figure 7. Testing the RPE absolute value model. A, B, Parameter estimates and 95% 
confidence intervals are plotted for the two prizes (winning $5 in red and losing $5 in 
blue) against the probability of receiving that prize for the anatomical ROIs shown in 
Figures 3A and 3B. The baseline is TR 22-23 and the analysis window TR 24-28. The 
neural activity in the anterior insula is a largely decreasing function of prize probability, 
consistent with encoding the absolute value of the RPE signal, a quantity related to some 
notions of salience. The neural activity in the nucleus accumbens does not appear to be a 
decreasing function of prize probability. 
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Figure 8. Assessing the robustness of RPE absolute value model analyses. A-H, 
Heatmaps show results of the analysis for a variety of baselines and starting times for the 
5-TR analysis window. Testing the RPE absolute value model requires 28 statistical tests. 
The first TR of the baseline is indicated for each 2-TR baseline. The color scale indicates 
the number of tests with the predicted result for a RPE signal at p < 0.05. The baseline 
and analysis window used for the analyses in Figure 7 and Table 2 is indicated by 
rectangles. All ROIs are defined by anatomical criteria in individuals. The neural activity 
in the anterior insula has the predicted result for a RPE absolute value signal for most 
tests for a variety of baseline and analysis windows. The nucleus accumbens and 
amygdala do not have the predicted result for a RPE absolute value signal regardless of 
the choice of baseline and analysis window. Nb, no baseline. Dopaminergic midbrain and 
habenula results are shown in supplemental Figure 5. 
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SUPPLEMENTAL DATA 
 
Falsifying the Reward Prediction Error Hypothesis with an Axiomatic Model 
Robb B. Rutledge, Mark Dean, Andrew Caplin & Paul W. Glimcher 
 
Absolute value of RPE model statistical tests 
 
Condition 1.1, {+$5, 25% probability of winning $5} - {+$5, 50%}; 1.2, {+$5, 25%} - 
{+$5, 75%}; 1.3, {+$5, 25%} - {+$5, 100%}; 1.4, {+$5, 25%} - {-$5, 50%}; 1.5, {+$5, 
25%} - {-$5, 25%}; 1.6, {+$5, 25%} - {-$5, 0%}; 1.7, {-$5, 75%} - {+$5, 50%}; 1.8,   
{-$5, 75%} - {+$5, 75%}; 1.9, {-$5, 75%} - {+$5, 100%}; 1.10, {-$5, 75%} - {-$5, 
50%}; 1.11, {-$5, 75%} - {-$5, 25%}; 1.12, {-$5, 75%} - {-$5, 0%}; 1.13, {+$5, 50%} - 
{+$5, 75%}; 1.14, {+$5, 50%} - {+$5, 100%}; 1.15, {+$5, 50%} - {-$5, 25%}; 1.16, 
{+$5, 50%} - {-$5, 0%}; 1.17, {-$5, 50%} - {+$5, 75%}; 1.18, {-$5, 50%} - {+$5, 
100%}; 1.19, {-$5, 50%} - {-$5, 25%}; 1.20, {-$5, 50%} - {-$5, 0%}; 1.21, {+$5, 75%} 
- {+$5, 100%}; 1.22, {+$5, 75%} - {-$5, 0%}; 1.23, {-$5, 25%} - {+$5, 100%}; 1.24,   
{-$5, 25%} - {-$5, 0%}; 1.25, {+$5, 25%} - {-$5, 75%}; 1.26, {+$5, 50%} - {-$5, 
50%}; 1.27, {+$5, 75%} - {-$5, 25%}; 1.28, {+$5, 100%} - {-$5, 0%}. 
 
Anatomical ROI definitions 
 
We defined each of the 11 anatomical ROIs on the T1-weighted MP-RAGE anatomical 
images for each subject in Talairach space. The nucleus accumbens, caudate, putamen, 
amygdala, insula, and thalamus were defined according to the criteria established by the 
Center for Morphometric Analysis (Caviness et al., 1996; Rademacher et al., 1992; 
instruction manuals at http://www.cma.mgh.harvard.edu/manuals/). We defined the 
anterior insula by the portion of the insula at least 5 mm anterior to the anterior 
commissure. We defined the posterior cingulate cortex and medial prefrontal cortex by 
selecting all gray matter within Brodmann areas 23 and 31 and Brodmann areas 10 
(medial portion) and 32 (ventral portion), respectively. We identified the substantia nigra 
using the cerebral peduncles and the red nucleus as boundaries. D’Ardenne and 
colleagues (2008) identified the ventral tegmental area as a region approximately 60 mm3 
in volume anterior to the red nucleus and bounded laterally by the substantia nigra, we 
defined the ventral tegmental area by those boundaries as a region exactly 56 mm3 in 
volume. We defined the habenula bilaterally as a region of 60-80 mm3 superior and 
anterior to the habenular commissure in the dorsal medial thalamus. 
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Supplemental Figure 1. Anatomical ROI definitions and trial averages for six brain 
regions. The color scale indicates the number of subjects containing a particular voxel in 
the individual ROI definitions. Data are overlayed on the mean normalized image and 
shown in radiological convention, with the right hemisphere on the left. Average BOLD 
time courses for each ROI are shown for each of the eight trial types. Trial averages are 
color-coded by predicted RPE for each of the eight trial types. The outcome period (TR 
22-24) is indicated. The analysis window (TR 26-30) used in Table 1 is shown in gray. 
The largest SEM for each ROI is shown on the right.
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Supplemental Figure 2. Testing the axiomatic model. Parameter estimates and 95% 
confidence intervals are plotted for each trial type for the two prizes (winning $5 in red 
and losing $5 in blue) against the probability of winning $5. Baseline TRs and analysis 
window TRs are indicated in parentheses. A-E, Signals for which the three axioms are 
satisfied at p < 0.05. F, In the putamen, the axioms are satisfied with the predicted signs 
at p < 0.10. 



 5

 
 
Supplemental Figure 3. Anatomical ROI definitions for three additional brain regions 
for the dopaminergic midbrain and habenula. ROIs are defined in individual subjects in 
sagittal (A, C) and axial (B) images. The color scale indicates the number of subjects 
containing a particular voxel in the individual ROI definitions. Data are overlayed on the 
mean normalized image and shown in radiological convention, with the right hemisphere 
on the left. Average BOLD time courses for each ROI are shown for each of the eight 
trial types. Trial averages are color-coded by predicted RPE for each of the eight trial 
types. The outcome period (TR 22-24) is indicated. The analysis window (TR 26-30) 
used in Table 1 is shown in gray. The largest SEM for each ROI is shown on the right. 
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Supplemental Figure 4. Tests of the axiomatic RPE model on the dopaminergic 
midbrain and habenula. Heatmaps show results of the axiomatic analysis for a variety of 
baselines and starting times for the 5-TR analysis window. The first TR of the baseline is 
indicated for each 2-TR baseline. The color scale indicates the number of statistical tests 
with the predicted result for a RPE at p < 0.05. The baseline and analysis windows used 
for the analyses in Table 1 are indicated. The heatmap for the sign-reversed habenula is 
shown in D.
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Supplemental Figure 5. Tests of the RPE absolute value model on the dopaminergic 
midbrain and habenula. Heatmaps show results of the axiomatic analysis for a variety of 
baselines and starting times for the 5-TR analysis window. The first TR of the baseline is 
indicated for each 2-TR baseline. The color scale indicates the number of statistical tests 
with the predicted result for a RPE absolute value signal at p < 0.05. The baseline and 
analysis windows used for the analyses in Table 2 are indicated. The heatmap for the 
sign-reversed habenula is shown in D. 



 8

 
ROI Number of voxels % in analysis 

Nucleus accumbens 945 (157) 97.0 (7.7) 
Anterior insula 2944 (465) 98.6 (1.6) 
Caudate 4344 (729) 99.7 (0.7) 
Putamen 5189 (913) 99.8 (0.5) 
Medial prefrontal cortex 13357 (1183) 96.8 (1.1) 
Amygdala 1337 (276) 87.9 (16.4) 
Posterior cingulate cortex 20003 (2118) 77.2 (34.3) 
Thalamus 10433 (1010) 98.9 (1.2) 
Ventral tegmental area 56 (0) 98.6 (4.1) 
Substantia nigra 353 (40) 98.8 (1.8) 
Habenula 68 (4) 96.7 (8.0) 
Supplemental Table 1. Anatomical ROI sizes. Mean (standard deviation) of the number 
of 1 x 1 x 1 mm voxels in Talairach space in individual anatomical ROI definitions. 
Ventral tegmental area has no variation in ROI size because it was defined to be exactly 
56 voxels. Percent (standard deviation) of voxels included in further analysis is indicated 
for each ROI. Voxels were excluded from further analysis if the scan-level standard 
deviation of the signal exceeded 2%. This often occurred in voxels near the boundaries of 
the scanning volume, due to artifacts from the motion correction algorithm. The 
amygdala and posterior cingulate cortex are the ROIs most affected by these artifacts, and 
a significant percentage of the voxels in those ROIs were excluded from further analysis. 
 


