
Satis�cing and Stochastic Choice

Victor H. Aguiar∗ María José Boccardi† and Mark Dean‡

July 12, 2016

Abstract

Satis�cing is a hugely in�uential model of boundedly rational choice, yet it cannot be

easily tested using standard choice data. We develop necessary and su�cient conditions

for stochastic choice data to be consistent with satis�cing, assuming that preferences

are �xed, but search order may change randomly. The model predicts that stochastic

choice can only occur amongst elements that are always chosen, while all other choices

must be consistent with standard utility maximization. Adding the assumption that

the probability distribution over search orders is the same for all choice sets makes the

satis�cing model a subset of the class of random utility models.

1 Introduction

People often do not pay attention to all the available alternatives before making a

choice. This fact has lead to an extensive recent literature aimed at understanding the

observable implications of models in which the decision maker (DM) has limited attention.1

In an important recent paper, Manzini & Mariotti (2014) characterize the stochastic choice

data generated by a decision maker (DM) who has standard preferences, but only notices

each alternative in their choice set with some probability. The chosen item is therefore the

best alternative in the `consideration set' of noticed items, which may be a strict subset of

the items which are actually available.

The idea that a DM may not search exhaustively through all available alternatives is

not new. Simon (1955) introduced the concept of satis�cing: an intuitively plausible choice

procedure by which the DM searches through alternatives until they �nd one that is `good
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1Notable examples include Masatlioglu et al. (2012), Caplin et al. (2011), Eliaz & Spiegler (2011), and Salant & Rubinstein

(2008).
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enough', at which point they stop and choose that alternative.2 This model has been hugely

in�uential, both within economics, and in other �elds such as psychology (Schwartz et al.

(2002)) and ecology (Ward (1992)).

Despite the popularity of the satis�cing model, testing its predictions can prove

challenging. It has long been known that standard choice data, which records only the

choices made from di�erent choice sets, cannot be used to disentangle satis�cing from

utility maximization (see Caplin et al. (2011) for a discussion). Researchers have therefore

typically resorted to richer data sets in order to test the satis�cing model. For example,

Caplin et al. (2011) make use of `choice process' data, which records the evolution of choice

with decision time, while Santos et al. (2012) use the order in which alternatives were

searched as recorded from their internet browsing history.

In this paper, we characterize the observable implications of the satis�cing choice

procedure for stochastic choice data. Such data has been heavily studied in the economics

literature.3 We assume that the DM has a �xed utility function and satis�cing level. In any

given choice set, they search sequentially until they �nd an alternative which has utility

above their satis�cing level, at which point they stop and choose that alternative. If they

search the entire choice set and do not �nd a satis�cing alternative then they choose the

best available option. We assume that search order varies randomly, leading to stochasticity

in choice. On the one hand, our paper is related to the work of Manzini & Mariotti (2014)

(henceforth MM). It speci�es a procedure by which attention is allocated, while MM is

agnostic in this regard. On the other, it provides an alternative test of the satis�cing model

to that of Caplin et al. (2011) and Santos et al. (2012), using a data set which is readily

available in many settings.

Our main observation is that the satis�cing model implies that choice is stochastic

only in choice sets where there are multiple alternatives above the satis�cing level. If this

is the case, then the order of search will a�ect the chosen alternative. If not, then either

the choice set will be fully searched and the best option deterministically chosen, or the

single satis�cing alternative will always be chosen. This allows us to behaviorally identify

the alternatives that are satis�cing for the decision maker.

Without further restriction, any stochastic choice data set can trivially be made

2Caplin et al. (2011) show that satis�cing behavior can be optimal under some circumstances
3See for example Block & Marschak (1960); Luce & Suppes (1965); Falmagne (1978); Gul & Pesendorfer (2006); Gul et al.

(2014); Manzini & Mariotti (2014)
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commensurate with the satis�cing choice procedure by assuming that all alternatives are

above the satis�cing level, and the resulting distribution of choices re�ects the distribution

of search orders in that choice set. In order to generate meaningful behavioral implications,

we must place further restrictions on the satis�cing model. For our main theorem we make

the assumption that the distribution of search orders has a full support property (i.e., each

item has a positive probability of being searched �rst), and also rule out the possibility

of indi�erence. This allows us to identify the set of above-reservation alternatives and

characterize satis�cing with two simple intuitive conditions. The �rst states that choice can

be stochastic only amongst elements that are always chosen (with some probability) when

available. The second says that revealed preference, de�ned via the support of the random

choice rule in each set, must satisfy the Strong Axiom of Revealed Preference (SARP). Under

these conditions, the data will admit a satis�cing representation and the satis�cing set, util-

ity function and distribution over search orders can be identi�ed to a high degree of precision.

Our baseline speci�cation puts no restrictions on the relationship between the dis-

tribution over search orders across di�erent choice sets. We next consider a re�nement

of the satis�cing model in which the distribution of search order in each choice set is

a manifestation of the same underlying search distribution. In order to guarantee such

a representation we need a third axiom: the Total Monotonicity condition of Block &

Marschak (1960). This condition on its own is necessary and su�cient for the data to

be commensurate with the random utility model (RUM). Thus, the �xed distribution

satis�cing model is the precise intersection between satis�cing and random utility.

We next discuss extensions to our results in which we relax the assumptions of full sup-

port, no indi�erence and the observation of a complete data set. We show that a satis�cing

model without full support, but with �xed distribution is equivalent to the random utility

model. Allowing for indi�erence (but maintaining the full support assumption) is equivalent

to dropping the requirement that stochasticity only take place amongst always chosen

alternatives. If data is incomplete, our necessary and su�cient conditions are unchanged,

but our ability to identify above-satis�cing elements is reduced.

Our �nal extension considers what happens if we allow for further sources of stochas-

ticity - speci�cally random variations in the satis�cing threshold and in the utility function.

One reason to consider these cases is to determine whether they help in recovering the

utilities of above-satis�cing alternatives, which are not identi�ed in our baseline model.

Perhaps surprisingly, the answer is no. Adding a random satis�cing level has no e�ect on
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the observable implications of the model, and so cannot be distinguished from the �xed

satis�cing level case. Adding stochasticity to utility does change the observable implications,

but not in a way that allows us to improve our identi�cation of preferences. A model in

which random variations in utility or threshold are the only sources of stochasticity might

allow such identi�cation. We leave such an extension for future work.

Section 2 describes our set up. Section 3 characterizes the satis�cing model. Section 4

considers the extensions described above, while section 5 discusses the related literature.

2 Set Up

2.1 Data

We consider a �nite abstract choice set X, and let D ⊆ 2X \ ∅ be the set of menus in

which behavior is observed. We assume that data comes in the form of a random choice

rule, p : X × D 7→ [0, 1], which speci�es for each menu A ∈ D the probability of choosing

each element a ∈ A (for example, if the DM has a one third probability of choosing x from

{x, y, z} then p(x, {x, y, z}) = 1
3
).

De�nition 1 (Data set) A data set consists of a set if menus D ⊆ 2X \ ∅ and a random

choice rule p : X × D 7→ [0, 1] such that
∑

a∈A p(a,A) = 1 ∀A ∈ D. We say a data set is

complete if D = 2X \ ∅.

Random choice rules have been heavily studied in the theoretical, as well as the applied

literature.4 In practice, while a random choice rule is not directly observable, it can be

estimated from observed choice frequencies, pooling either across repeated choices by the

same individual, or by aggregating across the choices of di�erent individuals.

2.2 The Satis�cing Model

The satis�cing choice procedure can be described as follows: when faced with a menu

of options to choose from, the DM searches through the available alternatives one by one.

If, at any point, they come across an alternative which is `good enough', they stop searching

and select that alternative from the menu. If they exhaustively search all alternatives

without �nding an element which satis�es their criteria, then they choose the best available

alternative from the set. Note that the standard model of rational choice is a limiting case

4Examples of early theoretical work include Block & Marschak (1960) and Luce & Suppes (1965). More recent work includes
Gul & Pesendorfer (2006); Manzini & Mariotti (2014); Gul et al. (2014).
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of the satis�cing model in which no alternative is `good enough'.

As a concrete example, consider a DM searching for a book to buy in a bookshop prior

to a �ight. They examine the available books one by one, looking for one which satis�es

their requirements (humorous, has good reviews, long enough to last the �ight, not by Dan

Brown). If they �nd such a book, they immediately go to the checkout and buy it. If they

search the entire selection and don't �nd a book which matches this criteria then they go

back and choose the best of the books that they did see.

The satis�cing choice procedure therefore has three building blocks. The �rst is a �xed

utility function u : X → R, which describes the preferences of the DM. Following Manzini

& Mariotti (2014), for our main results we rule out indi�erence, and therefore assume that

u is injective. We discuss the implications of allowing indi�erence in section 4.2.

The second model element is a utility threshold u∗, which we will refer to as the

reservation utility. This de�nes the concept of `good enough': an alternative x ∈ X is good

enough if u(x) ≥ u∗. We de�ne U∗ = {a ∈ X|u(x) ≥ u∗} as the set of satis�cing elements

according to u and u∗. For convenience, we will assume that there is at least one satis�cing

element: i.e. u∗ ≤ maxx∈Xu(x). This assumption has no behavioral implication: a model in

which only the best available alternative is above the reservation utility is indistinguishable

from one in which there is no such alternative. However, it will streamline the statement of

identi�cation results in section 3.

The third element of the satis�cing model is the order in which search occurs. A search

order for a choice set A is de�ned by a linear order on that set.5 We use RA to denote the

set of linear orders on A, with rA a typical element in RA. Our key assumption is that

the order of search is determined stochastically: we use γA : RA → [0, 1] to denote the

probability distribution over the set RA, which we call a `stochastic search order'. Abusing

notation slightly, we will use γA(x rA y) to denote the probability of all search orders in

which x appears before y: i.e. γA(rA ∈ RA|x rA y).

We are agnostic about the source of this stochasticity. It could be that the DM

randomly decides the order of search - in our example, sometimes the DM search through

the books alphabetically, while sometimes they do so by genre. Alternatively, it could

be that the random choice rule is generated by a DM who is faced by choice situations

5i.e. a complete, transitive and antisymmetric binary relation on A with the interpretation `searched no later than'.
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which are framed in di�erent ways,6 with the framing unobservable to the researcher.

For example, sometimes the bookstore puts the thrillers at the front of the store, while

sometimes they put the romantic comedies at the front. These `frames' a�ect the order

in which the DM searches (though not their preferences), but are not known to the researcher.

A data set can be represented by the satis�cing model if there exists a utility function,

satis�cing level and family of stochastic search orders which would generate the observed

choice probabilities:

De�nition 2 (General Satis�cing Model (GSM)) A data set (D, p) has a Generalized

Satis�cing Model (GSM) representation if there exists an injective u : X → R, u∗ ∈ R such

that u∗ ≤ maxx∈Xu(x), and {γA}A∈D such that, for any A ∈ D and a ∈ A

p(a,A) =


γA (rA|a rA b ∀ b ∈ A\{a} s.t. u(b) ≥ u∗) if u(a) ≥ u∗

1 if a = arg maxx∈A u(x) < u∗

0 Otherwise

(1)

To illustrate how the model works consider the following example.

Example 1 Let A = {a, b, c} and γA be as displayed in table 1. Consider �rst the case

where a, b are satis�cing alternatives, while c is not, that is u(a) > u(b) > u∗ > u(c). Then,

no matter the search order, c will never be chosen, and so p(c, A) = 0. However, as the

DM will chose a if a is seen before b and b otherwise, their frequency depends on γA. In

particular, p(a,A) = 3
8
and p(b, A) = 5

8
. If instead all alternatives are below the satis�cing

level (i.e. u∗ > maxx∈Au(x)) then choice will be independent of search order: all alternatives

will always be searched, and the best subsequently chosen. In this case, this means that

p(a,A) = 1.

3 Characterizing the Satis�cing Model.

3.1 A Negative Result

The aim of this paper is to describe properties of a stochastic choice data set which

are necessary and su�cient to guarantee a satis�cing representation. However, our �rst

observation is negative: without further re�nement, the GSM model provides no restriction.

6In the sense of Salant & Rubinstein (2008).
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Order (1) (2) (3) (4) (5) (6)
1st a a b b c c
2nd b c a c a b
3rd c b c a b a

γA
1
12

1
6

1
3

1
24

1
8

1
4

Table 1: An example of the satis�cing model

Observation 1 Any data set (D, p) has a GSM representation.

In order to construct a GSM representation for any data set (D, p), set U : X → [0, 1]

to be any arbitrary one to one real valued function and set u∗ = −2; then U∗ = X. For any

menu A ∈ D, let raA be the set of linear orders on A such that a r b for all b ∈ A. {raA}a∈A
therefore de�nes partition on RA. De�ne

γA(rA) =
p(a,A)

|raA|
for each rA ∈ raA

Such a representation will generate p as, for any a, u(a) ≥ u∗

γA (rA|a raA b ∀ b s.t. u(b) ≥ u∗) = γA (rA ∈ raA) = p(a,A)

The GSM is �exible enough to match any data set because it places no restriction on

the distribution over search orders in each decision problem. Thus one can always construct

a distribution of search orders that will match the data by assuming that all alternatives

are above the satis�cing level.

To derive testable restrictions for the satis�cing model, we introduce a `full support'

condition on the distribution of search orders. This restrictions will allow us to identify

satis�cing alternatives as those which are chosen with positive probability in every choice

set in which they appear. We can then utilize the underlying structure of the GSM model

to derive behavioral restrictions. Intuitively, the stochastic nature of search generates

stochastic behavior among satis�cing alternatives. In contrast, we expect to observe deter-

ministic utility maximizing behavior among choice sets which consist only of non-satis�cing

alternatives.

For the remainder of this section we concentrate on the simple case of full support, no

indi�erence and complete data. We identify the behavioral conditions which characterize the
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resulting model. We also consider a special case of the model in which there is consistency

in the distribution of search orders between choice sets. This additional restriction ensures

that our model is behaviorally equivalent to a subset of the class of random utility models

(RUMs). In section 4 we discuss extensions in which we drop the full support, no indi�erence,

and complete data conditions.

3.2 Full Support Satis�cing Models

Our model adds to the GSM the assumption that, in each choice set, any item will be

searched �rst with some positive probability.

Assumption 1 (Full Support) For any a ∈ A and all A ∈ D: γA(rA ∈ RA : a rA b ∀b ∈
A\{a}) > 0.

We describe a GSM which additionally satis�es this assumption as a Full Support Sat-

is�cing Model (FSSM)

De�nition 3 (Full Support Satis�cing Model (FSSM)) A data set (D, p) has a Full

Support Satis�cing Model (FSSM) representation if it has a GSM representation in which

the stochastic search order satis�es Full Support.

The assumption of Full Support has an important implication: we can identify

above-reservation alternatives as those which are always chosen with positive probability in

any choice set in which they appear. This is because Full Support implies that, for each

such alternative, a search order in which it is searched �rst occurs with positive probability

in each choice set, ensuring that it will be chosen. Furthermore, any alternatives that are

not above reservation utility will be chosen with zero probability in any choice set which

contains an above reservation utility alternative.

We de�ne the set of alternatives which are always chosen:

De�nition 4 (Always Chosen Set) For any data set (D, p), we de�ne the always cho-

sen set as W ∗ = {a ∈ X|p(a,A) > 0 for all A ∈ D such that a ∈ A}.

For any complete data set generated by a FSSM, W ∗ must be equivalent to the set of

above-reservation alternatives.

Lemma 1 Assume a complete data set (D, p) admits an FSSM representation. Then, for

any such representation W ∗ = U∗.
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All subsequent proofs are relegated to the appendix.

As we discuss in section 4.3, if the data set is not complete then W ∗ may be a strict

superset of U∗: a below satis�cing alternative may always be chosen because it is only

observed in choice sets containing other below satis�cing alternatives.7

Using the (observable) setW ∗, we can de�ne the �rst of two behavioral conditions which

characterize the FSSM. It states that stochastic choice must only occur amongst elements of

W ∗. This follows from the fact that stochasticity in the satis�cing model occurs only from

stochasticity in search order.

Axiom 1 (Deterministic no satis�cing choice) If a ∈ X\W ∗ then for all A ∈ D either

p(a,A) = 0 or p(a,A) = 1.

The second condition ensures that the preference information revealed by a data set is

well behaved. In order to state the condition, we introduce the following de�nitions.

De�nition 5 (Stochastic Revealed Preference) De�ne C(A) = {a ∈ A|p(a,A) > 0}.
a is stochastically revealed directly preferred to b if, for some A ∈ D a, b ∈ A and

a ∈ C(A). a is stochastically revealed preferred to b if {a, b} is in the transitive clo-

sure of the stochastically revealed directly preferred relation. a is stochastically strictly

revealed preferred to b if, for some A ∈ D, a ∈ C(A) and b /∈ C(A).

Notice that, for data generated by a FSSM, these revealed preference concepts align with

the underlying utility function except in the case of two alternatives above that satis�cing

level. Such objects will be revealed indi�erent to each other, yet may in fact be ranked

according to the utility function. It is a de�ning feature of this version of the satis�cing model

that utility di�erences above the threshold u∗ are unimportant for behavior. Nevertheless,

the FSSM implies that the stochastic revealed preference information must obey the Strong

Axiom of Revealed Preference.

Axiom 2 (SARP) C(A) must obey SARP: if a is stochastically revealed preferred to b then

b must not be stochastically strictly revealed preferred to a.

Our �rst result is that axioms Axiom 1 and Axiom 2 are necessary and su�cient for a

data set to have a FSSM representation

Theorem 1 The following are equivalent:

7Completeness can be replaced for a weaker condition on the richness of the data set which requires observing choices from
all two and three element sets.
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1. A stochastic choice dataset (D, p) has an FSSM representation.

2. A stochastic choice dataset (D, p) satis�es Axiom 1 and Axiom 2.

To understand the su�ciency of the two axioms - Axiom 1 and Axiom 2 -, note �rst that

SARP allows us, through Afriat/Richter's theorem (1966), to construct a utility function

which represents the stochastic revealed preference relation. Moreover, the elements of

W ∗ will be maximal according to that utility representation, allowing for a u∗ such that

all elements of the always chosen set can be assigned a utility greater or equal than u∗;

while all the elements that are not always chosen are assigned an utility level below u∗.

Axiom 1 guarantees deterministic choice in sets which contain at most one above-reservation

alternatives, and SARP again ensures that such choices are utility maximizing. For all other

choice sets, Axiom 1 ensures that alternatives with utility below u∗ (and so outside W ∗)

are not chosen, and a suitable stochastic search order can be constructed from the random

choice rules to explain the pattern of choice amongst above satis�cing alternatives.

Notice that, while Lemma 1 relies on the completeness of the data set, Theorem 1

does not. The behavioral content of the FSSM model is the same regardless of whether the

data set is complete. However, the degree to which elements of the representation can be

identi�ed will be reduced in incomplete data sets, as we discuss in section 4.3.

The following examples illustrate the empirical content of the FSSM by presenting data

sets which violate each of our axioms.

Example 2 (Violation of Axiom 1) Let X = {a, b, c}, and let p (a, {a, b}) = 1,

p (b, {b, c}) = 1
2
, p (a, {a, c}) = 1 and p (a, {a, b, c}) = 1. This does not satisfy Axiom 1

since W ∗ = {a}, but p (b, {b, c}) = 1
2
/∈ {0, 1}. This behavior is incommensurate with the

FSSM because the fact that b is chosen probabilistically from {b, c} indicates that it must be

above the satis�cing level, yet this means that it should be chosen some of the time from

{a, b, c} due to the full support assumption.

Example 3 (Violation of Axiom 2) Let X = {a, b, c}, and let p (a, {a, b}) = 1,

p (b, {b, c}) = 1, p (a, {a, c}) = 0 and p (a, {a, b, c}) = 1. This does not satisfy Axiom 2 since

p (a, {a, b}) = 1 means that a is stochastically strictly revealed preferred to b, p (b, {b, c}) = 1

means that b is stochastically revealed preferred to c, while p (c, {a, c}) = 1 means that c is

stochastically strictly revealed preferred to a. Such behavior is also incommensurate with the

FSSM as, in each case, the uniquely chosen object must have a utility strictly higher than
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those which are not chosen, either because all are below the satis�cing level, in which case

the best option is chosen, or because only the chosen object is above the satis�cing level.

Theorem 1 shows the extent to which the FSSM can be tested and di�erentiated from

other models. First, note that any data set in which p(a,A) > 0 for all A ∈ D will trivially

satisfy both Axiom 1 and Axiom 2, and so admit an FSSM representation. This is because

any data set in which the random choice rule has full support in every choice set can be

rationalized by an FSSM in which every alternative is above the satis�cing level, and the

resulting pattern of choice is driven by the choice-set speci�c distribution over search orders.

Second, note that the standard model of utility maximization (without indi�erence) is a limit

case of the FSSM in which |W ∗| = 1. Third, notice that an alternative interpretation of the

FSSM is a model in which attention is complete and choices are governed by a preference

relation which has indi�erence only amongst maximal elements. A model in which such

indi�erence is resolved using a random tie breaking rule with full support amongst maximal

elements is equivalent to the FSSM.

3.2.1 Recoverability in the FSSM

In the case of a complete data set which satis�es Axiom 1 and Axiom 2, many of the

elements of the FSSM can be uniquely identi�ed.

Theorem 2 Let (D, p) be a complete data generated by an FSSM (u, u∗, {γA}A∈D). For any

FSSM representation of the data (ū, ū∗, {γ̄A}A∈D)

1. U∗ = Ū∗

2. For all a, b /∈ U∗, u(a) > u(b)⇒ ū(a) > ū(b)

3. γA(arAb ∀b ∈ {A ∩ U∗} \ {a}) = γ̄A(arAb ∀b ∈ {A ∩ U∗} \ {a}) for all A ∈ D,

a ∈ A ∩ U∗

Theorem 2 tells us that, in a complete data set we can uniquely identify the above-

satis�cing elements, the preference ordering over non-satis�cing elements, and the probability

that one satis�cing element will be seen before another in any choice set.

3.3 Fixed Distribution Satis�cing Models

So far, we have allowed stochastic search order to vary arbitrarily between choice sets:

an alternative that is likely to be searched �rst in choice set A may be very unlikely to be
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searched �rst in choice set B. However, in some cases such an assumption may be inappro-

priate. For example, consider the case in which the probability of search is governed by the

`salience' of di�erent alternatives: a book with a bright pink cover may be more likely to

be looked at before one with a dark brown cover regardless of the set of available alternatives.8

We now consider the implications of a satis�cing model with full support in which the

probability distribution over search orders is invariant to the set of available alternatives.

We call this the '�xed distribution' property.

Assumption 2 (Fixed Distribution) There exists a ΓX : RX → [0, 1] such that, for every

A ∈ D and rA ∈ RA

γA(rA) = ΓX(rX |rA ⊂ rX)

For every choice set A, it is as if the DM draws a search order from a distribution ΓX

over linear orders on the grand set of alternatives X. They then follow that search order,

ignoring any alternatives that are not in fact available in A.

De�nition 6 (Fixed Distribution Satis�cing Model (FDSM)) A data set (D, p) has

a Fixed Distribution Satis�cing Model (FDSM) representation if it has a FSSM represen-

tation in which the family of stochastic search orders {γA}A∈D satisfy Fixed Distribution.

The conditions Axiom 1 and Axiom 2 are necessary for FDSM but not su�cient,

implying that the FDSM is a strict subcase of FSSM. In order to obtain su�ciency, we make

use of the Total Monotonicity condition of Block & Marschak (1960). Total Monotonicity

by itself is a su�cient and necessary condition for Random Utility Maximization in our

environment. This implies that the FDSM is the exact intersection of the FDSM model

with the Random Utility model of Block-Marschak and Falmagne (1978).

In order to de�ne the total monotonicity condition, we �rst need to de�ne the following

function for each A ∈ D and a ∈ A:

f(a,A) =
∑

D∈B(A)

(−1)|D\A|p(a,D)

8It is of course possible to think of cases in which such a property might not hold. For example, it could be that a brown
book would be more salient than a pink book if all other books are pink, but not otherwise. In such cases the model presented
in this section would not be appropriate.
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where B(A) is the class of supersets of A (i.e., B(A) ≡ {D ∈ D|A ⊆ D}).

Block & Marschak (1960) and Falmagne (1978) proved that the following behavioral ax-

iom called Total Monotonicity (or Block-Marschak Monotonicity) is necessary and su�cient

for a RUM representation:

Axiom 3 (Total Monotonicity) f(a,A) ≥ 0 for all a ∈ X, for all A ∈ D.

Note that Total Monotonicity implies `standard' monotonicity: the probability of

choosing any given alternative falls as more alternatives are added to the choice set -

that is p(a,A) ≥ p(a,B) when A ⊆ B.9 However, it is also stronger than this condition

as we can see in the following example: Set X = {a, b, c, d}, let p(a, {a, b}) = 0.2,

and p(a, {a, b, c}) = p(a, {a, b, d}) = 0.19 and p(a, {a, b, c, d}) = 0.17. We check

f(a, {a, b}) = p(a, {a, b}) + p(a, {a, b, c, d}) − [p(a, {a, b, c}) + p(a, {a, b, d})] and observe

that f(a, {a, b}) = −0.01 negative and violating Total Monotonicity. However, standard

monotonicity holds in this example.

Clearly, a FDSM cannot lead to a failure of standard monotonicity. If it did that would

mean that a given satis�cing item is more likely to be found �rst in a bigger menu than in a

smaller one, which is not consistent with the idea that the probability of any search order is

�xed across menus. The higher order monotonicity conditions implied by total monotonicity

can be interpreted as saying that the likelihood of a satis�cing item being found �rst

decreases with the size of the menu, but the marginal e�ect of adding a new option to the

menu decreases with its size. In the example above f(a, {a, b}) ≥ 0 means that the impact

of adding one additional item c in the menu {a, b} on the probability of choosing a � i.e.

p(a, {a, b}) − p(a, {a, b, c}) � is bigger that the impact of adding the same item c in the

bigger menu {a, b, d} on the probability of choosing a � i.e. p(a, {a, b, d})− p(a, {a, b, c, d})).

We are ready to state the main result of this section.

Theorem 3 The following are equivalent:

1. A complete stochastic choice dataset (D, p) has an FDSM representation.

2. A complete stochastic choice dataset (D, p) satis�es Axiom 1, Axiom 2 and Total Mono-

tonicity (Axiom 3).

Note that, unlike Theorem 1, Theorem 3 requires a complete data set.

9To see this take the Mobius inverse representation of p(a,A) =
∑
D∈B(A) f(a,D) and p(a,B) =

∑
D′∈B(B) f(a,D

′) and

note that if D ∈ B(B) then D ∈ B(A) and f(a,D) ≥ 0 by total monotonicity, then we have that p(a,A) ≥ p(a,B).
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3.3.1 Recoverability in the FDSM

In the case of a complete data set which satis�es Axiom 1, Axiom 2 and Total Mono-

tonicity (Axiom 3) several of the elements of the FDSM can be identi�ed. In particular, the

identi�cation of the search orderings is improved upon the FSSM recoverability.

Theorem 4 Let (D, p) be a complete data generated by an FDSM (u, u∗,ΓX) such that

X \ U∗ 6= ∅. For any FDSM representation of the data (ū, ū∗,ΓX)

1. U∗ = Ū∗

2. For all a, b /∈ U∗, u(a) > u(b)⇒ ū(a) > ū(b)

3. ΓX(arXb) = ΓX(arXb) all A ∈ D and a, b ∈ U∗

Theorem 4 tells us that, in a complete data set, we can once again identify the above-

satis�cing elements, and the preference ordering over the alternatives that are surely non-

satis�cing elements. We can also identify the probability that one revealed satis�cing element

will be seen before another in any choice set, for those elements that are satis�cing.

3.4 Comparative Statics

In this section we study the comparative statics with respect to the primitives of the

model.

We �rst study the behavioral implications of a change in the utility threshold. Intu-

itively, a lower utility threshold is associated with a decision maker who is satis�ed `more

often'. In our model, this implies a larger `always chosen' set. In order to make the com-

parison clear, we consider only DMs who otherwise exhibit the same revealed preference

information and same search behavior.

De�nition 7 (More satis�cing than) Let p and p̃ be two random choice rules on D ⊆
2X \ ∅ We say that p is more easily satis�ed than p̃ if

1. W̃ ∗ ⊆ W ∗

2. Cp(A) = Cp̃(A) for all A such that A ∩W ∗ = ∅

3. If a ∈ W ∗ and b is revealed preferred to a according to p̃ , then b ∈ W ∗

4. For any choice set A and a ∈ W̃ ∗ ∩W ∗ ∩ A, p(a,A) ≤ p̃(a,A)
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We say that DM p is strictly more easily satis�ed than p̃ if (i) p is more easily satis�ed

than p̃ and (ii) W ∗ \ W̃ ∗ 6= ∅

We now show that if a random choice rule p is more easily satis�ed than p̃ then there

exists representations for them with the same utility functions and distribution over search

orders but only di�er on the utility threshold. Formally,

Claim 1 Let p and p̃ be two random choice rules on D ⊆ 2X \∅ which admit an FSSM repre-

sentation, and such that p is more easily satis�ed than p̃. Then there exists a representation

(u, u∗, {γA}A∈D) of p and (ũ, ũ∗, {γ̃A}A∈D) of p̃ such that:

1. u = ũ

2. u∗ ≤ ũ∗

3. {γA}A∈D = {γ̃A}A∈D

If p is strictly more easily satis�ed than p̃ then the inequality in part 2 is strict.

One would expect that a DM who is more easily satis�ed does `worse' in the sense that

they would choose worse options. In order to formalize this intuition, we �rst de�ne the

probability distribution over utility realizations.

De�nition 8 (Utility Distribution) Let p be a random choice rule on D ⊆ 2X \ ∅ that

admits a FSSM (FDSM) representation (u, u∗, {γA}A∈D). We de�ne the utility distribution

for menu A as the distribution over utility levels implied by the model

pu(ũ, A) =
∑
a∈A

1{u(a) = ũ}p(a,A)

The associated cumulative distribution function

Fu|p(u,A) =
∑
u≤u

pu(u,A)

We now show that if a random choice rule p is more easily satis�ed than p̃, and these

admit a FSSM representation, then the random choice rule p would lead to worse decisions in

terms of the implied utility distributions. To understand this, consider two FSSM represen-

tations of these random choice rules {u, u∗, {γA}A∈D} and {u, ũ∗, {γA}A∈D}. From Claim 1,

we have that u∗ ≤ ũ∗ which in turn implies that, for any A ∈ D, A∩U∗ ⊇ A∩ Ũ∗. Therefore
the random choice rule with the lower utility threshold is randomizing over alternatives with

lower utility levels. The following example illustrates how this mechanism works.
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Example 4 Let A = {a, b, c} and for simplicity assume that u(a) = 1, u(b) = 2 and u(c) =

3. Let u∗ = 1.5 and ũ∗ = 2.5, and consider the search orders from Example 1. For the

random choice rule p̃, p̃(c, A) = 1 and p̃(a,A) = p̃(b, A) = 0,

Fu|p̃(u,A) =

0 if u < 3

1 if u ≥ 3

For the random choice rule p, p(a,A) = 0, p(b, A) = 11
24

and p(b, A) = 13
24
, therefore

Fu|p(u,A) =


0 if u < 2

11
24

if 2 ≤ u < 3

1 if u ≥ 3

.

This result is formalized in Proposition 1.

Proposition 1 (Utility Threshold) Let p and p̃ be two random choice rules on D ⊆
2X \∅ which admit a FSSM representation, (u, u∗, {γA}A∈D) and (ũ, ũ∗, {γ̃A}A∈D). Moreover,

assume that p is more easily satis�ed than p̃ and that we consider representations such that

u = ũ and {γA}A∈D = {γ̃A}A∈D. Then, for any A ∈ D and ū ∈ R, Fu|p(u,A) ≥ Fu|p̃(u,A).

Moreover, if p is strictly more easily satis�ed than p̃ then there exists an A ∈ D and ū ∈ R
such that Fu|p(u,A) > Fu|p̃(u,A)

Alternatively, we can study the e�ect of changes in the search orders. Intuitively, if

the relative probability of search orders changes in such a way that search orders congruent

with the preference ordering become more likely, then the choices of the DM improve. The

following example illustrates how this mechanism works.

Example 5 Consider again example 1 with u(a) > u(b) > u∗ > u(c) and search orders

γA and γ̃A as shown in Table 2; where γ̃A({a, b, c}) = γA({a, b, c}) + 1
12

and γ̃A({b, a, c}) =

γA({b, a, c})− 1
12
. That is, γ̃A(·) induces the same probability distribution over search orders

except of orders {a, b, c} and {b, a, c}. The only e�ect of this change is to alter the relative

probability of a and b being chosen from the set. Note that the random choice rule p induced by

search orders γA is given by p(a,A) = 3
8
, p(b, A) = 5

8
and p(c, A) = 0; while the random choice

rule p̃ induced by search orders γ̃A is given by p̃(a,A) = 11
24
, p̃(b, A) = 13

24
and p̃(c, A) = 0. For

simplicity assume that u(a) = 3 and u(b) = 2. Correspondingly, the cumulative distribution
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Order (1) (2) (3) (4) (5) (6)
1st a a b b c c
2nd b c a c a b
3rd c b c a b a

γA
1
12

1
6

1
3

1
24

1
8

1
4

γ̃A
1
6

1
6

1
4

1
24

1
8

1
4

Table 2: Changes in the probability of search orders and its e�ect on DM's well-being.

functions over utility values are given by

Fu|p(u,A) =


0 if u < 2

5
8

if 2 ≤ u < 3

1 if u ≥ 3

Fu|p̃(u,A) =


0 if u < 2

13
24

if 2 ≤ u < 3

1 if u ≥ 3

The change in distribution of search orders from γA to γ̃A makes it more likely that search

occurs in the same order as the DMs preferences, and as a result, there is an improvement

in the distribution over realized utility levels.

In Appendix A.8 we provide a formal de�nition of changes in the search order distribu-

tion that improve congruency, and show that they are indeed related to an improvement in

the distribution of utility for the DM.

4 Extensions

In this section we extend our model by relaxing in turn the assumptions of full support,

no indi�erence, and complete data

4.1 Fixed Distributions Without Full Support

As discussed in section 3.1, the GSM model is vacuous without the full support

assumption. Here we consider the empirical implication of dropping full support but
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maintaining the �xed distribution assumption. In such a case the identi�cation of satis�cing

elements as those that are always chosen breaks down. A satis�cing element a may not be

chosen in some sets if it is always searched after another satis�cing element b. To illustrate

this point consider the following example.

Example 6 Let X = {a, b, c, d}, U∗ = {a, b} and Γ a distribution over search orders on

X with full support and where each possible search order is equally likely; moreover assume

that u(c) > u(d). Then, for any menu such that U∗ ⊆ A, p(a,A) = p(b, A) = 1
2
, and if

A ∩ U∗ 6= ∅, then p(U∗, A) = 1 and p(c, A) = p(d,A) = 0. Finally, p(c, {c, d}) = 1 and

p(d, {c, d}) = 0. Note that this is the standard case describe in section 3.3. Now, notice

that since we do not assume that Γ needs to have full support on the set of search orders on

X, the same data set can be generated by the following �xed distribution satis�cing model

without full support: Ū∗ = X, Γ ((a, b, c, d)) = Γ ((b, a, c, d)) = 1
2
and Γ(rX) = 0 for all

rX linear order on X, such that rX /∈ {(a, b, c, d), (b, a, c, d)}. Furthermore, this alternative

representation is not unique.

Because it is not possible to identify the satis�cing alternatives the only implication of

the satis�cing model without full support, but with �xed distribution is Total Monotonicity

- in other words it is behaviorally indistinguishable from the Random Utility model. This

can be seen by noting that a RUM can be reinterpreted as a satis�cing model with �xed

distribution by assuming that all alternatives are above the reservation level, and treating

the preference orderings from the random utility model as search orders in the satis�cing

model.

Theorem 5 The following are equivalent:

1. A complete stochastic choice dataset (D, p) is generated by a FDSM without Full Sup-

port.

2. A complete stochastic choice dataset (D, p) satis�es Axiom 3.

4.2 Allowing for Indi�erence

Here we relax the no indi�erence assumption while keeping the Full Support conditions.

Allowing for indi�erence potentially introduces stochasticity among non-satis�cing alterna-

tives due to the DM's rule to break ties. We assume that tie breaking works as follows, if

the DM is indi�erent between two or more alternatives, and needs to choose one of them,

she chooses at random from the set of indi�erent alternatives with probabilities induced by
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the tie-breaking rule T .

De�nition 9 (Tie-breaking rule) Let T : X ×D → R++
10 be a function that assigns tie

breaking weights to alternatives. In case of indi�erence between two or more alternatives in

menu A, the DM applies the induced tie breaking rule as follows:

T (a|A∼a) =
T (a,A)∑

b∈A∼a T (b, A)
(2)

where T (a|A∼a) > 0 is the always positive probability that a is chosen when a is indi�erent

to all the elements in the set A∼a ≡ {b ∈ A : u(b) = u(a)}, and superior to all other elements

in A (i.e. u(a) ≥ u(b) for all b ∈ A).

Note that if |A∼a| = 1 then T (a|A∼a) = 1, and that
∑

b∈A∼a T (a|A∼a) = 1 in general.

We now extend the Full Support Satis�cing Model to allow for indi�erence.

De�nition 10 (Full Support Satis�cing Model with Indi�erences (FSSMI)) A

data set (D, p) has a Full Support Satis�cing Model with Indi�erences (FSSMI) representa-

tion if there exists u : X → R, u∗ ∈ R such that u∗ ≤ maxa∈X u(a), stochastic search orders

{γA}A∈D that satis�es Full Support and tie breaking rule T : X × D → R++, such that, for

any a ∈ A

p(a,A) =


γA (arAb ∀ b s.t. u(b) > u∗) if u(a) ≥ u∗

T (a|A∼a) if a ∈ arg maxx∈A u(x) < u∗

0 Otherwise

(3)

The following example illustrates the FSSMI.

Example 7 Consider again example 1, and assume that DM's choices can be represented

by a FSSMI. Let U∗ = {a}, and let u(b) = u(c). Then, p(a,A) = 1, p(b, A) = p(c, A) = 0

for all A such that a ∈ A. Let the tie breaking rule be generated by T (b, {{b, c}) = 1 and

T (c, {b, c}) = 2, then p(b, {b, c}) = 1
3
, and p(c, {b, c}) = 2

3

Axiom 1 is no longer necessary for the FSSMI model: stochasticity can occur amongst

alternatives that are not always chosen due to indi�erence. In fact, it turns out that the

10Note that we rule out deterministic tie breaking since, the behavior of a DM that is indi�erent between two alternatives a
and b and always chooses a over b is behaviorally indistinguishable from a DM that prefers a over b.
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behavioral implication of allowing for indi�erence is precisely the removal of this axiom from

our set of necessary and su�cient conditions.

Theorem 6 The following are equivalent:

1. A complete stochastic choice dataset (D, p) is generated by a FSSMI.

2. A complete stochastic choice dataset (D, p) satis�es Axiom 2.

Theorem 6 highlights that the satis�cing model without indi�erence can be reinterpreted

as a standard optimizing model with random tie breaking, but allowing for indi�erence only

amongst the best alternatives.

4.2.1 Recoverability in the FSSMI

Given u∗ ≤ maxa∈X u(a), the extension of the model to allow for ties does not obscure

the identi�cation result for the satis�cing set as in de�nition 4, where the always chosen set

coincides with the satis�cing set, i.e. W ∗ = U∗. The following theorem describes the degree

to which the other elements of the model can be identi�ed.

Theorem 7 Let (D, p) be a complete data generated by an FSSMI (u, u∗, {γA}A∈D, T ). For

any FSSMI representation of the data (ū, ū∗, {γA}A∈D, T̄ )

1. U∗ = Ū∗

2. For all a, b /∈ U∗, u(a) ≥ u(b)⇒ ū(a) ≥ ū(b)

3. γA(arAb ∀b ∈ {A ∩ U∗} \ {a}) = γ̄A(arAb ∀b ∈ {A ∩ U∗} \ {a}) for all A ∈ D,

a ∈ A ∩ U∗

4. T (a|A∼a) = T̄ (a|A∼a) for all a ∈ A, A ∈ D.

Theorem 7 tells us that in a complete data set we can uniquely identify the above-

satis�cing elements, the preference ordering among non-satis�cing elements, the tie breaking

rule when used and the probability that one satis�cing element is seen before another in any

choice set. Its proof follows from Theorem 2 when the identi�cation of the tie breaking rule

is established. The identi�cation of the tie breaking rule holds because whenever it is used,

it is calibrated from the empirical choice probability among elements that are not revealed

to be satis�cing.
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4.3 Incomplete Datasets

Here we relax the complete data set assumption while keeping the full support distri-

bution condition and assuming no indi�erence. We do not work with the �xed distribution

assumption since Total Monotonicity is not well de�ned for incomplete data sets, and the

literature on Random Utility models has not dealt with this extension.

Notice that complete data is not a necessary assumption for Theorem 1. Thus, if

we drop completeness, the implications of the model are not a�ected, but identi�cation

becomes weaker. To see this note W ∗ may be a strict superset of U∗ since a below-satis�cing

alternative may be always chosen because it is only observed in choice sets containing below-

satis�cing alternatives. The accuracy with which we can identify the primitives of the model

given observed data depends on the richness of the data set.

Theorem 8 Let (D, p) be a data set (that needs not to be complete) that satis�es Axiom 1

and Axiom 2. Then for a FSSM (u, u∗, {γA}A∈D) represents the data if and only if

1. W̃ ⊆ U∗ ⊆ W ∗

2. u must represent the stochastic revealed preference relation on X \ U∗: that is if a

is stochastically strictly revealed preferred to b then u(a) > u(b), and if a is revealed

preferred to b then u(a) ≥ u(b) for any a, b ∈ X \ U∗

3. γA(a rA b ∀b ∈ (U∗ ∩ A) \ {a}) = p(a,A) for all A ∈ D, a ∈ U∗ ∩ A.

where W̃ ≡ {a ∈ X|∃A ∈ D, s.t p(a,A) ∈ (0, 1)}.

Theorem 8 tells us that, when dealing with incomplete data sets one can only identify

with certainty satis�cing choices, if these have been observed chosen when other satis�cing

alternatives were available as well; that is, if we see them being chosen stochastically. As we

established before, the satis�cing set is a subset of the set of always chosen alternatives, but

with incomplete data it may be a strict subset. Furthermore, one can only partially recover

the preference order for the revealed not satis�cing alternatives. Finally, the search orders

can only be identify up to the set of those that coincides with the one generated from the

relative probabilities of the elements that surely are in U∗.

4.4 Random Utility and Random Threshold

Now we turn to the study of two variants of the satis�cing model where we allow

randomness in tastes and in the threshold rule. The �rst generalizes the constant threshold

21



assumption and allows it to vary randomly. The second variant focuses on letting utility, so

far taken as �xed, to vary randomly (i.e., random utility).

4.4.1 Random Threshold

Here we explore the satis�cing model when we allow for a random threshold.

Speci�cally, we consider a model in which, at each decision, the DM draws a search

order and a threshold independently from two distributions. She then searches the menu

until �nding something with utility above the threshold, if such an object exists in the menu.

We establish the somewhat surprising result that assuming a random threshold adds

no generality to the satis�cing model. In fact, these variants are indistinguishable from the

FSSM/FDSM with constant threshold.

De�nition 11 (FSSM with Random Threshold (FSSM-RT)) A data set (D, p) has a
Full Support Satis�cing Model with Random Threshold (FSSM-RT) if there exists an injective

u : X → R, a continuous random variable u∗ ∼ Fu∗(·) such that τ(a) = Pr(u(a) > u∗) =

1−Fu∗(u(a)) with support(u∗) ⊆ R such that U∗,RT = {x ∈ X : τ(x) > 0} ≥ 1, and {γA}A∈D
with the Full Support property, such that, for any A ∈ D and a ∈ A:

p(a,A) =
∑
rA∈RA

τ(a)
∏

b∈A:brAa

(1− τ(b))γA(rA) +
∏
c∈A

(1− τ(c))1(u(a) > u(b) ∀b ∈ A\{a}). (4)

Notice that the term τ(a)
∏

b∈A:brAa(1 − τ(b)) measures the probability of item a ∈ A
being satis�cing given that all items searched before it in menu A under �xed search rA

where not satis�cing, similarly
∏

c∈A(1 − τ(c)) is the probability of not �nding anything

satis�cing in A,11 and 1(u(a) > u(b) ∀b ∈ A) = 1 when a is maximal under u in A and zero

otherwise. For notational convenience, we assume also that the productory over the empty

set is 1 - i.e.
∏
∅(1− τ(b)) = 1.

We �rst study the implications of a random threshold with the Full Support assumption

on the search process.

Lemma 2 A complete stochastic choice dataset (D, p) that can be generated by a FSSM-RT

satis�es Deterministic no satis�cing choice (Axiom 1) and SARP (Axiom 2).

11Notice that the summation of the �rst term of the expression over all items P (A) =
∑
c∈A

∑
rA∈RA

τ(c)
∏
b∈A:brAc

(1 −
τ(b))γA(rA) = 1−

∏
c∈A(1− τ(c)), thus the 1− P (A) =

∏
c∈A(1− τ(c)) is the residual probability.
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The previous lemma allows us to establish the following equivalence result.

Theorem 9 The following statements are equivalent:

1. A complete stochastic choice dataset (D, p) can be generated by a FSSM.

2. A complete stochastic choice dataset (D, p) can be generated by a FSSM-RT.

The equivalence theorem just presented may be surprising, however we note that even

when the FSSM-RT is more �exible than the FSSM, it imposes exactly the same restrictions

in the primitive stochastic choice dataset. The reason is that the FSSM-RT and FSSM

have at their heart the separation of stochastic choice for satis�cing items and deterministic

rational choice for non satis�cing items, this remains true under an extended de�nition of

the satis�cing set URT∗ = {x ∈ X : τ(x) > 0}.

De�nition 12 (FDSM with Random Threshold (FDSM-RT)) A data set (D, p) has

a Fixed Distribution Satis�cing Model with Random Threshold (FDSM-RT) representation

if it has a FSSM-RT representation in which the family of stochastic search orders {γA}A∈D
satisfy the Fixed Distribution property.

Lemma 3 A complete stochastic choice dataset (D, p) that can be generated by a FDSM-

RT satis�es Deterministic no satis�cing choice (Axiom 1), SARP (Axiom 2) and Total

Monotonicity (Axiom 3).

The previous lemma allows us to establish the empirical equivalence between FDSM

with and without RT.

Theorem 10 The following statements are equivalent:

1. A complete stochastic choice dataset (D, p) can be generated by a FDSM.

2. A complete stochastic choice dataset (D, p) can be generated by a FDSM-RT.

4.4.2 Random Utility FDSM

Here we focus on a variant of the FDSM where we allow for random utility.12 We

consider a model where there is a probability measure ρ : U 7→ [0, 1] de�ned over a �nite

domain of injective utilities de�ned on X denoted by U (we assume that U is such that there

is a bijection from it to the set of linear orders in X). For a given element in the support

12We omit the variant of FSSM with random utility as it is too non-restrictive, in fact, the reader can easily check using the
results in this section that the necessary and su�cient condition that characterizes FSSM with random utility is the Degeneracy
condition (A 4).
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u ∈ U , we assume that the DM is consistent with a FDSM representation or pFDSMu with

{u, u∗, {γA}A∈D} (i.e. u∗, and {γA}A∈D the same for each u ∈ U). We assume that the

distribution of utility is independent of the distribution of linear search orders:13

De�nition 13 (Random Utility FDSM representation (RU-FDSM)) A data set

(D, p) has a Random Utility FDSM representation (RU-FDSM) if it there exists a ρ : U 7→
[0, 1] such that the data is consistent with the average of the FDSM models over all possible

utilities:

p(a,A) =
∑
u∈U

ρ(u)pFDSMu (a,A)

Note that this is equivalent to assuming that, each time the DM is faced with a choice,

a utility function is drawn from U , a search order is drawn from {γA}A∈D, and the DM

applies the satis�cing algorithm using this search order and utility function.

We note that the new model does not satisfy SARP (Axiom 2) nor Deterministic non

satis�cing choice (Axiom 1). It satis�es however:

Axiom 4 (Degeneracy) For x ∈ X\W ∗ and A ∩W ∗ 6= ∅ then p(x,A) = 0.

Notice also the following direct results for RU-FDSM:

Claim 2 If the data set (D, p) has a RU-FDSM representation, then W ∗ = {a ∈ X :

p(a,A) > 0, ∀A ∈ D} ≡ {a ∈ X : ∃ u ∈ U , ρ(u) > 0, u(a) > u∗} corresponds to the set of

�sometimes� satis�cing items. Also X\W ∗ corresponds to the set of never satis�cing items.

We are ready to characterize the RU-FDSM.

Theorem 11 The following are equivalent:

1. A complete stochastic choice dataset (D, p) can be generated by a RU-FDSM.

2. A complete stochastic choice dataset (D, p) satis�es Axiom 3 and Degeneracy (Ax-

iom 4).

13This representation admits two interpretations: First, we can think of a particular DM that has changing or random tastes,
that at each trial draws a utility function and a linear search order independently and then given a �xed threshold she searches
through a menu until she �nds something satis�cing else she picks the best item according to her drawn utility. Another
interpretation is at the level of the population we can think of in�nite number of decision makers with mass equal to 1, each of
them endowed with a utility function and linear search order drawn independently and identically from ρ and γ and a common
or homogeneous threshold. The probability of choice can be thought as a market share or the mass of DMs that pick a given
item in a menu.
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4.4.3 Identi�cation of the Utility of Satis�cing Items with Random Utility and

Random Threshold.

A less than satisfactory feature of the FSSM and FDSM models is that we cannot

recover information about the utility of satis�cing elements. It is an interesting question to

explore whether this characteristic of the FSSM/FDSM is inherent to the general satis�cing

procedures or not. In this section, we use the exploration of random threshold/random

utility variants of the satis�cing model to try to answer this question. In general, we �nd

that inferring information about the utility of satis�cing items is still problematic.

For the case of a random threshold, Theorem 10 says that the FDSM and FDSM-

RT are indistinguishable from one another. A direct corollary of this result is that the

random threshold distribution u∗ ∼ Fu∗ is not identi�ed. We can only separate the elements

that have a positive probability of being over the threshold from those that have a zero

probability of surpassing it (this follows from the fact that W ∗ ≡ U∗ in the case of FDSM

and W ∗ ≡ {a ∈ X : τ(a) > 0} in the FDSM-RT). This partially identi�es the support of Fu∗

(up to monotone transformations of the random variable) but not the actual distribution.

The following corollary follows trivially from Theorem 10.

Corollary 1 If a complete stochastic choice dataset (D, p) can be generated by a FDSM-RT,

then the utility of satis�cing elements such that U∗RT = {a ∈ X : τ(a) > 0} is not identi�ed:
in particular, for every preference ordering over such elements there exists a FDSM-RT

representation of the data with u : X → R which is consistent with those preferences.

From Theorem 10 it is also clear that without further restrictions in the search

procedure captured by {γA}A∈D we cannot hope to obtain more information about the

random variable u∗ and about the utility level of satis�cing items.

The RU-FDSM contains the FDSM-RT/FDSM and is not contained by the latter

by Theorem 11. In consequence, we expect no gains from allowing random utility

in identify the utility of satis�cing items. However, RU-FDSM is interesting because

one could argue that the fact that some items are falling below the �xed threshold u∗

randomly could help to identify some form of average utility, for example the quantity

Pr(u : u(a) > u∗) =
∑

u∈U ρ(u)1(u(a) ≥ u∗). However, we can establish in the basis of

Theorem 11 that Pr(u : u(a) > u∗) is not identi�ed.

To see this is true we need to considering the following property, where any item that

is satis�cing for some �xed utility is satis�cing for all utilities in the domain of the random
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utility (ρ,U). This property is closer to the FDSM as it restricts the taste variation for

satis�cing items.

De�nition 14 (Always satis�cing random utility distribution) A random utility

distribution is always satis�cing if for any item x ∈ X such that for some u ∈ U with

ρ(u) > 0, and u(x) > u∗ it follows that for any other û ∈ U with ρ(û) > 0 it also holds that

û(x) > u∗.

It is clear that this property allows for a sharper interpretation of W ∗. In fact, consider

the following immediate claim.

Claim 3 If complete stochastic choice dataset (D, p) can be generated by a RU-FDSM with

Always satis�cing random utility distribution, then if a ∈ W ∗ it follows that Pr(u : u(a) >

u∗) = 1 and Pr(u : u(b) > u∗) = 0 for b ∈ X\W ∗. Thus W ∗ = {a ∈ X : u(a) > u∗ ∀u ∈
U , ρ(u) > 0} is the set of always satis�cing items.

The proof of Theorem 11 shows that a complete stochastic choice dataset that can

be represented as a RU-FDSM also admits a RU-FDSM representation with the Always

satis�cing random utility distribution assumption.

Corollary 2 If a complete stochastic choice dataset (D, p) can be represented by a RU-FDSM

it can also be represented RU-FDSM with Always satis�cing property.

Recall, that FDSM allows us to recover 1(u(a) > u∗) only, which implies the lack of

identi�cation of utility (or utility intensity) for satis�cing items. Thus the RU-FDSM fares

no better than the FDSM in identifying satis�cing items utility levels.

The above discussion shows that, as long as one allows relatively unrestricted stochastic-

ity in the search order, adding randomness to the utility function or the satis�cing threshold

is of no use in identifying preferences for satis�cing alternatives. One possible approach

which might allow for such identi�cation would be to restrict the allowable distributions

over search orders (for example to degenerate, or uniform distributions). We leaving this

possibility as an interesting avenue for future research.

5 Relation to Existing Literature

The paper closest in spirit to ours is Manzini & Mariotti (2014), which characterizes

the random choice generated by a DM who makes choices by optimizing on a stochasti-

cally generated consideration set. As in our model, preferences are deterministic, with
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randomness in choice coming from stochastic changes is attention. However, the behavioral

implications of the two models are quite di�erent, with the satis�cing model being the

more general. In the set up of MM, all alternatives are always chosen with positive

probability in each set. In such a data set, axioms Axiom 1 and Axiom 2 are always

satis�ed, and so the FSSM is trivially more general than the stochastic consideration

set model. Moreover, the FDSM also nests the stochastic consideration set model. This

follows from the fact that, when restricted to the class of data in which all alternatives are

chosen with positive probability, the FDSM model is equivalent to the class of all RUMs,

and the model of MM is a strict subset of this class. Moreover, the FSSM and FDSM

can accommodate data sets in which not all alternatives are chosen with positive probability.

Our work also contributes to the literature aimed at testing the satis�cing model. It is

well known that standard deterministic choice data cannot be used to distinguish rational

choice from satis�cing behavior, implying that richer data is needed. Caplin et al. (2011);

Caplin & Dean (2011) showed how to test the satis�cing model using `choice process' data,

which records not just �nal choice made by a decision maker, but also how choices change

with contemplation time. Santos et al. (2012) utilize data in which the sequence of search is

recorded to test the satis�cing model. Our paper describes the implication of the satis�cing

model for stochastic choice data, which is arguably easier to collect that either choice

process, search or list data.

Another relevant paper is Rubinstein and Salant (2006) that studies the implications

of choices from lists that include as a special case a variant of the satis�cing model where

the DM chooses the �rst element in a list (that could be put one to one with a linear

search/ordering) that is above a threshold, if none she chooses the last one. We di�er from

this e�ort in that we assume we do not observe the lists or linear orderings, instead we infer

the distribution of the linear search from the frequency of choice.

Ours is not the �rst paper to characterize the behavior of random choice rules. Much of

the previous work has focused on random utility models (RUMs), in which the DM chooses

in order to maximize a utility function, drawn from some distribution (see for example

Block & Marschak (1960); Falmagne (1978); Gul et al. (2014)). As discussed above, the

FSSM is behaviorally distinct from the class of RUMs. It is easy to construct examples of

FSSMs which violate regularity, and so cannot be modeled as the resulting from random

utility maximization. Moreover, RUMs are not guaranteed to satisfy either axioms Axiom 1

or Axiom 2. In contrast the FDSM is behaviorally a subset of the class of RUMs. Total
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monotonicity Axiom 3 is necessary and su�cient for a RUM representation (Falmagne, 1978).
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A Proofs

A.1 Proof of Lemma 1

Proof. (W ∗ ⊆ U∗) Let a ∈ W ∗ then for any given A ∈ D we have p(a,A) > 0 then either:

(i) a ∈ U∗ or (exclusive) (ii) u(a) > u(b) for all b ∈ A and U∗ ∩A = ∅. Assume a /∈ U∗ then
(since U∗ 6= ∅) there exists b ∈ U∗ and, by completeness of the data, there is a menu A′ ∈ D
such that a, b ∈ A′, and therefore p(a,A′) = 0, so we have a contradiction.

(U∗ ⊆ W ∗) Let a ∈ U∗ ⇒ u(a) > u∗, by FSSM p(a,A) =

γA (rA|arAb ∀b ∈ A s.t. u(b) > u∗) > 0 where the last inequality follows from Full Support

assumption.
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A.2 Proof of Theorem 1

Proof. First we prove that (1) implies (2). To prove that a data set (D, p) that admits

a FSSM representation satis�es Axiom 1 �rst notice that U∗ ⊆ W ∗ even for incomplete

data sets. To see this note that if a ∈ U∗ then u(a) ≥ u∗ and since the data has a FSSM

representation then p(a,A) = γA (rA|a rA b ∀b ∈ A ∩ U∗\{a}) for all A ∈ D. Given the

full support assumption, γA (rA|a rA b ∀b ∈ A ∩ U∗\{a}) > 0 for all A ∈ D, therefore

p(a,A) > 0 for all A ∈ D which in turn implies that a ∈ W ∗.

Then if a /∈ W ∗ we have that a /∈ U∗, which in turn implies that u(a) < u∗. Since u is

injective, there exists a a∗A = argmaxa∈Au(a). Then either (i) a = argmaxb∈Au(b) or (ii)

u(a) < maxb∈A u(b). If (i) since the data has a FSSM representation p(a,A) = 1; while if

(ii) p(a,A) = 0. In either case Axiom 1 follows.

To show that Axiom 2 holds, assume, by the way of contradiction, that (i) a is

stochastically revealed preferred to b and (ii) b is stochastically strictly revealed preferred to

a. From (ii), given that data admits a FSSM we must have (by the full support assumption)

that u(a) < u∗ and u(a) < u(b). If a is stochastically revealed preferred to b then there

must exist a sequence of alternatives c1, . . . , cN and choice sets A1, ..., AN−1, such that

c1 = a, cN = b, cn, cn+1 ∈ An and cn ∈ C(An). If u(b) > u∗ then it must be the case that

u(cN−1) > u∗ (otherwise cN−1 could not be chosen with positive probability when cN was

available). Iterating on this argument implies that u(a) > u∗. If u(b) < u∗ then this implies

that u(cN−1) > u(b). If u(cn) < u∗ for all n then iterating on this argument implies that

u(a) > u(b). Otherwise, the previous argument implies that u(a) > u∗. Either provides a

contradiction.

Now we prove that (2) implies (1). For A ⊆ X \W ∗, C(A) ≡ {a ∈ A|p(a,A) = 1} from
Axiom 1. Given Axiom 2, we can generate an injective utility function using Afriat/Richter's

theorem, such that u : X \W ∗ → [0, u] and C(A) = argmaxa∈Au(a) for all A ∈ D such that

A∩W ∗ = ∅. Fix u∗ > u , enumerate the elements inW ∗ as a1, . . . , aN and let u(an) = u∗+n

for all an ∈ W ∗. Thus u : X → R is injective and U∗ ≡ W ∗. Furthermore, notice that

Axiom 2 implies that W ∗ is non-empty, so that u∗ ≤ maxx∈Xu(x).

For every A such that A∩W ∗ is non-empty, let A∗ ≡ A∩W ∗ and de�ne RA∗ the set of

all linear orders on A∗, and let RA(rA∗) be the set of all linear orders rA ∈ RA that induce

the linear order rA∗ ∈ RA∗ .Then, set the probability of the set of linear orders that generate
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each rA∗ as

γA (rA ∈ RA(rA∗)| airA∗aj ∀aj ∈ A∗\{ai}) =
p(ai, A)

| {rA∗ ∈ RA∗ : airA∗aj ∀aj ∈ A∗\{ai}} |

for all ai ∈ A∗. Finally, distribute the probability mass above uniformly across the elements

in RA(rA∗). For any rA ∈ RA(rA∗), for a given rA∗ :

γA(rA) = γA (rA ∈ RA|airA∗aj ∀aj ∈ A∗\{ai}) /|RA(rA∗)|

Where | · | stands for the cardinality map. Note that, as rA ∈ RA(rA∗)| airA∗aj ∀aj ∈
A∗\{ai} for some ai ∈ A∗, and as p(ai, A) > 0 by construction of W ∗ this distribution will

have full support on RA.

If A ∩W ∗ = ∅ then for all rA ∈ RA de�ne

γ(rA) =
1

|RA|

Thus, between them u, u∗ and {γA}A∈D satisfy the requirements of an FSSM. To verify that

we can generate (D, p) notice that if we face a menu A we have the following cases:

(i) if A ∩ W ∗ = A then u(a) > u∗ for all a ∈ A and, for each a,

p(a,A) = γA(rA ∈ RA|a rA b ∀b ∈ A\{a}), to see that this is true observe that γA(rA ∈
RA|a rA b ∀b ∈ A\{a}) =

∑
rA∈RA 1 [rA : rA∗ such that airA∗aj ∀aj ∈ A∗] γA(rA) = p(a,A).

(ii) If A ∩W ∗ = ∅ then p(a,A) = 1 if u(a) > u(b) for all b ∈ A\{a} and zero otherwise.

This follows directly from the fact that u was constructed to represent choice on such sets.

(iii) If A ∩ W ∗ ⊂ A and A ∩ W ∗ 6= ∅ then we have p(a,A) = γA(rA|a rA b ∀b ∈
(A∩W ∗)\{a}) if u(a) ≥ u∗ and p(a,A) = 0 if u(a) < u∗. To see that this is true observe that

by de�nition of W ∗ and Axiom 1 p(A ∩W ∗, A) = 1. To see that this is true, observe that if

we assume that p(A ∩W ∗, A) < 1 we must have that p(a,A) > 0 for some a /∈ W ∗ but that

means by Axiom 1 that p(a,A) = 1 which is a contradiction of the fact that p(A∩W ∗, A) > 0.

Then p(a,A) = 0 if u(a) < u∗. For a, b ∈ A ∩W ∗, the result follows as in (i).
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A.3 Proof of Theorem 2

Proof. To prove (1) assume, by contradiction, that U∗ 6= U
∗
and let v ∈ U∗ \ U∗. Then,

it must be the case that u(v) < u∗ and u(v) ≥ u∗. By completeness and the fact that

U∗ 6= ∅, ∃a ∈ U∗ and a A ∈ D such that A = {a, v}. Given that the data is represented by

(u, u∗, {γA}A∈D), p(a,A) = 1. On the other hand, since (u, u∗, {γA}A∈D) also represents the

data it is the case that p(a,A) ∈ (0, 1), which establishes a contradiction.

To prove (2) notice that from (1) U∗ = U
∗
. Since both, (u, u∗, {γA}A∈D) and

(u, u∗, {γA}A∈D) are generated by the same FSSM, then u and u∗ represent the preferences

given by de�nition 5 for all a /∈ U∗. Therefore, it must be the case that u is a strictly

increasing transformation of u. on X/U∗

To prove (3) assume, by contradiction, that for some A ∈ D, a ∈ A ∩ U∗

γA(arAb ∀b ∈ {A ∩ U∗} \ {a}) 6= γ̄A(arAb ∀b ∈ {A ∩ U∗} \ {a})

then p(a,A|γA) 6= p(a,A|γA) which in turn implies that both, (u, u∗, {γA}A∈D) and

(u, u∗, {γA}A∈D) cannot represent the same data.

A.4 Proof of Theorem 3

Proof. First we prove (1) implies (2). If the complete data is generated by a FDSM then

there is a triple (u, u∗,ΓX), take a realization of ΓX with support on RX and call it rX , then

de�ne the linear ordering on X �X :

(1) a �X b if arXb and a, b ∈ U∗, (2) a �X b if u(a) > u(b) and a, b /∈ U∗ and (3)

a �X b if a ∈ U∗, b /∈ U∗. Now, assign this linear ordering �X the probability ΓX(rX). It is

direct to see that there is a Random Utility Maximization model without indi�erence with

realizations �X with probability ΓX(rX). By Block & Marschak (1960) it follows that the

generated data set (D, p) satis�es Total Monotonicity (Axiom 3). The fact that Axiom 1

and Axiom2 hold follows from Theorem 1.

Second we prove (2) implies (1). Because FDSM is a subcase of FSSM and Axiom 1

and Axiom 2 hold we can build an utility u : X 7→ R and a threshold u∗ ∈ R such that

u(x) ≥ u∗ for all x ∈ W ∗ and u(x) < u∗ for all x ∈ X\W ∗. Finally, if a complete stochastic

choice dataset (D, p) satis�es Axiom 3 then the model is a Random Maximization Utility

model so we can recover a distribution over linear orders on X ΓQX : RX 7→ [0, 1] such that
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p(a,A) = ΓQX(arXb ∀ b ∈ A) thanks to Falmagne (1978). Call its support RX the set of

quasi-search ordering, because they are the results of both deterministic (degenerate) utility

maximization choice and �xed random searching and satis�cing behavior. To construct

the ΓX we build each element of its support by taking an element of the support of the

Quasi-search ordering rX ∈ RX and we restrict it toW ∗. Here we de�ne an equivalence class

on RX if they have the same restriction rX |W ∗, if we have any two elements rX , r
′
X ∈ RX

that have the same restriction to W ∗ (i.e., xrXy ⇐⇒ xr′Xy for x, y ∈ W ∗) we say

rX ≡W ∗ r′X , the equivalence class set is denoted as [rX ]≡W∗ = {r′X ∈ RX |rX ≡W ∗ r′X}
then we assign to the representative of the equivalence class or the restriction rX |W ∗

the probability corresponding to the sum
∑

r′X∈[rX ]≡W∗
ΓQX(r′X). For any given restricted

ordering rX |W ∗ we build its transitive closure or the set of transitive extensions to X and

call this set RX(rX) ⊂ X ×X. We assign each of the elements of this set r̂X ∈ RX(rX) the

probability
∑

rX∈[rX ]≡W∗
ΓQX(rX)/|RX(rX)| where the numerator is the probability of the

restricted to W ∗ quasi-search ordering rX |W ∗ and the denominator is the cardinality of the

previously de�ned set. Doing this for all elements of RX we build a new support RX with

probabilities as indicated that provide us with ΓX .

Note that ΓX has full support due to how W ∗ is constructed. Because W ∗ is the

always chosen set, we know that any element of the set of restrictions rX |W ∗ such that

for each a ∈ W ∗, arXb for all b ∈ W ∗\{a} has positive probability. It follows that by

de�nition, for any A ∈ D, and for any x ∈ W ∗ we have p(x,A) > 0, this means that

ΓQX(rX ∈ RX : xrXy ∀y ∈ X\{x}) > 0. This implies that all representatives of the

equivalence class of restricted orderings rX |W ∗ where x is searched �rst in W ∗ have positive

probability. Then we have extended them to X with the uniform distribution for each set

RX(rX) thus preserving the full support for the whole X. The reason is that the transitive

closure to X of any rX |W ∗ contains linear search orders that have each x ∈ W ∗ as the �rst

searched element, because it contains the ordering that preserves the elements in W ∗ in the

top and the rest at the bottom. But also it contains search orders with each element of

X\W ∗ at the top for each of such elements andW ∗ at the bottom all with positive probability.

We have extended each restriction rX |W ∗ such that we can let ΓX be the �xed

distribution of search orders. We have built a FDSM or a triple (u, u∗,ΓX). To verify that

this FDSM model generate (D, p) notice that if we face a menu A we have the following cases:

(i) if A∩W ∗ = A then p(a,A) = ΓX(rX ∈ RX | a rX b ∀b ∈ A\{a}), to see that this is
true observe that ΓX(rX ∈ RX | a rX b ∀b ∈ A\{a}) = ΓQX(rX ∈ RX |a rX b ∀b ∈ A\{a}).
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In this case the �rst equality follows from the equivalence to random utility when restricted

to W ∗.

(ii) If A ∩W ∗ = ∅ then p(a,A) = 1 if u(a) > u(b) for all b ∈ A\{a} and zero otherwise.

This is direct from the fact that u represents C in such sets.

(iii) If A ∩ W ∗ ⊂ A then we have p(a,A) = ΓX(rX |a rX b ∀b ∈ (A ∩ U∗)\{a}) if

u(a) ≥ u∗ and p(a,A) = 0 if u(a) < u∗. To see that this is true observe that by de�nition of

W ∗ and Axiom 1 p(A∩W ∗, A) = 1 then p(a,A) = 0 if u(a) < u∗. For a, b ∈ A∩W ∗ observe

that by construction ΓX(rX ∈ RX |arXb ∀b ∈ (A ∩ U∗)\{a}) = ΓQX(rX ∈ RX |arXb ∀b ∈
(A ∩W ∗)\{a}). Finally, observe that ΓQX(rX ∈ RX |arXb ∀b ∈ (A ∩W ∗)\{a}) = ΓQX(rX ∈
RX |arXb ∀b ∈ A\{a}) = p(a,A) because the facts that p(c, A) = 0 for any c /∈ W ∗ and

that ΓQX represents choice implies that ΓQX(rX ∈ RX |crXa) = 0.

A.5 Proof of Theorem 4

Proof. For (1) and (2) we use the results of Theorem 2.

(3) follows from the fact that W ∗ ≡ U∗ and the FDSM behaves as Random Utility in

this for the elements in W ∗. Assume by contradiction that ΓX(xrXy) 6= ΓX(xrXy) for some

x, y ∈ W ∗ but that means that in the menu {x, y}, p(x, {x, y}|ΓX) 6= p(x, {x, y}|ΓX) which

is a contradiction.

A.6 Proof of Claim 1

Proof. First note that if p is more easily satis�ed than p̃, and W̃ ∗ = W ∗, then the claim

is trivially satis�ed since both random choice rules are behaviorally indistinguishable, and

therefore there exists representations (u, u∗, {γA}A∈D) and (ũ, ũ∗, {γ̃A}A∈D) with (i) u = ũ,

(ii) u∗ = ũ∗ and, (iii) {γA}A∈D = {γ̃A}A∈D.

Consider now the case where p is strictly more easily satis�ed than p̃, i.e. W̃ ∗ ⊂ W ∗.

First we prove that there exists representations for p and p̃ such that u(a) = ũ(a) for any

a ∈ X \W ∗. Since p and p̃, admit a FSSM (FDSM) representation, there exist injective

utility functions u and ũ that represents observed choices Cp(A), Cp̃(A) for all A such that

A∩W ∗ = ∅. Moreover, since Cp(A) = Cp̃(A) for all A such that A∩W ∗ = ∅ then there exist

representations u and ũ with u(a) = ũ(a) for all a ∈ X \ W̃ ∗. Pick one such representation

and set u∗ = maxa∈X\W ∗ u(a) + 1.
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Now we show that these representations can be also chosen such that u(a) = ũ(a) for

any a ∈ X \ W̃ ∗. For any a ∈ W ∗ \ W̃ ∗, p more easily satis�ed than p̃ implies that if b

is revealed preferred to a according to p̃ , then b ∈ W ∗, and therefore, any representation

ũ of Cp̃(A) with A ∩ W̃ ∗ = ∅ also represents choices Cp̃(A) with A ∩ W̃ ∗ = ∅. For such

representations set ũ∗ = maxa∈X\W̃ ∗ u(a) + 1. Since W̃ ∗ ⊂ W ∗, then ũ∗ > u∗. Finally,

enumerate the elements in W̃ ∗ as a1, a2, . . . , AN and let u(an) = ũ(an) = ũ∗ + n.

Finally we need to prove that p is more easily satis�ed than p̃ and W̃ ∗ ⊂ W ∗, there

exists representations for p and p̃ that admit a FSSM representation with the above utility

functions and utility thresholds and such that {γA}A∈D = {γ̃A}A∈D. First notice that search
orders can be trivially set such that γA = γ̃A for any A such that A ∩W ∗ = ∅. Second,

if A ∩ (W ∗ \ W̃ ∗) = ∅, p is more easily satis�ed than p̃ implies that for any choice set A

and a ∈ W̃ ∗ ∩W ∗ ∩ A, p(a,A) ≤ p̃(a,A), which in turn implies that p(a,A) = p̃(a,A), and

therefore we can �nd representations with γA = γ̃A for any A such that A∩ (W ∗ \ W̃ ∗) = ∅.
Third, for any A such that A ⊂ (X \ W̃ ∗), search orders are not identi�ed for the random

choice rule p̃, while search orders for random choice rule p are identi�ed, up to equivalent

lineal search orders among elements in A ∩W ∗, and therefore we can set γA = γ̃A for all A

such that A ⊂ (X \ W̃ ∗).

Finally, consider menus A such that A ∩ W̃ ∗ 6= ∅ and A ∩ (W ∗ \ W̃ ∗) 6= ∅. De�ne

α ≡ A ∩ (W ∗ \ W̃ ∗) and α̃ ≡ A ∩ W̃ ∗, and de�ne pα =
∑

a∈α p(a,A). Let αi be the typical

element in α, i.e. α ≡ {αi}|α|i=1; and α̃i be the typical element of α̃, i.e. α̃ ≡ {αi}|α̃|i=1. De�ne

R̃α̃i as the set of linear orders for the elements in α̃ such that α̃i R̃α̃i b for all b ∈ α̃\{α̃i} and
Rα
αi

be the set of linear orders for the elements in α such that αi R
α
αi
b for all b ∈ α \ {αi}.

Then, de�ne the linear orders Rαi,α̃i as the linear orders for the alternatives in α ∪ α̃ such

that it is consistent with R̃α̃i and with Rα
αi

and that any element in α is seen �rst than any

element in α̃; correspondingly de�ne Rα̃i,αi as the set of linear orders that are also consistent

with R̃α̃i and with Rα
αi
but such that any element in α is seen after any element in α̃. Finally

de�ne

γ (r ∈ Rαi,α̃i) =
p(αi, A) p̃(α̃i,A)−p(α̃i,A)

pα

|Rαi,α̃i |

and

γ (r ∈ Rα̃i,αi) =
p(α̃i, A)p(αi,A)

pα

|Rα̃i,αi |

Now we extend these search orders to linear orders over all elements in A. Let RA (rαi,α̃i)

35



be the set of all linear orders rA ∈ RA that induce the linear order rαi,α̃i ∈ Rαi,α̃i . For any

rA ∈ RA(rαi,α̃i), for a given rαi,α̃i :

γA(rA) =
γA (rA ∈ RA|ai rαi,α̃i aj ∀aj ∈ α ∪ α̃\{ai})

|RA (rαi,α̃i) |

Notice that the above collection of search orders generate both random choice rules since

p(αi, A) =
∑
α̃i

γ (r ∈ Rαi,α̃i)× |Rαi,α̃i | for any αi ∈ α

=
∑
α̃i

p(αi, A)
p̃(α̃i, A)− p(α̃i, A)

pα

= p(αi, A)
1− (1− pα)

pα
= p(αi, A)

p(α̃i, A) =
∑
αi

γ (r ∈ Rα̃i,αi)× |Rα̃i,αi| for any α̃i ∈ α̃

=
∑
αi

p(α̃i, A)
p(αi, A)

pα

= p(α̃i, A)
∑
αi

p(αi, A)

pα

= p(α̃i, A)

p̃(α̃i, A) =
∑
αi

[γ (r ∈ Rαi,α̃i) |Rαi,α̃i |+ γ (r ∈ Rα̃i,αi) |Rα̃i,αi |]

=
∑
αi

[
p(αi, A)

p̃(α̃i, A)− p(α̃i, A)

pα
+ p(α̃i, A)

p(αi, A)

pα

]
=

[
pα
p̃(α̃i, A)− p(α̃i, A)

pα
+ p(α̃i, A)

pα
pα

]
= [p̃(α̃i, A)− p(α̃i, A) + p(α̃i, A)]

= p̃(α̃i, A)

and therefore we can set {γ̃A}A∈D = {γA}A∈D.
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A.7 Proof of Proposition 1

Proof. First notice that, by Claim 1 we have that u∗ ≤ ũ∗. It is trivial to show the

result if u∗ = ũ, since both random choice rules are indistinguishable and it follows that

Fu|p(u,A) = Fu|p̃(u,A) for all A ∈ D. Consider the case where, u∗ < ũ∗. We have two cases

(i) W ∗ = W̃ ∗ and u∗ < ũ∗ and (ii) W̃ ∗ ⊂ W ∗ and u∗ < ũ∗. If (i), then the random choice

rules p and p̃ are behaviorally indistinguishable and we trivially get Fu|p(u,A) = Fu|p̃(u,A).

We focus now on (ii).

Let α ≡ W ∗ \ W̃ ∗. For any menu A ∈ D, di�erences in the utility threshold level only

a�ects decisions if A∩α 6= ∅; otherwise Fu|p(·, A) = Fu|p̃(·, A) and the result is trivially true.

Now consider the case where A ∩ α 6= ∅. Consider two cases (i) maxa∈A u(a) < ũ∗ and (ii)

maxa∈A u(a) ≥ ũ∗. Since A ∩ α 6= ∅ these two cases su�ce to cover all possible scenarios. If

(i) then

Fu|p(u,A) =



0 for u < u∗∑
a∈A:u(a)≤u p(a,A) for u∗ ≤ u < maxa∈A u(a)

1 for maxa∈A u(a) ≤ u < ũ∗

1 for u ≥ ũ∗

On the other hand,

Fu|p̃(u,A) =



0 for u < u∗

0 for u∗ ≤ u < maxa∈A u(a)

1 for maxa∈A u(a) ≤ u < ũ∗

1 for u ≥ ũ∗

From where it follows that

Fu|p(u,A)− Fu|p̃(u,A) =



0 for u < u∗∑
a∈A:u(a)≤u p(a,A) for u∗ ≤ u < maxa∈A u(a)

0 for maxa∈A u(a) ≤ u < ũ∗

0 for u ≥ ũ∗

where
∑

a∈A:u(a)≤u p(a,A) > 0 for u∗ ≤ u < maxa∈A u(a) by the Full Support assumption.

Obtaining the desired result.
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If (ii) then,

Fu|p(u,A) =


0 for u < u∗∑

a∈A:u(a)≤u p(a,A) for u∗ ≤ u < ũ∗∑
a∈A:u(a)≤ũ∗ p(a,A) +

∑
a:ũ∗<u(a)≤u p(a,A) for u ≥ ũ∗

On the other hand,

Fu|p̃(u,A) =


0 for u < u∗

0 for u∗ ≤ u < ũ∗∑
a∈A:ũ∗<u(a)≤u p̃(a,A) for u ≥ ũ∗

From where it follows that

Fu|p(u,A)−Fu|p̃(u,A) =


0 for u < u∗∑

a∈A:u(a)≤u p(a,A) for u∗ ≤ u < ũ∗∑
a∈A:u(a)≤ũ∗ p(a,A) +

∑
a∈A:ũ∗<u(a)≤u (p(a,A)− p̃(a,A)) for u ≥ ũ∗

We need to prove that for any u ≥ ũ∗ it is the case that
∑

a∈A:u(a)≤ũ∗ p(a,A) +∑
a:ũ∗<u(a)≤u (p(a,A)− p̃(a,A)) ≥ 0 or equivalently

∑
a∈A:u(a)≤ũ∗

p(a,A) ≥
∑

a∈A:ũ∗<u(a)≤u

(p̃(a,A)− p(a,A))

De�ne pα ≡
∑

a∈A:u(a)≤ũ∗ p(a,A) then we need to prove that

pα ≥
∑

a∈A:ũ∗<u(a)≤u

(p̃(a,A)− p(a,A))

Since p is more easily satis�ed than p̃ we have that for any a such that ũ∗ < u(a),

p(a,A) ≤ p̃(a,A), which in turn implies that the sum
∑

a∈A:ũ∗<u(a)≤u (p̃(a,A)− p(a,A)) is
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increasing in u. Also note that

lim
u→∞

∑
a∈A:ũ∗<u(a)≤u

(p̃(a,A)− p(a,A)) =

lim
u→∞

∑
a∈A:ũ∗<u(a)≤u

p̃(a,A)− lim
u→∞

∑
a∈A:ũ∗<u(a)≤u

p(a,A) =

1− (1− pα) = pα

Thus, pα ≥
∑

a∈A:ũ∗<u(a)≤u (p̃(a,A)− p(a,A))

A.8 Comparative Statics with Respect to Search Orders

First, we introduced the following class of equivalent search order for a given A ∈ D.

De�nition 15 ({a, b}-equivalent search orders) Let γA, γ̃A be two probability distribu-

tions over search orders RA for some A ∈ D. We say that γA, γ̃A are {a, b}-equivalent search
orders for menu A if γA(rA) = γ̃A(rA) for all rA such that r∗A\{a} = r̃A\{a} and r

∗
A\{b} = r̃A\{b}

for some a, b ∈ A.

Proposition 2 (Salience of Satis�cing Elements) Let p and p̃ be two random choice

rules that admit identical up to search orders FSSM (FDSM) representations (u, u∗, {γA}A∈D)

and (u, u∗, {γ̃A}A∈D). Let Fu|p(u,A) and Fu|p̃(u,A) be their respective probability distribution

over utility levels. Let γA and γ̃A be {a, b}− equivalent search orders as in De�nition 15

with γA(r∗A) = γ̃A(r∗A) + ε and γA(r̃A) = γ̃A(r̃A) − ε for some ε ∈ (γ̃(r̃A), 1− γ̃A(r∗A)) and

ar∗Ab and br̃Aa.

If u(a) ≥ u(b) then Fu|p(·, A) FOSD Fu|p̃(·, A). Moreover, if Fu|p(u,A) ≤ Fu|p̃(u,A) with

Fu|p(u,A) 6= Fu|p̃(u,A) then u(a) > u(b) ≥ u∗

Proof. First we prove that if u(a) > u(b) then Fu|p(·, A) FOSD Fu|p̃(·, A). There are four

possible cases: (i) a, b /∈ U∗ then Fu|p(·, A) = Fu|p̃(·, A). (ii) If a ∈ U∗ and b /∈ U∗, under
the conditions of the proposition then Fu|p(·, A) = Fu|p̃(·, A). (iii) If b ∈ U∗ and a /∈ U∗,

under the conditions of the proposition then Fu|p(·, A) = Fu|p̃(·, A). (iv) Finally, consider

the case where a, b ∈ U∗. Under the conditions of the proposition p(a,A) > p̃(a,A) and

p(b, A) < p̃(b, A) while p(c, A) = p̃(c, A) for all c ∈ A \ {a, b} and the results follows from

u(a) > u(b)

Now we prove that if Fu|p(u,A) ≤ Fu|p̃(u,A) for all u with Fp|u(u,A) 6= Fp|ũ(u,A) then

u(a) > u(b) ≥ u∗. Notice that the change in the probabilities of search orders only a�ects the
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relative probability of a, b being seen �rst, leaving unaltered all other relative probabilities.

Therefore, the change from {γ̃A}A∈D to {γA}A∈D only has an e�ect on the distribution over

utility levels if {a, b} ⊆ U∗. Moreover, given the conditions of the proposition, p(a,A) >

p̃(a,A) and p(b, A) < p̃(b, A). Then it must be that u(a) > u(b). To show the latter, assume

by contradiction that u∗ ≤ u(a) < u(b), then Fu|p̃(u(a), A) < FI(u(a), A) which leads to a

contradiction.

A.9 Proof of Theorem 5

Proof. First we prove that (1) implies (2). If a complete data has a FDSM without

full support representation then there is a triple (u, u∗,ΓX), take a realization of ΓX with

support on some subset or all RX and call it rX , then de�ne the linear ordering on X

�X : (1) a �X b if arXb and a, b ∈ U∗, (2) a �X b if u(a) > u(b) and a, b /∈ U∗ and (3)

a �X b if a ∈ U∗, b /∈ U∗. Now, assign this linear ordering �X the probability ΓX(rX). It is

direct to see that there is a Random Utility Maximization model without indi�erence with

realizations �X with probability ΓX(rX). By Block & Marschak (1960) it follows that the

generated data set (D, p) satis�es Total Monotonicity (Axiom 3).

Now we prove that (2) implies (1). If a complete stochastic choice dataset (D, p) satis�es
Axiom 3 then the model is a Random Maximization Utility model so we can recover a

distribution over linear orders on X ΓX : RX 7→ [0, 1] such that p(a,A) = ΓQX(arXb ∀ b ∈ A)

thanks to Falmagne (1978). Interpret ΓX as a �xed distribution search order, and select any

injective u : X → R and u∗ such that u(x) > u∗ for all x ∈ X. By construction this triple

(u, u∗,ΓX) generates the observed data.

A.10 Proof of Theorem 6

Proof. First we prove that (1) implies (2). To show that Axiom 2 holds, assume, by the way

of contradiction, that (i) a is stochastically revealed preferred to b and (ii) b is stochastically

strictly revealed preferred to a. From (ii), given that data admits a FSSMI we must have

(by the full support assumption) that u(a) < u∗ and u(a) < u(b). If a is stochastically

revealed preferred to b then there must exist a sequence of alternatives c1, . . . , cN and choice

sets A1, ..., AN−1, such that c1 = a, cN = b, cn, cn+1 ∈ An and cn ∈ C(An). If u(b) > u∗ then

it must be the case that u(cN−1) > u∗ (otherwise cN−1 could not be chosen with positive

probability when cN was available). Iterating on this argument implies that u(a) > u∗. If

u(b) < u∗ then this implies that u(cN−1) > u(b). If u(cn) < u∗ for all n then iterating on

this argument implies that u(a) ≥ u(b). Otherwise, the previous argument implies that
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u(a) > u∗. Either provides a contradiction.

Now we prove that (2) implies (1). We say two items are revealed stochastically indif-

ferent if a is revealed stochastically preferred to b and b is revealed stochastically preferred

to a, in that case we denote aI∗b. We modify this relation I∗ ⊆ X × X by removing its

elements that have at least one item from always chosen set W ∗ that is non-empty by

SARP. Formally we de�ne the relation I = {(a, b) ∈ X ×X : (a, b) ∈ I∗ a ∈ X\W ∗ or

b ∈ X\W ∗}∪D(W ∗) where D(W ∗) is the diagonal ordering in W ∗ (i.e., it contains only the

elements (a, a) ∈ W ∗ ×W ∗). I is an equivalence relation because it is re�exive, symmetric

and transitive. Because Axiom 2 holds I∗ is an equivalence relation, and I is still an

equivalence relation because it only eliminates the indi�erence of the items in W ∗ except

for re�exivity, namely the elements (a, a) ∈ I∗ for a ∈ W ∗. By Axiom 2 and the de�nition

of W ∗ no item in X\W ∗ is revealed indi�erent to an item in W ∗. The relation I induces an

equivalence class that we denote as [a]. We concentrate on the quotient set XI = X/I, we

de�ne the canonical projection j : X 7→ X/I and its inverse mapping j−1 : X/I 7→ X. We

let DI ≡ {j(A)}A∈D be the indexed set by D. In particular de�ne pI : XI × DI 7→ [0, 1] as

p(aI , AI) =
∑

a∈j−1(aI)∩A p(a,A) for A ∈ D such that j(A) = AI and aI ∈ AI , this mapping

is well de�ned. If Axiom 2 holds it follows that the quotient dataset {p(aI , AI)}aI∈XI ,AI∈DI

also satis�es SARP. Also observe, that in the quotient dataset the always chosen set

W I,∗ = {aI ∈ XI : p(aI , AI) > 0 ∀AI ∈ DI} is such that j−1(aI) ∈ W ∗for all aI ∈ W I,∗,

this follows from the construction of I because the equivalence classes in W ∗ are singletons.

Observe also that Axiom 1 holds in the quotient dataset {p(aI , AI)}aI∈XI ,AI∈DI , because

if bI ∈ XI\W I,∗ then either p(bI , AI) = 0 or (exclusively) p(bI , AI) = 1. In fact, the set

XI is a �nite choice set with elements associated with degenerates probabilities of choice

p([a] ∩ A,A) =
∑

a∈[a]∩A p(a,A) ∈ {0, 1} if [a] ⊆ X\W ∗. To see this is true assume that

p([a] ∩ A,A) ∈ (0, 1) and [a] ⊆ X\W ∗, this means that there is a third element c ∈ A such

that c ∈ A\[a], that is stochastically revealed preferred to all a ∈ [a] (i.e, p(c, A) > 0) and

of course all elements a ∈ [a] are stochastically revealed preferred to c, but that means

that aIc for all a ∈ [a] which means that c ∈ [a], this is a contradiction. By theorem 1

we conclude that the quotient dataset {p(aI , AI)}aI∈XI ,AI∈DI can be generated by a FSSM

without indi�erence, thus we build a triple (u, u∗{γ}AI∈DI), that generates the quotient

dataset.

With this in hand we build the FSSMI in the actual dataset {p(a,A)}a∈x,A∈D. (i) We

build a utility function u : X 7→ R, by the composition u = u ◦ j where j is the canonical

projection de�ned above. By construction u(a) > u∗ for all a ∈ W ∗ and u(a) = u(b) if
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b ∈ [a]. Moreover, u(b) < u∗ for all b ∈ X\W ∗.

(ii) The search probabilities are de�ned over the quotient set, we build search proba-

bilities for the actual set X. γ de�nes a full support search distribution on each AI ∈ DI .
Now we de�ne γ by the following algorithm: For each menu A ∈ D, we obtain the menu

AI ≡ j(A) ∈ DI in the quotient dataset, then take RAI the support of γAI , now for any

element rAI ∈ RAI de�ne the restriction rAI |W I,∗. Now build the set of linear search orders

on A RA(rAI |W I,∗) = {rA ∈ RA : a, b ∈ W ∗, arAb if j(a)rAI |W I,∗j(b)}. We assign to

each element rA ∈ RA(rAI |W I,∗), the probability γA(rA) =
∑

r′
AI
∈R

AI
γAI (r

′
AI )1(r′AI |W

I,∗ =

rAI |W I,∗)/|RA(rAI |W I,∗)|. This construction provides as with {γA}A∈D that de�nes a FS

random linear ordering on each D.

(iii) To build the menu dependent tie breaking rules we calibrate them as follows

T (a,A) = p(a,A) if a ∈ X\W ∗ and a ∈ [a] such that p([a] ∩ A,A) = 1. If p([a] ∩ A,A) = 0

then we let T (a|A∼a) = 1/|[a] ∩ A|. This guarantees a tie breaking rule that is always

positive and that adds up to 1 as required.

We have generated a tuple (u, u∗, {γA}A∈D, T ) or a FSSMI representation that generates

the complete dataset {p(a,A)}a∈X,A∈D. To verify this claim, notice that this follows imme-

diately from applying Theorem 1 to generate the quotient dataset, and noticing that for

non-satis�cing elements we can generate the actual dataset using the calibrated tie breaking

rule directly and observing that the elements in W I,∗ have a one to one correspondence to

the elements in W ∗.

A.11 Proof of Theorem 7

Proof. (1)-(3) follows from Theorem 4.

To prove (4) notice that, given U∗ = Ū∗, for all a /∈ U∗, if T (a|A∼a) 6= T̄ (a|A∼a) then,
from the de�nition of the model p(a,A) 6= p(a,A).

A.12 Proof of Theorem 8

Proof. To prove (1) notice that, since we do not allow for ties, p(a,A) ∈ (0, 1) if a ∈ U∗

then W̃ ⊆ U∗. Moreover if a ∈ U∗ then, given the full support assumption, p(a,A) > 0 for

all A ∈ D then a ∈ W ∗ as in Theorem 1.
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(2) follows from Axiom 2. Notice that SARP does not requires complete data sets to

guarantee the existence of a utility function that represents the revealed preference relation.

(3) follows from the de�nition of the model. Note that identi�cation is only possible

when surely revealed satis�cing elements are available together in a menu. That is, we can

identify the probability of a seen �rst than b in A ∈ D, i.e. γA(arAb ∀b ∈ (A ∩ U∗)\{a}) if
a ∈ A ∩ U∗. Moreover notice that if this is the case, then a, b ∈ W̃ .

A.13 Proof of Lemma 2

Proof. (I) If the data is generated by FSSM-RT then it satis�es SARP.

First notice that if τ(a) > 0 then it follows under full support that p(a,A) > 0.

Furthermore, by full support and the restrictions on the random threshold we observe also

that p(a,A) > 0 when there is a b ∈ A\{a} such that τ(b) > 0 only if τ(a) > 0. Notice that if

there is a b ∈ A\{a} with τ(b) > 0 and τ(a) = 0, then by monotonicity of the CDF Fu∗ of the

random threshold we know that it cannot be the case that u(a) > u(b), thus p(a,A) = 0 (be-

cause τ(a) = 0 implies the term 1(u(a) > u(b) ∀ b ∈ A\{a}) = 0) under the RT assumption).

To show that Axiom 2 holds, assume, by the way of contradiction, that (i) a is stochasti-

cally revealed preferred to b and (ii) b is stochastically strictly revealed preferred to a. From

(ii), given that data admits a FSSM-RT we must have (by the full support assumption)

that τ(a) = Pr(u(a) > u∗) = 0 and u(a) < u(b). If a is stochastically revealed preferred

to b then there must exist a sequence of alternatives c1, ..cN and choice sets A1, ..., AN−1,

such that c1 = a, cN = b, cn, cn+1 ∈ An and cn ∈ C(An). If τ(b) = Pr(u(b) > u∗) > 0 then

it must be the case that τ(cN−1) = Pr(u(cN−1) > u∗) > 0 (otherwise cN−1 could not be

chosen with positive probability when cN was available). Iterating on this argument implies

that τ(a) = Pr(u(a) > u∗) > 0.

If τ(b) = Pr(u(b) > u∗) = 0 then this implies that u(cN−1) > u(b). If

Pr(u(cn) > u∗) = 0 for all n then iterating on this argument implies that u(a) > u(b) .

Otherwise, the previous argument implies that τ(a) = Pr(u(a) > u∗) > 0. Either provides

a contradiction.

(II) A dataset that has a FSSM-RT representation satis�es the Deterministic no

satis�cing choice axiom.
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Observe that W ∗ = {a ∈ X|τ(a) = Pr(u(a) > u∗) > 0} under full support, in that

sense when a ∈ X\W ∗ and we have a menu A such that a ∈ A: (i) Either there is a

b ∈ W ∗ ∩ A in which case u(b) > u(a) because τ(b) > τ(a) = 0 only if u(b) > u(a). This

is because Pr(u(b) > u∗) > 0 = Pr(u(a) > u∗) only if u(b) > u(a) thus p(a,A) = 0.

(ii) Or there is no b ∈ W ∗ ∩ A in which case 1 − P (A) = 1, thus making the probability

p(a,A) = 1(u(a) > u(c) ∀ c ∈ A) which is by de�nition either p(a,A) = 0 or p(a,A) = 1.

A.14 Proof of Theorem 9

Proof. First we prove that (1) implies (2).

If a dataset is generated by a FSSM with parameters {{γA}A∈D, u, u∗} then it can

be generated by a FSSM-RT {{γA}A∈D, uRT , τ} with τ(a) = Pr(u(a) > u∗) where u∗ is a

constant random variable, such that τ(a) = 1 for all elements in FSSM such that u(a) > u∗

and τ(b) = 0 for u(b) < u∗, with the same utility uRT ≡ u and the same random search

function γRTA ≡ γA. In other words, FSSM is a special case of FSSM-RT with a constant

threshold.

Now we prove that (2) implies (1).

If a dataset is generated by FSSM-RT by Lemma 2 it satis�es satis�es Deterministic no

satis�cing choice (Axiom 1), SARP (Axiom 2). Thus by Theorem 1 we can build an FSSM

that generates the data. Thus (2) implies (1).

A.15 Proof of Lemma 3

Before proving Lemma 3 we prove auxiliary lemmata. Note that these will be also used

in the proof for Theorem 10.

A.15.1 Preliminaries

Proof of Lemma 4

Lemma 4 A weighed sum of totally monotonic mappings p̂i : X × D 7→ [0, 1] for i ∈
{1, · · · , I} with I ≥ 1 an integer, evaluated at some (a,A) such that a ∈ A and A ∈ D,
P̂ (a,A, ω) =

∑I
i=1 ωip̂i(a,A) with ωi ≥ 0 a non-negative weight also satis�es total mono-

tonicity.
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Proof. In order to prove the total monotonicity condition for P̂ (a,A, ω), we �rst need to

de�ne the following function for all i ∈ {1, · · · , I} for each A ∈ D and a ∈ A:

fi(a,A) =
∑

D∈B(A)

(−1)|D\A|p̂i(a,D)

where B(A) is the class of supersets of A (i.e., B(A) ≡ {D ∈ D|A ⊆ D}).

Now de�ne f(a,A) =
∑

D∈B(A)(−1)|D\A|P̂ (a,A, ω). Observe that f(a,A) =∑
D∈B(A)(−1)|D\A|

∑I
i=1 ωip̂i(a,A) by de�nition. We can interchange the �rst summation

operator with the the second summation operator because the �rst does not depend on i,

then f(a,A) =
∑I

i=1 ωi
∑

D∈B(A)(−1)|D\A|p̂i(a,A) which implies:

f(a,A) =
I∑
i=1

ωifi(a,A)

by the assumption that each of the mappings p̂i is totally monotonic we have that fi(a,A) ≥ 0

for all i ∈ {1, · · · , I} thus establishing the result.

Proof of Lemma 5

Lemma 5 The mapping P̂ : X × D 7→ [0, 1] de�ned by (a,A) 7→ T (A)1(u(a) > u(b)∀b ∈
A\{a}) for a �xed a ∈ A is totally monotone, where T (A) =

∏
c∈A(1− τ(c)).

Before the proof of Lemma 5 we need the following preliminaries.

Remark 1 It will be useful to notice that the FDSM-RT can be written in the following

form:

p(a,A) =
∑
rx∈RX

pMM
rA=rX |A,τ (a,A)γ(rX) + pMM

τ (o, A)1(u(a) > u(b)∀b ∈ A\{a})

where pMM
rA=rX |A,τ (a,A) = τ(a)

∏
b∈A:brAa;rA=rX |A(1−τ(b)) is numerically equivalent to the MM

probability of a ∈ A being chosen and rX |A is the restriction of the ordering rX to the set A.

And pMM
τ (o, A) =

∏
c∈A(1−τ(c)) is numerical equivalent to the MM probability of the default

alternative. Here there is no default alternative and we mean by pMM(o, A) the probability

of no element in A being satis�cing (keeping the MM notation for intuition).

De�nition 16 (Successive di�erences for mappings) The successive di�erences for a

mapping p̂ : X × D 7→ [0, 1] for a �xed a ∈ A and A ∈ D and the probability p̂(a,A), is
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de�ned recursively as:

∆A1 p̂(a,A) = p̂(a,A)− p̂(a,A ∪ A1) for A,A1 ∈ D,

∆An · · ·∆A1 p̂(a,A) = ∆An−1 · · ·∆A1 p̂(a,A) − ∆An−1 · · ·∆A1 p̂(a,A ∪ An) for all n ≥ 2

and for all A,A1 · · ·An ∈ D.

De�nition 17 (Weakly increasing successive di�erences) For a mapping p̂ : X ×
D 7→ [0, 1] and a �xed a ∈ X, and all A ∈ D such that a ∈ A and any {Ai}ni=1 ∈ Dn

the mapping p̂ satis�es the weakly increasing successive di�erence property when the succes-

sive di�erences are non-negative ∆An · · ·∆A1 p̂(a,A) ≥ 0 for all n ≥ 1.

Proof. Notice that any mapping p̂ : X × D 7→ [0, 1] for a �xed (a,A) such that a ∈ A

for all A ∈ D is totally monotone if and only if it satis�es the weakly increasing successive

di�erences (Molchanov (2005)).

De�ne P̂ (a,A) = T (A)1(u(a) > u(b)∀b ∈ A\{a}) where T (A) =
∏

c∈A(1 − τ(c))

is totally monotone by MM (since T (A) = pMM,τ (o, A) is numerically equivalent to

the probability of a default choice in MM as explained in the remark) and thus sat-

is�es for all A ∈ D such that a ∈ A and any {Ai}ni=1 ∈ Dn the weakly increasing

successive di�erences ∆An · · ·∆A1(1 − P (A)) ≥ 0 for all n ≥ 1, the same is true for

Ca(A) = 1(u(a) > u(b)∀b ∈ A\{a}) such that ∆An · · ·∆A11(u(a) > u(b)∀b ∈ A\{a}) ≥ 0.

Notice that

∆A1P̂ (a,A) = P̂ (a,A)− P̂ (a,A ∪ A1)

= T (A)Ca(A)− T (A ∪ A1)Ca(A ∪ A1)

=


0 Ca(A) = 0

∆A1T (A) Ca(A ∪ A1) = 1

T (A) Ca(A) = 1, Ca(A ∪ A1) = 0

Also for the next di�erence ∆A2∆A1P̂ (a,A) = T (A)Ca(A) − T (A ∪ A1)Ca(A ∪ A1) −
[T (A ∪ A2)Ca(A ∪ A2)− T (A ∪ A1 ∪ A2)Ca(A ∪ A1 ∪ A2)].
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Now

∆A2∆A1P̂ (a,A) = ∆A1P̂ (a,A)−∆A1P̂ (a,A ∪ A2)

=



0 Ca(A) = 0

∆A1T (A) Ca(A ∪ A1) = 1, Ca(A ∪ A2) = 0

T (A) Ca(A) = 1, Ca(A ∪ A1) = 0, Ca(A ∪ A2) = 0

∆A2T (A) Ca(A) = 1, Ca(A ∪ A2) = 1, Ca(A ∪ A1) = 0

∆A2∆A1T (A) Ca(A ∪ A1 ∪ A2) = 1

.

Then we notice that in general the following properties hold:

(i) Null operator: ∆∅∆An−1 · · ·∆A1T (A) = 0,

(ii) Absorption: ∆An−1∆An−1 · · ·∆A1T (A) = ∆An−1 · · ·∆A1T (A).

∆A1P̂ (a,A) ∈ {∆X1T (A)} for X1 ∈ {∅, A1} and its value depends on the value of Ca(A)

and Ca(A ∪ A1) but in any case we have

∆X1T (A) ≥ 0 for all X1 ∈ {∅, A1}. Notice that ∆∅T (A) = 0.

Also, ∆A2∆A1P̂ (a,A) ∈ {∆X2,2∆X2,1T (A)} where X2,1 ∈ {∅, A1, A2} and

X2,2 ∈ {∅, A1, A2} where the actual combination depends on the values of the vector

{Ca(A ∪X2,1 ∪X2,2)}X2,1∈{∅,A1,A2},X2,2∈{∅,A1,A2} again in any case:

∆X2,2∆X2,1T (A) ≥ 0 where X2,1 ∈ {∅, A1, A2} and X2,2 ∈ {∅, A1, A2}. Notice that

∆∅∆X2,1T (A) = ∆X2,1T (A)−∆X2,1T (A) = 0, ∆A2∆A2T (A) = ∆A2T (A)−∆A2T (A ∪ A2) =

∆A2T (A).

The induction hypothesis is:

∆An−1 · · ·∆A1P̂ (a,A) ∈ {∆Xn−1,n−1 · · ·∆Xn−1,1T (A)} for Xn−1,i ∈ {∅, A1, A2, · · ·An−1}
for all i ∈ {1, · · · , n− 1},

with ∆Xn−1,n−1 · · ·∆Xn−1,1T (A) ≥ 0 for any Xn−1,i ∈ {∅, A1, A2, · · ·An−1} for all

i ∈ {1, · · · , n− 1}.
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We have to prove that

∆An · · ·∆A1P̂ (a,A) ≥ 0,

Notice that ∆An · · ·∆A1P̂ (a,A) = ∆An−1 · · ·∆A1P̂ (a,A) − ∆An−1 · · ·∆A1P̂ (a,A ∪ An)

by de�nition.

Now by the induction step:

∆An · · ·∆A1P̂ (a,A) ∈ {∆Xn−1,n−1 · · ·∆Xn−1,1T (A)−∆Xn−1,n−1 · · ·∆Xn−1,1T (A ∪An)} for
Xn−1,i ∈ {∅, A1, A2, · · ·An−1} for all i ∈ {1, · · · , n− 1}.

Finally by the de�nition of the di�erence operator:

∆Xn−1,n−1 · · ·∆Xn−1,1T (A) − ∆Xn−1,n−1 · · ·∆Xn−1,1T (A ∪ An) =

∆An∆Xn−1,n−1 · · ·∆Xn−1,1T (A).

We notice that ∆An∆Xn−1,n−1 · · ·∆Xn−1,1T (A) ≥ 0 is positive by total monotonicity

of T , that preserves works for any combination of Xn−1,i ∈ {∅, A1, A2, · · ·An−1} for all

i ∈ {1, · · · , n− 1}.

Thus ∆An · · ·∆A1P̂ (a,A) ≥ 0 for any �xed a ∈ A and all such A ∈ D and for all

{Ai}ni=1 ∈ Dn for all n ≥ 1.

We conclude that P̂ is a total monotone mapping.

A.15.2 Proof of Lemma 3

Proof. (I) If the data is generated by FDSM-RT then p(a,A) satis�es total monotonicity

for all a ∈ A and all A ⊆ X.

We de�ne the MM model for a �xed linear search rA as pMM
rA,τ

(a,A) = τ(a)
∏

b∈BrA (a)(1−
τ(b)) and pMM

τ (o, A) =
∏

c∈A(1 − τ(c)). Now notice that the FDSM-RT can be written as

the average of the MM models, plus a correction for non satis�cing cases.

p(a,A) =
∑
rx∈RX

pMM
rA=rX |A,τ (a,A)γ(rX) + pMM

τ (o, A)1(u(a) > u(b) ∀ b ∈ A\{a})
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It is evident by MM that pMM
rA,τ

(a,A) satis�es total monotonicity for all rA ∈ RA therefore

by Lemma 4 we know that a summation (here a convex combination) of total monotonic

mappings also satis�es total monotonocity, thus the term
∑

rx∈RX p
MM
rA=rX |A,τ (a,A)γ(rX)

satis�es total monotonicity.14 The same argument is used for pMM
τ (o, A) that by MM is also

totally monotonic.

Also, notice that the indicator function 1(u(a) > u(b) ∀b ∈ A\{a}) satis�es total

monotonicity because it can be understood as a degenerate random utility distribution. We

know also that pMM
τ (o, A)1(u(a) > u(b)∀b ∈ A\{a}) is totally monotonic by Lemma 5.15

Since p(a,A) is the summation of two totally monotonic mappings again by Lemma 4

we conclude that p(a,A) satis�es total monotonicity.

(II) If the data is generated by FDSM-RT then it satis�es SARP. This follows from

the fact that FDSM-RT is an special case of FSSM-RT and by Lemma 2 we know that it

satis�es SARP.

(III) A dataset that has a FDSM-RT representation satis�es the Deterministic no satis-

�cing choice axiom. This follows from the fact that FDSM-RT is an special case of FSSM-RT

and by Lemma 2 we know that it satis�es the Deterministic no satis�cing choice axiom.

A.16 Proof of Theorem 10

Proof. First we prove that (1) implies (2).

If a dataset is generated by a FDSM with parameters {{γA}A∈D, u, u∗} then it can

be generated by a FDSM-RT {{γA}A∈D, uRT , τ} with τ(a) = Pr(u(a) > u∗) where u∗ is a

constant random variable, such that τ(a) = 1 for all elements in FDSM such that u(a) > u∗

and τ(b) = 0 for u(b) < u∗, with the same utility uRT ≡ u and the same random search

function γRTA ≡ γA. In other words, FDSM is a special case of FDSM-RT with a constant

threshold.

14Notice that p̂(a,A) =
∑
rx∈RX

pMM
rA=rX |A,τ

(a,A)γ(rX) satis�es total monotonicity however this term is a quasi-probability

because it does not necessarily adds up to 1, so it is not a RUM in general. RUM is equivalent to total monotonicity, being non
negative and adding up to 1.

15A non-constructive but equally valid argument is that 1 − pMM
τ (o,A)1(u(a) > u(b) ∀b ∈ A\{a}) can be understood as

the capacity of a random set that is the union of two other two independent random sets with capacities 1 − pMM
τ (o,A) and

(1− 1(u(a) > u(b)∀b ∈ A\{a})) corresponding to the random sets Ŵ = {x ∈ X : u(a) > u∗} where u∗ is the random threshold
and B(a) = {b ∈ X : u(b) > u(a)} that is the deterministic set of better than a items under the utility u. By Molchanov (2005)

pMM
τ (o,A)1(u(a) > u(b) ∀b ∈ A\{a}) is totally monotone, and pMM

τ (o,A)1(u(a) > u(b) ∀b ∈ A\{a}) = Pr(Ŵ ∪B(a)∩A = ∅)
the probability that A does not have anything satis�cing or better than a.
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Now we prove that (2) implies (1).

If a dataset is generated by FDSM-RT by Lemma 3 it satis�es satis�es Deterministic

no satis�cing choice (Axiom 1), SARP (Axiom 2) and Total Monotonicity (Axiom 3). Thus

by Theorem 3 we can build an FDSM that generates the data. Thus (2) implies (1).

A.17 Proof of Theorem 11

In order to establish Theorem 11, we will establish an equivalent equivalence statement,

with the help of the following property.

De�nition 18 (Always satis�cing random utility distribution) A random utility

distribution is always satis�cing if for any item x ∈ X such that for some u ∈ U with

ρ(u) > 0, and u(x) > u∗ it follows that for any other û ∈ U with ρ(û) > 0 it also holds that

û(x) > u∗.

The following are equivalent:

1. A complete stochastic choice dataset (D, p) can be generated by a RU-FDSM.

2. A complete stochastic choice dataset (D, p) satis�es Axiom 3 and Degeneracy (Ax-

iom 4).

3. A complete stochastic choice dataset (D, p) can be generated by a RU-FDSM with

Always satis�cing random utility distribution.

Proof. First we prove that (1) implies (2).

First we recall that for a �xed u ∈ U , pFDSMu (a,A) satis�es Total Monotonicity

(Axiom 3). By Lemma 4, the weighted average of totally monotonic mappings is also totally

monotone p(a,A) =
∑

u∈U ρ(u)pFDSMu (a,A), thus RU-FDSM is totally monotone.

Second we notice that if x ∈ X\W ∗ it is never satis�cing that is for all u ∈ U with

ρ(u) > 0, u(x) < u∗, this means that for any �xed u ∈ U , pFDSMu (x,A) = 0 if A ∩W ∗ 6= ∅,
this in turn implies that p(x,A) =

∑
u∈U ρ(u)pFDSMu (x,A) = 0. Thus degeneracy is

established for RU-FDSM.

Now we prove that (2) implies (3).
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With Claim 2 in hand, we de�ne the following virtual dataset. We de�ne the equivalence

class ∼= {(a, b) ∈ X × X : a ∈ X\W ∗, b ∈ X\W ∗} ∪ {(c, c) ∈ X × X : c ∈ W ∗} (it is
symmetric, re�exive and transitive).

We de�ne the set X∼ = X/ ∼ as the quotient space with respect to the equiv-

alence relation. In words, we are �shrinking� all never satis�cing elements to a

singleton. We concentrate on the quotient set X∼ = X/ ∼, we de�ne the canoni-

cal projection j : X 7→ X/ ∼ and its inverse mapping j−1 : X/ ∼7→ X. We let

D∼ ≡ {j(A)}A∈D be the indexed set by D. In particular de�ne p∼ : X∼ × D∼ 7→ [0, 1]

as p(a∼, A∼) =
∑

a∈j−1(a∼)∩A p(a,A) for A ∈ D such that j(A) = A∼ and a∼ ∈ A∼, this

mapping is well de�ned. If Degeneracy (Axiom 4) holds it follows that the quotient dataset

{p(a∼, A∼)}a∼∈X∼,A∼∈D∼ satis�es Deterministic not satis�cing choice (Axiom 1) in X∼,

because de�ning W ∗∼ = {a∼ ∈ X∼|p∼(a∼, A∼) > 0 ∀ A∼ ∈ D∼}, we notice X∼\W∼∗

corresponds by construction to a singleton {z∼} ≡ X∼\W∼∗ when there is non-satis�cing

element (or empty if not) with probability p(z∼, A∼) =
∑

a∈j−1(z)∩A p(a,A) ∈ {0, 1} in all

A∼ ∈ D∼. In particular, it is exactly 1 only when A∼ ≡ {z∼} and zero otherwise. Also

notice that Degeneracy implies SARP in {p(a∼, A∼)}a∼∈X∼,A∼∈D∼ , because all x∼, y∼ ∈ W ∗∼

are declared stochastically revealed preferred to one another (i.e., stochastically revealed

indi�erent) and x∼ ∈ W ∗∼ is always strictly revealed preferred to z∼ (or the non-satis�cing

singleton {z∼} ≡ X∼\W∼∗). Thus C∼(A∼) = {a∼ ∈ A∼ : p∼(a∼, A∼) > 0} satis�es

SARP. Also it is simple to see that the dataset in the quotient space X∼ also satis�es total

monotonicity because p(a∼, A∼) =
∑

a∈j−1(a∼)∩A p(a,A) for A ∈ D such that j(A) = A∼

and a∼ ∈ A∼ is a sum of total monotonic mappings p(a,A) by (2) Total Monotonicity

(Axiom 3). By the theorem that characterizes the FDSM (Theorem 3) the dataset

{p(a∼, A∼)}a∼∈X∼,A∼∈D∼ in the quotient space has a FDSM representation, thus we build a

triple (u, u∗, {γ}A∼∈D∼), that generates the quotient dataset.

With this in hand we build the RU-FDSM in the actual dataset {p(a,A)}a∈X,A∈D.
(i) We build a utility function u : X 7→ R, by the composition u = u ◦ j where j is

the canonical projection de�ned above. By construction u(a) > u∗ for all a ∈ W ∗ and

u(b) < u∗ for all b ∈ X\W ∗. We build now (ρ,U), by making all elements in it have

the following restriction û ∈ U with ρ(û) > 0 is such that û(a) = u(a) for all a ∈ W ∗.

For b ∈ X\W ∗ we use total monotonicity (Axiom 3) that holds for the restricted dataset

{p(a,A)}a∈X\W ∗,A∈D,A⊆X\W ∗ to obtain a random utility by Falmagane (1978) de�ned

on X\W ∗, we notice that under this p(a,A) = ρ(û : û(a) > û(b)∀b ∈ A\{a}) for

a ∈ A ⊆ X\W ∗, we �x an injective utility ûX\W ∗ : X\W ∗ 7→ R with ρ(ûX\W ∗) compatible
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with ρ(ûX\W ∗ : ûX\W ∗(a) > ûX\W ∗(b)∀b ∈ A\{a}) with A ⊆ X\W ∗ (we omit the trivial

construction). We extend ûX\W ∗ : X\W ∗ 7→ R to the grand set X, by de�ning û : X 7→ R
using û(a) = u(a) for all a ∈ W ∗ and û(b) = ûX\W ∗ for all b ∈ X\W ∗, this is an injective

utility in X with mass ρ(û) = ρ(ûX\W ∗). We have built (ρ,U) that has the Always satis�cing

random utility property.

(ii) The search probabilities are de�ned over the quotient set, we build search proba-

bilities for the actual set X. γ de�nes a full support search distribution on each A∼ ∈ D∼.
Now we de�ne γ by the following algorithm: For each menu A ∈ D, we obtain the menu

A∼ ≡ j(A) ∈ D∼ in the quotient dataset, then take RA∼ the support of γA∼ , now for any ele-

ment rA∼ ∈ RA∼ de�ne the restriction rA∼|W∼∗. Now build the set of linear search orders on

A RA(rA∼|W∼,∗) = {rA ∈ RA : a, b ∈ W ∗, arAb if j(a) rA∼|W∼∗ j(b)}. We assign to each

element rA ∈ RA(rA∼ |W∼∗), the probability γA(rA) =
∑

rA∼′∈RA∼
γA∼(rA∼′)1(rA∼′ |W∼∗ =

rA∼ |W∼∗)/|RA(rA∼|W∼∗)|. This construction provides as with {γA}A∈D that de�nes a Full

Support random linear ordering on each D and by Total Monotonicity (Axiom 3) γ has the

Fixed Distribution property and we build γ on the basis on it, extending it to the origi-

nal dataset with a uniform rule, it follows that {γA}A∈D has the Fixed Distribution property.

It is clear that for �xed u ∈ U constructed above with ρ(u) > 0, we have an

FDSM with (u, u∗, {γA}A∈D}) where u, {γA}A∈D are constructed above and u∗ is

the same as the FDSM in the quotient space. Thus we have built a RU-FDSM

p(a,A) =
∑

u∈U ρ(u)pFDSMu (a,A) with FDSM with (u, u∗, {γA}A∈D}) with the always

satis�cing property for (ρ,U). Finally, this generates the dataset (p,D) by noticing that

for a ∈ W ∗ p(a,A) = pFDSMu (a,A) for any �xed u ∈ U with ρ(u) > 0 (thanks to the

always satis�cing property), so the fact that the constructed RU-FDSM (with always

satis�cing property) generates this probabilities follows from Theorem 3. For a ∈ X\W ∗,

we have p(a,A) = 1(∀c ∈ A : u(c) ≤ u∗)ρ(u : u(a) > u(b)∀b ∈ A\{a}) for any �xed

u ∈ U with ρ(u) > 0 (again due to the always satis�cing property), we have two cases

1(∀c ∈ A : u(c) ≤ u∗) = 1, in which case the fact that the constructed RU-FDSM generates

the data follows from Falmagane (1978) as these cases are equivalent to random utility in

the restricted dataset de�ned in X\W ∗. The remaining case is 1(∀c ∈ A : u(c) ≤ u∗) = 0

in which case we know that ∃c ∈ A such that c ∈ W ∗ and by Degenaracy (Axiom 4) we

conclude that p(a,A) = 0 as it should be. Thus the constructed RU-FDSM generates the

data.
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Finally we prove (3) implies (1).

We notice that if complete stochastic choice dataset (D, p) can be generated by a RU-

FDSM with Always satis�cing random utility distribution, it is by de�nition a special case

of RU-FDSM, with the additional Always satis�cing restriction on (ρ,U) thus the dataset

(D, p) is also generated by a RU-FDSM.

53


	Introduction
	Set Up
	Characterizing the Satisficing Model. 
	Extensions
	Relation to Existing Literature
	References
	Proofs

