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solved using Lagrangean methods. Uniformly posterior separable cost functions capture many forms

of sequential learning, hence play a key role in many applications. Invariant posterior separable
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behavioral axioms, Locally Invariant Posteriors and Only Payoffs Matter, which identify posterior
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1 Introduction

Understanding limits on private information has been central to economic analysis since the pio-

neering work of Hayek [1937, 1945]. Recent years have seen renewed interest in the endogeneity of

information, and the importance of information acquisition costs in determining outcomes. Sims

[1998, 2003] kicked off this modern literature by introducing a model of rational attention based

on Shannon mutual information in which both the extensive margin (how much is learned) and

the intensive margins (precisely what is learned) are intimately shaped by incentives. In part due

to its analytic tractability (Matějka and McKay [2015], Caplin, Dean, and Leahy [2019]), the

ensuing period has seen applications to such diverse subjects as stochastic choice (Matějka and

McKay [2015]), investment decisions (Mondria [2010]), global games (Yang [2015]), pricing deci-

sions (Woodford [2009], Mackowiak and Wiederhold [2009], and Matějka [2015]), dynamic learning

(Steiner, Stewart and Matějka [2015]) and social learning (Caplin, Leahy, and Matějka [2015]).

These analyses show a tight link between decision making incentives and the structure of learn-

ing and illustrate sophisticated and realistic behaviors such as incomplete consideration of options

(Caplin, Dean, and Leahy [2019]), attentional discrimination (Bartoš, et al. [2016]), and mental

accounting (Kőszegi and Matějka [2020]).

As the Shannon model1 has become increasingly well understood, it has become clear that its

behavioral implications are counter-factual in many applications. For example, the Shannon model

implies that all states are equally easy to identify and to discriminate among, a result that runs

counter to the experimental evidence of Dewan and Neligh [2020] (see also Hébert and Woodford

[2018] and Dean and Neligh [2017]). It also implies that attention is not focussed on states that

are a priori more likely, a result that runs counter to the experimental evidence cited in Woodford

[2012]. The Shannon model also makes specific predictions regarding the elasticity of choice in

response to incentives which fail in the experiments of Caplin and Dean [2013]. In some sense,

these failures are not surprising. The Shannon model is analytically simple because it places severe

restrictions on behavior.

In this paper, we introduce three new classes of attention cost functions that generalize the

Shannon model, share many of its attractive features, yet are flexible enough to cover essentially

all behaviors uncovered to date that contradict it. We also provide solution methods that can be

applied to all three models, aiding their use in applied work. All of our models can be solved

using the same Lagrangian approach as the Shannon model, in which optimal behavior can be

determined by identifying the tangent to the “concavified”net utility function (Aumann, Maschler,

and Stearns [1995], Kamenica and Gentzkow [2011], Gentzkow and Kamenica [2014], Alonso and

Câmara [2016], Ely and Szydlowski [2017], and Matyskova [2018]). Finally, we provide characteri-

1We use the term “Shannon model” to refer to a the model of rational inattention in which costs are linear in
the mutual information between signal and state. Other variants of the model impose an upper limit on the amount
of mutual information (e.g. Sims [2003]) or allow for a non-linear relationship between mutual information and cost
(e.g. Mackowiak and Wiederholt [2009])
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zations of the behavior implied by each cost function, aiding understanding of where each is likely

to be behaviorally appropriate and suggesting model tests.

The most general class that we introduce, which we call posterior separable, is additively sep-

arable across the chosen posteriors. Posterior-separable models not only cover rich behaviors in

any given decision problem, but also allow these costs to depend on prior beliefs and hence vary

from context to context. The other two classes of cost functions are more specialized than the

posterior-separable model, yet generalize in different respects the Shannon model. Uniformly

posterior-separable cost functions impose additive separability in the prior in addition to addi-

tive separability in the posteriors. We will be interested in a particular generalization of uniform

posterior-separable cost functions which we call weakly uniformly posterior-separable. These cost

functions are additively separable in the prior so long as the support of the prior remains un-

changed. Allowing the cost function to depend on the support of the prior allows us to consider

cost functions in which the cost of ruling out a state depends on whether or not the prior places

positive probability on that state. Uniformly posterior-separable cost functions, weakly or not,

have all of the flexibility of the posterior-separable form for a given prior belief, but impose strong

cross prior restrictions. They have found many applications since they were introduced in Caplin

and Dean [2013], which is subsumed into this paper. For example the neighborhood-based cost

function of Hébert and Woodford [2020], which captures the idea that some pairs of states are

more easily distinguished than others, is in this class. Morris and Strack [2017], Hébert and Wood-

ford [2019], and Bloedel and Zhong [2021] show that cost functions in this class are consistent with

models of optimal sequential learning. Miao and Xing [2020] place uniformly posterior-separable

cost functions into a dynamic discrete choice setting.

Our second specialization of the posterior-separable model is the invariant posterior-separable

class. These cost functions relate the cost of learning about an event to the prior beliefs over the

states that make up the event. A cost function is invariant if the least costly way to learn about an

event is to learn nothing additional about the relative probabilities of states that make up the event

and is independent of the prior over these states. Invariance rules out situations in which a subset

of states are particularly easy to discern. Again, these are in active use. Angeletos and Sastry

[2019] and Hébert and La’O [2020] study conditions under which equilibria in markets or games

with incomplete information are effi cient. Invariance is an important prerequisite. When invariance

holds it is impossible to create payoff irrelevant signals that simultaneously reduce information costs

and coordinate behavior in suboptimal ways.

In addition to introducing these classes of cost functions, we characterize their behavioral prop-

erties in state dependent stochastic choice data.2 This data set treats both the payoff determining

states of the world and the distribution of choices in these states as observable. It is routinely

2 In this paper, we begin with a posterior separable representation and show that two behavioral axioms yield
a Shannon representation. In the working paper, Caplin, Dean and Leahy [2017] we also present axioms that
characterize a posterior separable representation.
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gathered in many settings, such as simple production tasks in which production quality is moni-

tored (e.g. Kaur, et al. [2019]). It rests on the idea that attentional constraints do not apply to

an ideal observer. For example, while buyers may have diffi culty assessing whether or not sales

tax is included in the price paid at the register, the econometrician knows (Chetty, Looney and

Kroft [2009]). Recent research shows that costs can be recovered from suffi ciently rich data of this

form, and that data of this form permits welfare analysis of mistaken decisions (Caplin and Martin

[2020], Caplin, Csaba, Leahy, and Nov [2020]).

Our first behavioral characterization introduces one axiom, Locally Invariant Posteriors, which

identifies weakly uniformly posterior-separable cost functions among the class of posterior separable

cost functions. The axiom states that if a given set of posteriors is used in one decision problem,

then those same posteriors are chosen in any decision problem which shares the same payoffs and

has a prior that lies in the convex hull of the initially chosen posteriors. In essence, if the payoffs

are unchanged and the posteriors are feasible, then the posteriors remain optimal. This behavioral

axiom underlies the Drift Diffusion Model which has proven popular in psychology (see Ratcliff,

et al. [2016] for a recent review) and also in economics (Fehr and Rangel [2011]). According to

the Drift Diffusion Model, an agent gathers information about a pair of states and acts only when

posterior beliefs reach some predetermined threshold values. Since the thresholds do not change

as the agent learns, the chosen thresholds do not vary with the prior. This explains the link with

optimal sequential sampling and hence why the models of Morris and Strack [2017], Hébert and

Woodford [2019], and Bloedel and Zhong [2021] are in the uniformly posterior-separable class.

Our second behavioral characterization identifies invariant posterior-separable cost functions

from the class of posterior separable cost functions. We provide two equivalent behavioral charac-

terizations. The first, which we call Only Payoffs Matter, captures the notion that economically

meaningful states are defined by payoffs, a common assumption in many economic models. We say

that two decision problems are payoff equivalent if each vector of action payoffs appears with the

same probability in the two problems. The axiom states that given two payoff equivalent decision

problems the frequency with which actions are observed in the two problems depends only on the

payoffs to actions and not the exact mapping between payoffs and states. The second version,

which we call Invariance under Compression, states that all states with a common payoff profile

can be compressed into a single state without altering observed behavior. There is an attentional

rationale for these axioms. There is no functional value for the decision maker in distinguishing

between states that assign the same payoffs to all actions. Hence an ideally designed machine for

learning about states would not waste any of its scarce resources on this task. Our axioms make

this statement precise in the language of behavior.

Our final result takes us all the way back to the Shannon model. To our surprise, the two

behavioral axioms that we introduce in combination characterize the Shannon model among all

posterior-separable models. One part of this result is relatively straight forward: that the Shannon

cost function gives rise to behavior that satisfies both Locally Invariant Posteriors and Only Payoffs
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Matter. Far less obvious is the converse. If a data set can be rationalized by a posterior-separable

cost function and satisfies both Locally Independent Posteriors and Only Payoffs Matter, then

this cost function must be linear in the expected reduction in Shannon entropy. The fact that

it is solvable by Lagrangian methods and uniquely has these conceptually attractive behavioral

properties may explain why it has become, and will likely remain, a central model not only in

studies of individual decision making but in market settings.3

Our results contribute to a growing literature studying the implications of information acquisi-

tion for stochastic choice. Caplin and Martin [2015] and Caplin and Dean [2015] present necessary

and suffi cient conditions for a data set to be represented by optimal choice subject to an infor-

mation cost. Denti [2020] provides axioms that characterize posterior-separable and uniformly

posterior-separable cost functions, while de Olivera [2014] considers the behavioral implications of

the Shannon model, but for a data set which consists of observed choices over different menus of

alternatives.

Section 2 sets the stage for our analysis. The first subsection presents our idealized state

dependent stochastic choice (SDSC) data set. Section 2.2 presents the theoretical model that we

use to rationalize the data set. This model consists of an expected utility maximizer subject to

an additive cost of acquiring information. We distinguish between attention strategies (the choice

of posteriors) and choice strategies (the choice of actions). Information costs depend only on the

former. Section 2.3 bridges the gap between observational data and the theoretical representation

and shows how to map between the theory and the data.

With these preliminaries out of the way, the heart of the paper lies in Sections 3 through

6. Section 3 introduces posterior-separable cost functions and establishes general applicability

of Lagrangian methods of identifying optimal strategies. Section 4 introduces weakly uniformly

posterior-separable cost functions and the axiom of Locally Invariant Posteriors. This section cul-

minates in Theorem 1 which states the necessity and suffi ciency of the axiom. Section 5 introduces

invariant posterior-separable cost functions and the axiom of Only Payoffs Matter. This section

concludes with Theorem 2 stating the necessity and suffi ciency of this axiom. Section 6 presents

Theorem 3 which states that the Shannon cost function is unique among posterior-separable costs

functions in that it is both weskly uniformly posterior separable and invariant. Section 7 presents

the axiom of Invariance under Compression and shows that it is equivalent to Only Payoffs Matter.

This section also discusses some assumptions and extensions. Section 8 outlines the relationship

with the prior literature. Section 9 concludes.

3Recent examples include Caplin, Leahy, and Matejka [2015], Martin [2017] and Ravid [2020].
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2 Preliminaries

2.1 The Data Set

The fundamental object in our analysis is a data set that catalogues the choices made by a decision

maker across a large number of choice situations. The fundamental question that we ask concerns

the conditions that this data set must satisfy for this decision maker’s choices to be observationally

equivalent to those of an expected utility maximizer facing a certain cost of information acquisition.

In this subsection we present the data set. The next models a decision maker with information

costs. We then define observational equivalence before presenting axioms on the data which imply

observational equivalence.

Our goal is to understand how much a decision maker attends to their environment. For this

it is not enough to know how often each choice is made. We need to know if the decision maker

makes the right choice in the right situation. We will therefore need to see pairs of choices and

outcomes in our data set. In a pure revealed preference analysis this is all that we would see. From

these choices we would recover the decision maker’s payoffs to various actions, their beliefs and

the cost of gathering information. Our focus in this paper is on the recovery of information costs

and we have little to add to the literature on eliciting beliefs or payoffs. We will therefore assume

that beliefs and payoffs are also observable and focus on the implications of information costs for

observed choice.

We consider a setting in which an agent chooses among actions that are distinguished by their

state-contingent payoffs in units of utility. Formally, let Ω denote the set of conceivable states of the

world. We assume that Ω is countably infinite. Each action a is a function a : Ω→ R in which a(ω)

is the utility to action a in state ω. Let A denote the set of potential actions, A ≡ {a : Ω→ R}.

A decision problem (µ,A) is the choice over a finite set of actions A ⊂ A given the prior

probability distribution µ over states in Ω. Throughout we assume that the prior places positive

probability on only a finite subset of states. With slight abuse of notation we will let ∆Ω denote

the set of probability distributions on Ω with finite support (omitting probability distributions with

infinite support). This assumption simplifies the measure theoretic aspects of the analysis. The set

of potential events associated with any decision problem is therefore the discrete σ-algebra 2supp µ

and the restriction of any action to the support of µ is trivially measurable with respect to this

σ-algebra. Again with slight abuse of notation, let 2A denote the set of all non-empty finite subsets

of A. Given these notational conventions, the set of all decision problems is ∆Ω× 2A.

Following Matějka and McKay [2015] and Caplin and Martin [2015], we assume that our data

comes in the form of a joint distribution between states and actions, which we encode using the

marginal distributions of actions conditional on states. Given a decision problem (µ,A) we define

state dependent stochastic choice (SDSC) data as a mapping from possible states to action
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probabilities,

P(µ,A) : supp µ→ ∆A

For each decision problem (µ,A), P(µ,A) specifies the frequency that the agent chooses each action

a ∈ A in each state in the support of µ. We use the notation P(µ,A)(a|ω) for the conditional proba-

bility of observing action a in state ω in decision problem (µ,A) and P(µ,A)(a) for the unconditional

probability of observing action a.

Our data set is the collection of all SDSC data that a decision maker would willingly choose

across all decision problems. Since the agent may be indifferent between multiple patterns of choice,

this data set is a correspondence. Let D denote this correspondence. D(µ,A) is the set of observed

SDSC functions P(µ,A) for the decision problem (µ,A). Throughout we will use bold letters to refer

to data objects in order to distinguish them from elements of the theory that represents the data,

as well as elements of the environment.

SDSC is by now a common data set with which to test models of information acquisition (see

for example Caplin and Martin [2015], Caplin and Dean [2015], and Denti [2020]). Moreover, while

our axioms require data to be observed from a rich set of choice problems in order to guarantee

suffi ciency, each can be falsified using a finite number of observations, and in this sense is anal-

ogous to the independence axiom in characterizations of expected utility theory. Our data set is

somewhat unusual in that D is a correspondence: we observe all of the SDSC data P(µ,A) that

the decision maker is willing to choose in a given decision problem. While standard in character-

izations of deterministic choice models (for an early example see Richter [1966]), this assumption

is less common in stochastic choice models. While it makes the statement of our theorems more

elegant, our results can readily be extended to the case in which only a selection from the maximal

SDSC data is observed, essentially because such data is rich enough to uniquely pin down what the

rationalizing cost function must be (see Caplin, Csaba, Leahy and Nov [2020]).

We now turn to the class of theoretical models which we will use to rationalize the data set D.

2.2 A Theoretical Model of State Dependent Stochastic Choice

In this section we model an expected utility maximizer subject to an additive cost of acquiring

information. We first discuss the strategies available to the decision maker. These include both

attention strategies and choice strategies. We then place costs on the attention strategies and

present the decision maker’s problem.

2.2.1 Feasible Posterior-Based Strategies

Consider a theoretical decision maker facing the decision problem (µ,A). We break this agent’s

decision into a sequence of two steps. The first step is the attention strategy, the choice of how much
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to learn. We capture learning by a probability distribution over posteriors Q ∈ ∆∆Ω. Intuitively,

the agent has learned something when the posteriors differ from the prior. Let Q(γ) denote the

probability of a particular posterior γ ∈ ∆Ω. We will assume that the support of Q is finite.4

We require that all feasible attention strategies Q satisfy Bayes rule so that the γ ∈supp Q
average to the prior µ:

µ =
∑

γ∈supp Q
γQ(γ)

The set of feasible attention strategies therefore depends on the prior. Given prior µ, let Q(µ)

denote the set of Q that satisfy Bayes rule. Choosing not to learn is always an option. In this case,

the chosen posterior is equal to the prior with probability one, Q(µ) = 1. Note also that Bayes

rule imposes the restriction that all γ ∈supp Q are absolutely continuous with respect to µ, so that
supp γ ⊆supp µ. The only states that matter in decision problem (µ,A) are those that receive

positive probability according to the prior µ.

Given a realized posterior γ, the second step is to choose an action a ∈ A. Here we allow for
random strategies. We represent action choice by a mapping q from posteriors in the support of Q

to probability distributions over the available actions, q : supp Q→ ∆A.

Given a decision problem (µ,A), the set of feasible posterior-based strategies Λ (µ,A) com-

prises all Bayes-consistent probability distributions over posteriors, Q ∈ Q(µ), and corresponding

mixed action strategies, q : supp Q→ ∆A:

Λ (µ,A) ≡ {(Q, q)|Q ∈ Q(µ), q : supp Q→ ∆A} .

While we allow for random strategies, it is clear that the agent will only randomize if they are

indifferent between options. At times, it will be useful to eliminate this randomization. To this

end, we define a deterministic action choice function q̄ : supp Q→ A as a mapping from posteriors

in the support of Q to actions in A (rather than distributions over actions).

2.2.2 Utility, Costs and Optimal Strategies

The goal of the decision maker is to maximize expected utility net of attention costs. Given a

decision problem (µ,A) and a feasible strategy (Q, q) ∈ Λ(µ,A), expected utility is computed in

the standard manner,

U(Q, q|µ,A) =
∑

γ∈supp Q

∑
a∈A

Q(γ)q(a|γ)

[ ∑
ω∈supp γ

γ(ω)a(ω)

]
4While it is theoretically possible that choice from a finite set of options is only rationalizable by a model with an

uncountable number of optimal posteriors, we show that a finite set of posteriors is suffi cient.
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where γ(ω) is the probability of state ω given the posterior γ. The term in brackets is the expected

value of action a given the posterior γ. This term is multiplied by q(a|γ), the probability of choosing

action a given γ, and by Q(γ), the probability of learning γ. The summation is over all actions in

A and posteriors in the support of Q.

We assume that attention costs for strategy (Q, q) ∈ Λ(µ,A) depend only on the prior µ and

the distribution of posteriors Q, and not on the choice set A or the action probabilities q. The

domain of the cost function is the set of all priors µ ∈ ∆Ω and all posterior distributions Q ∈ Q(µ)

consistent with that prior:

F = {(µ,Q)|µ ∈ ∆Ω, Q ∈ Q(µ)}. (1)

An attention cost function K maps elements of F into the extended positive real line, K :

F → [0,∞]. We normalize the cost of learning nothing to zero, so that K(µ,Q) = 0 whenever

supp Q = {µ}. Allowing K(µ,Q) to equal infinity for some Q allows for the possibility that some

attention strategies in Q(µ) are not chosen for any A. For example, there are interesting cases in

which it is prohibitively costly to rule out ex ante possible states, so that the decision maker will

never choose posteriors on the boundary of ∆(supp µ).

Given an attention cost functionK, the value of a feasible strategy (Q, q) ∈ Λ (µ,A) is computed

by subtracting the attention cost from expected utility:

V (Q, q|µ,A,K) ≡ U(Q, q|µ,A)−K(µ,Q). (2)

The value of an optimal strategy and the set of optimal strategies are defined in the natural manner.

We use hats to denote the maximized value function and the set of optimal strategies.5

V̂ (µ,A|K) ≡ sup
(Q,q)∈Λ(µ,A)

V (Q, q|µ,A,K);

Λ̂(µ,A|K) ≡
{

(Q, q) ∈ Λ (µ,A) |V (Q, q|µ,A,K) = V̂ (µ,A|K)
}
.

Of particular interest is the case in which costs are linear with respect to the expected reduction

in Shannon entropy between prior and posterior beliefs. The Shannon cost function, KS
κ (µ,Q),

is

KS
κ (µ,Q) ≡ κ

 ∑
γ∈supp Q

Q(γ)
∑

ω∈supp γ
γ(ω) ln γ(ω)−

∑
ω∈supp µ

µ(ω) lnµ(ω)

 . (3)

We will show that the behavior associated with the Shannon cost function can be characterized

as the intersection of two axioms, each of which define important classes of cost functions that

5While we write V̂ as the supremum over all feasible strategies, the data set D assigns a choice to every decision
problem. If K represents D, meaning that the set of policies that maximize choice given K reproduce the data set
D (see Section 2.3.2 below), then Λ̂ will never be empty, and there will always exists a policy that achieves the
supremum.
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inherit some of its features.

Our goal is to match properties of data sets D with the choices implied by classes of cost

functions. In the next section we show how to move back and forth between state dependent

stochastic choice data and posterior-based strategies.

2.3 Mapping the Theory to the Data

Our data is in terms of state dependent stochastic choice, whereas our theory delivers posterior-

based strategies. In this section we discuss the mapping between the two. We begin with the

mapping from posterior-based strategies to state dependent stochastic choice. This mapping gives

the SDSC data generated by our model. Our representation theorems all state that this generated

data is equivalent to the observed data set D. We then look at the mapping between state depen-

dent stochastic choice and posterior-based attention strategies. This mapping gives the revealed

posterior-based attention strategies. Our axioms all place restrictions on these revealed strategies.

2.3.1 From Theory to Generated Data

We begin with the generation of SDSC data from our theoretical model. We translate each strategy

into its observable counterpart in SDSC data. Given a feasible strategy (Q, q) ∈ Λ (µ,A) we

define the generated SDSC data P(µ,A|Q,q) :supp µ → ∆A and the corresponding action choice

probabilities P(µ,A|Q,q)(a) on a ∈ A by:

P(µ,A|Q,q)(a) =
∑

γ∈supp Q
Q(γ)q(a|γ); (4)

P(µ,A|Q,q)(a|ω) =

∑
γ∈supp Q

Q(γ)q(a|γ)γ(ω)

µ(ω)
.

The first equation sums the probability of the occurrence of action a across posteriors. The second

equation follows from Bayes rule. The numerator is the joint probability of action a and state ω,

and the denominator is the probability of the state ω.

As the pattern of choice P(µ,A|Q,q) is completely determined by the strategy (Q, q), we will write

P(Q,q) when no confusion would result from not specifying the decision problem (µ,A).

2.3.2 Representations

Given a decision problem (µ,A), P(Q,q) is the theoretical counterpart to the data object P(µ,A).

Both P(Q,q) and P(µ,A) are mappings from the support of µ to ∆A. Our representations are based

on the equivalence of these two objects. We say that K represents D if the observed SDSC data
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set D comprises all SDSC data generated by the optimal policies of an expected utility maximizer

facing the information cost function K.

Definition 1 The cost function K represents the data set D if for all (µ,A) ∈ ∆Ω× 2A,

D(µ,A) = {P(µ,A|Q,q)|(Q, q) ∈ Λ̂(µ,A|K)}.

Note that our data set is rich enough that the recovery theorem in Caplin, Csaba, Leahy, and

Nov [2020] implies that any such representation will be unique.

2.3.3 From Data to Revealed Strategy

While the state dependent stochastic choice data associated with any strategy (Q, q) is unique,

there are many strategies (Q, q) that could have generated any given P(µ,A). Caplin and Dean

[2015], however, show that there is always a unique least Blackwell informative strategy consistent

with the data, and that this strategy treats every action as chosen at one and only one posterior.

This observation allows us to associate P(µ,A) with a unique “revealed”strategy (Q,q).

Consider a decision problem (µ,A) and observed state dependent stochastic choice data P(µ,A).

If a is chosen with positive probability, we can use the fact that a is chosen from only one posterior

to derive the “revealed”posterior γa associated with action a using Bayes rule

γa(ω) =
P(µ,A)(a|ω)µ(ω)

P(µ,A)(a)

where P(µ,A)(a|ω) is the observed probability of a in state ω and P(µ,A)(a) is the observed frequency

with which a is chosen.

We can then define the revealed posterior-based strategy (Q,q). The revealed probability

of choosing posterior γ is the sum of the revealed probabilities of choosing actions a with revealed

posteriors γa equal to γ,

Q(γ) =
∑

{a∈A|γ=γa}
P(µ,A)(a),

and the revealed probability of choosing an action a conditional on γa is equal to the revealed

probability of choosing a divided by the revealed probability of choosing γa,6

q(a|γa) =
P(µ,A)(a)

Q(γa)

Note that P(µ,A), Q, q, and γa are all bold as these are data objects.

6Note that since we are looking for a posterior based strategy in which a is only chosen at most one posterior,
q(a|γ) = 0 if γ 6= γa or if P(µ,A)(a) = 0.
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3 Posterior-Separable Cost Functions

The starting point in this paper is a data set that may be represented by a cost function that is addi-

tively separable across the chosen posteriors. We call such cost functions posterior separable. This

class includes most of the cost functions considered in the literature, including mutual information

(Sims [1998]), expected Tsallis entropy (Caplin, Dean and Leahy [2017]), the neighborhood-based

cost function of Hébert and Woodford [2018], and the Log-Likelihood Ratio cost function of Po-

matto, Strack and Tamuz [2018]. Posterior separability is also generally assumed in the literature

on Bayesian persuasion (Kamenica and Gentzkow [2011]). Caplin, Dean and Leahy [2017] pro-

vide behavioral axioms that characterize these cost functions. In this section, we formally define

these cost functions and present several properties that will be useful in proving the representation

theorems that follow.

3.1 Definition

Definition 2 An attention cost function K is posterior separable if, given µ ∈ ∆Ω and any

Bayes consistent posteriors Q ∈ Q(µ)

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ). (5)

for some convex function Tµ : ∆(supp µ)→ R̄ such that Tµ(γ) ≥ 0 with Tµ(µ) = 0.

Equation (5) captures the essence of posterior separability. It states the cost function is equal to

the expectation of some function of the individual posteriors, Tµ. Note that this function is allowed

to depend in an arbitrary way on the prior. Different priors can lead to very different functions

Tµ. In addition, the definition states that learning nothing is costless (Tµ(µ) = 0) and learning

something is weakly costly (Tµ(γ) ≥ 0). These properties define Tµ as a divergence extended to

the boundary of the simplex.7

The posterior separable cost functions that we will study satisfy a number of additional prop-

erties.

Assumption 1: Let K be a posterior separable cost function with

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ). We assume Tµ(γ) is strictly convex and continuous in γ and

that Tµ(γ) <∞ on int∆(supp µ).

7A divergence is a weak notion of the distance between probability distributions. Given an arbitrary state space
S, a divergence D(p||q) is a function from int∆S×int∆S to R̄ satisfying only that D(p||q) ≥ 0 and D(q||q) = 0. A
prominent example is the Kullback-Leibler divergence.
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Assumption 1 adds strict convexity, continuity and finiteness to the definition of a posterior

separable cost function. The assumption that Tµ(γ) is finite on the interior of the support of µ

together with the convexity of Tµ ensures that all posteriors in the interior of the support of µ are

optimal for some decision problem.8 Strict convexity simplifies the analysis by eliminating ties.

Since Tµ is convex and finite-valued, it is continuous on the interior of ∆(supp µ). Assumption 1

adds that Tµ is continuous on the boundary. We will discuss relaxing these assumptions in Section

8 below. In Section 8, we also prove that the assumption that Tµ is continuous on the boundary is

without loss of generality.

From this point on, whenever we refer to a posterior separable cost function, we will assume

that the additional restrictions of Assumption 1 hold unless otherwise stated. Rather than repeat

Assumption 1 each time we state a theorem, we define a posterior-separable representation for the

purposes of this paper to include the assumption.

Definition 3 A data set D has a posterior-separable representation if it is represented by a
posterior-separable cost function that satisfies Assumption 1.

3.2 Properties of Posterior-Separable Models

Several properties of posterior-separable cost functions will prove useful in what follows. The first

is that decision problems with posterior-separable attention costs can be solved with Lagrangian

methods.

Because both the cost function and expected utility are additively separable in the posteriors, we

can rewrite the value of any given strategy (Q, q), collecting terms specific to each chosen posterior

and each action associated with that posterior:

V (Q, q|µ,A,K) =
∑

γ∈supp Q

∑
a∈A

Q(γ)q(a|γ)

[ ∑
ω∈supp γ

γ(ω)a(ω)− Tµ(γ)

]

Whenever q(a|γ) > 0, the term in brackets is the net utility of action a and posterior γ:

Na
µ(γ) ≡

∑
ω∈supp γ

γ(ω)a(ω)− Tµ(γ) (6)

Note that since Tµ(γ) depends on µ so does Na
µ(γ).

Writing the maximization problem in terms of net utilities allows a simple geometric interpreta-

tion of the solution. Maximizing the value function is equivalent to maximizing a Bayes consistent

8Since the support of µ is finite, ∆(supp µ) is homeomorphic to the simplex of dimension |supp µ|-1. The interior
of ∆(supp µ) is therefore the interior of the simplex, i.e. the set of probability distributions that place positive
probability on all states in the support of µ. Similarly, the boundary of ∆(supp µ) is the set of probability measures
that place zero probability on some state.
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weighted average of net utilities. This method is illustrated in Figure 1 for a simple decision prob-

lem with two states {ω1, ω2} and two actions {a, b}. The horizontal axis in the figure records the
probability of the state ω1. The solid and dashed curves depict the net utilities to actions a and

b respectively. These net utility curves are concave since net utility is the difference between ex-

pected utility which is linear in the probabilities and the cost of information which is convex. These

curves differ in the utility that they assign to each state and action. In the figure action a pays off

relatively more in state ω2 and action b pays off relatively more in state ω1. The prior µ is depicted

on the horizontal axis.

Any pair of posteriors that span the prior are feasible in this problem. For example, γa and γb

are feasible. The value of choosing γa and γb is given by the height of the chord connecting Na
µ(γa)

and N b
µ(γb) as it passes over the prior µ. This is point A in the figure. This policy is not optimal.

The optimal policy is γ̂a and γ̂b which returns the height of point B in the figure.

[ Figure 1 approximately here ]

The shaded area in Figure 1 is the lower epigraph of the concavified net utility functions, defined

as the minimal concave function that majorizes all net utilities (Rockafellar [1970]). It is clear that

the highest chord lies on the line tangent to the lower epigraph at the prior and that the optimal

posteriors are the points at which this tangent line meets the net utilities with the value of the net

utilities at all other points (weakly) below this tangent line.

This geometric intuition is general. We can always find the optimal posteriors by considering the

hyperplane tangent to the lower epigraph at the prior and finding where this supporting hyperplane

meets the net utilities. Suppose that the support of the prior µ has J distinct states and label these

states ωj for j = {1, . . . J}. Given an optimal posterior γ̂, we can write the supporting hyperplane
as the set of potential net utility levels N such that

N = Na
µ(γ̂) +

J−1∑
j=1

θj(γ(ωj)− γ̂(ωj))

where the Lagrange multipliers θj for j = 1 . . . J−1 capture the change in net utility as the posterior

γ(ωj) is raised at the expense of reducing γ(ωJ). For example, in Figure 1 J = 2 and θ1 is the slope

of the chord connecting Na
µ(γa) and N b

µ(γb). Note that it does not matter which optimal posterior

is used in this construction as all combinations of optimal posteriors γ̂ and their corresponding

net utility levels Na
µ(γ̂) lie on this plane. Net utilities for all other posteriors lie weakly below the

plane, that is Na
µ(γ) ≤ Na

µ(γ̂)+
∑J−1

j=1 θj(γ(ωj)− γ̂(ωj)). This result is summarized in the following

lemma. All results are proved in the on-line appendix.

Lemma 1 (The Lagrangian Lemma): Given a posterior-separable cost function K and deci-

sion problem (µ,A) with dimension J = |supp µ|, (Q, q) ∈ Λ̂(µ,A|K) if and only if there
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exists θ ∈ RJ−1 such that, given γ ∈supp Q and a ∈ A with q(a|γ) > 0,

Na′
µ (γ′)−

J−1∑
j=1

θ(j)γ′(j) ≤ Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j),

for all γ′ ∈supp µ and a′ ∈ A.

This lemma characterizes optimal strategies, and opens up standard methods of model solution.

It should be noted that the Lagrangian Lemma does not require Assumption 1. It requires only

that Tµ(γ) is a proper convex function.

A second useful property of posterior-separable cost functions is that they imply that almost

all sets of feasible posteriors are solutions to some decision problem. To see this consider again the

net utilities in Figure 1. Fix the tangent line running through point B. Since net utility is the

difference between a linear function and a convex function, we can adjust the linear portion of net

utility to “rotate”net utility in any way that we see fit. In this way we can choose payoffs so that

this line is tangent to net utility at any pair of feasible posteriors. There is one exception to this

rule. While the construction is always possible for beliefs in which all states in the support of the

prior are possible, there are important cases, such as the Shannon cost function, in which the slope

of the net utility function approaches infinity at the boundaries of ∆(supp µ). In such cases there

may be no choice of payoffs to actions a or b that will make it optimal to choose posteriors that

set the probability of either state equal to zero. To formalize the precise limit on the domain, we

let Γ̂(µ|K) denote the set posteriors at which Tµ is subdifferentiable.9 With this we can formally

state our result identifying all sets of optimal posteriors in posterior-separable models.

Lemma 2 (Feasibility Implies Optimality): Fix µ ∈ ∆Ω and a posterior-separable cost func-

tion K that satisfies Assumption 1, then

1. Given Q ∈ Q(µ) with supp Q ⊂ Γ̂(µ|K), there exist a choice set A and a deterministic

choice function q̄ such that (Q, q̄) ∈ Λ̂(µ,A|K).

2. Given γ ∈ Γ̂(µ|K), there exists a ∈ A such that Na
µ(γ) = 0 and Na

µ(γ′) ≤ 0 for all

γ′ ∈ ∆supp µ.

3. int(∆(supp µ)) ⊂ Γ̂(µ|K).

Point 1 says that for any feasible set of posteriors we can find a decision problem such that this

set of posteriors is optimal and that choice is deterministic conditional on the resulting posterior.

9A convex function f(x) is subdifferentiable at x̄ if there exists a vector θ such that f(x) ≥ f(x̄) + θ · (x− x̄). A
proper convex function will always be subdifferentiable on its relative interior. It may or may not be subdifferentiable
elsewhere. In our case, Tµ will be subdifferentiable on the interior of ∆(supp µ). Tµ may or may not be subdiffer-
entiable on the boundary. It will not be subdifferentiable on the boundary if Tµ is infinite, discontinuous, or if the
derivative of Tµ approaches infinity. See Section 23 of Rockafellar [1970].
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An immediate implication is that the set of posteriors that are observed as part of some optimal

attention strategy given µ is the same as the set of posteriors at which Tµ is subdifferentiable. Part

2 says that we can take our tangent plane to be θ · γ = 0 and manipulate expected utility so that

net utility is tangent to this plane at any posterior which is chosen. This result makes it easy to

construct decision problems in which a given set of posteriors are chosen. Part 3 says that every

posterior interior to ∆(supp µ) is optimal in some decision problem. It follows from the assumption

that Tµ is finite on the interior of ∆(supp µ) and that convex functions are subdifferentiable on

their relative interior (Rockafellar [1970, Theorem 23.4]). The only posteriors that might not be

chosen as part of an optimal policy are those that lie on the boundary of ∆(supp µ).

4 Weakly Uniformly Posterior-Separable Cost Functions

The next three sections present the main results of the paper. Each section considers a different

subclass of posterior-separable cost functions. We begin each section by defining the subclass. We

then present axioms that are necessary and suffi cient for a posterior-separable representation to lie

in this subclass. We begin, in this section, with weakly uniformly posterior-separable cost functions.

4.1 Definition

In the posterior-separable model, if the prior µ changes, K can change in arbitrary ways. If the

data set has a weakly uniformly posterior-separable representation, however, K is in an important

sense independent of µ: it depends on µ only through the support of µ. A cost function K is

weakly uniformly posterior separable, if it is posterior separable and the strictly convex function

Tµ depends only on the set of possible states.10

Definition 4 A posterior-separable cost function K is weakly uniformly posterior separable,
if for each finite subset Ω̄ ⊂ Ω there exists a strictly convex function TΩ̄ : ∆(Ω̄)→ R̄ such that, for
all µ ∈ ∆(Ω) and Q ∈ Q(µ),

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tsupp µ(γ)− Tsupp µ(µ). (7)

The defining characteristic of a weakly uniformly posterior-separable cost function is that it is

additively separable in both the priors and the posterior. Tsupp µ(γ) depends on µ only through

the support of µ, not the value of µ itself. Allowing Tsupp µ to depend on the support of µ allows

10We label this definition “weak”uniform posterior separability because it is weaker than the definition introduced
in Caplin, Dean and Leahy [2017]. In that paper, we insist on a single function T : ∆Ω → R̄ rather than a set of
functions TΩ̄ that depend on the support of the prior. The new definition greatly simplifies the analysis. We discuss
this issue further in Section 7.
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us to handle cases in which the cost of setting γ(ω) = 0 depends on whether or not µ(ω) is zero.

For example, it is costless to rule out ex ante impossible states, but might be extremely costly to

rule out ex ante possible ones. Subtracting off Tsupp µ(µ) is a normalization that ensures that it is

costless not to learn anything. This normalization has no effect on choice.11

4.2 Locally Invariant Posteriors

To understand the behavioral implications of weak uniform posterior separability, note that so long

as the support of µ remains unchanged, µ enters additively in (7) and changes in µ do not affect

the relative cost of any posterior. The only role that the prior plays is to determine what posteriors

are consistent with Bayes rule. This has strong implications for the structure of optimal policies.

Consider again Figure 1. If K is weakly uniformly posterior separable, then changes in µ shift

the two net utility curves up or down by the same amount. Hence γ̂a and γ̂b remain optimal so

long as they are still feasible, and they are feasible so long as the prior lies in the open interval

(γ̂a, γ̂b). So if a data set has a uniformly posterior-separable representation and γ̂a and γ̂b are

revealed posteriors for the problem (µ,A), they must also be observed in any problem (µ′, A) in

which µ′ ∈ (γ̂a, γ̂b). We call this property Locally Invariant Posteriors. Importantly, this property

is not only necessary but also suffi cient for a data set with a posterior-separable representation to

have a weakly uniformly posterior-separable representation.

Axiom 1 Locally Invariant Posteriors: Consider any decision problem (µ,A) and state de-

pendent stochastic choice data P(µ,A) ∈ D(µ,A) with revealed strategy (Q, q̄) such that q̄ is

a deterministic action choice function. Consider (Q′, q′) with
∑

γ∈ supp Q′
γQ′(γ) = µ′. If supp

Q′ ⊂supp Q, supp µ′ =supp µ,and q′(γ) = q̄(γ) for all γ ∈supp Q′, then P(Q′,q′) ∈ D(µ′,A).

The axiom states that if an attention strategy Q is observed for the decision problem (µ,A),

then the posteriors in Q remain optimal for (µ′, A) where µ′ lies in the convex hull of supp Q. Note

that we require that µ′ does not place zero probability on any state in the support of µ. The reason

is that if supp µ′ 6=supp µ, then there is no reason to expect that Tsupp µ′ = Tsupp µ and no reason

to expect that the optimal policy in the problem (µ′, A) will bear any relation to the optimal policy

in (µ,A).

11Comparing equations (5) and (7), one might be tempted to equate Tµ and Tsupp µ(γ) − Tsupp µ(µ). This is not
the case, however. The precise relationship is

Tµ(γ) = Tsupp µ(γ)− Tsupp µ(µ)− α · (γ − µ)

where α is an element of the subdifferential of Tsupp µ at µ. Since
∑
Q(γ)γ = µ, the linear term drops out of the cost

function K. It’s only role is to ensure that Tµ(γ) ≥ 0, as required by the definition of posterior-separability.
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4.3 From Posterior Separable to Uniformly Posterior Separable

Our first theorem states that a data set with a posterior-separable representation has a weakly

uniformly posterior-separable representation if and only if it satisfies Locally Invariant Posteriors

(Axiom 1).

Theorem 1: A data set D with a posterior-separable representation has a weakly uniformly

posterior-separable representation if and only if it satisfies Locally Invariant Posteriors (Ax-

iom 1).

The theorem captures the tight connection between weakly uniformly posterior-separable cost

functions and Locally Invariant Posteriors. Locally Invariant Posteriors is the behavioral manifes-

tation of weak uniform posterior separability. The suffi ciency part of the proof uses the Lagrangian

Lemma to show that, if the same posteriors are optimal in decision problems that differ only in

their prior, then the associated posterior separable cost functions must be affi ne transforms of each

other. It is then without loss of generality to assume that they are the identical. Necessity again

follows from the Lagrangian Lemma: if two priors have the same cost function, then the same

Lagrange multipliers can be used to determine optimal strategies in decision problems that differ

only in these priors. This in turn implies that the posteriors that are optimal in one will also be

optimal in the other, assuming they are still Bayes feasible.

5 Invariant Posterior-Separable Cost Functions

We begin this section by defining a second subclass of posterior-separable attention cost functions:

invariant posterior-separable cost functions. We then present a related behavioral invariance axiom:

Only Payoffs Matter. We close the section by stating Theorem 2, which establishes a tight link

between these concepts.

5.1 Definition

Invariant cost functions impose two conditions on the cost of learning about states and about

events.12 Both involve a fixed state space Ω̄ ⊂ Ω of finite size, and a partition {Ω̄z}z=1,...Z of Ω̄.

Consider any prior µ ∈int∆Ω̄ and corresponding attention strategy Q ∈ Q(µ). For each γ ∈supp
Q, construct γ′ such that γ′ assigns the same probability as γ to each subset Ω̄z,

γ′(Ω̄z) ≡
∑
ω∈Ω̄z

γ′(ω) = γ(Ω̄z) ≡
∑
ω∈Ω̄z

γ(ω), (8)

12Our characterization of invariance is related to the definition in Hébert and La’O [2019] who build on the work
of Chentsov [1982] and Amari and Nagaoka [2000].
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and, within each subset Ω̄z, the conditional probability of each state is equal to that of the prior,

γ′(ω|Ω̄z) = µ(ω|Ω̄z) (9)

Finally let

Q′(γ′) = Q(γ) (10)

where γ is the posterior in Q used in the construction of γ′.

The first defining feature of invariance involves the sense in which Q′ represents less learning

than Q. When it comes to the question of whether or not a state is in one of the sets Ω̄z, Q′ assigns

the same probabilities as Q, but when it comes to understanding the states within the subset Ω̄z,

Q′ is no different than the prior. Q′ captures the learning in Q about the partition but not the

learning within the partition. It is therefore not unreasonable to assume that the attention strategy

Q′ is less costly,

K(µ,Q) ≥ K(µ,Q′) (11)

Versions of equation (11) are often referred to as information monotonicity (See Amari, 2016,

51-54). While, intuitively appealing, this inequality is not without content. Consider, for example,

a decision problem with three states Ω̄ = {ω1, ω2, ω3}. Consider a partition into two sets Ω̄1 =

{ω1, ω2} and Ω̄2 = {ω3}. Suppose that the prior is uniform, and consider two attention strategies:
Q is comprised of the posteriors γ1 = (2/3, 1/3, 0) and γ2 = (0, 1/3, 2/3) with equal probability

(where the ith element of the vector denotes the probability of state ωi), while Q′ is comprised

of γ′1 = (1/2, 1/2, 0) and γ′2 = (1/6, 1/6, 2/3). Note that the two attention strategies agree on the

probability of the partition: γ1(Ω̄1) = γ′1(Ω̄1) and γ2(Ω̄1) = γ′2(Ω̄1). Q and Q′ therefore satisfy (8).

Also γ′1 and γ
′
2 are uniform conditional on Ω̄1. Hence Q′ satisfies (9). Monotonicity would therefore

imply that Q′ is less costly than Q. Suppose, however, that ω1 is very easy to distinguish from ω3,

and that ω2 is very diffi cult to distinguish from ω3. In this case, it is entirely possible that Q is the

less costly attention strategy. Monotonicity rules out this sort of asymmetry.

The second defining feature of invariance relates to any alternative prior µ̄ which assigns the

same probabilities as the original prior µ to each subset Ω̄z in the partition,

µ̄(Ω̄z) = µ(Ω̄z).

For each γ ∈supp Q, construct γ̄ as we did γ′. For each Ω̄z, set

γ̄(Ω̄z) = γ(Ω̄z)

and for each ω ∈ Ω̄z set

γ̄(ω|Ω̄z) = µ̄(ω|Ω̄z)

Finally, let Q̄(γ̄) = Q(γ). There is a sense in which Q′ and Q̄ represent the same amount of
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attention. The posterior distributions over the partition {Ω̄z} are the same for each attention
strategy, and in each case the conditional distribution over states within the partition is equal to

the prior. In each case, the same information is learned about the partition and nothing else. An

invariant cost function imposes equal costs on the two strategies:

K(µ,Q′) = K(µ̄, Q̄) (12)

We now define an invariant cost function formally.13 Before doing so, it is useful to define the

operation that took us from Q to Q′ and Q̄. Given Q let Qµ denote the attention strategy defined

by the operations (8), (9), and (10) so that Q′ = Qµ and Q̄ = Qµ̄.

Definition 5 A cost function K is invariant if for all finite sets of states Ω̄ ⊂ Ω, all partitions of

Ω̄, all pairs of priors µ and µ̄ that place equal probability on each partition subset, and all feasible

strategies Q ∈ Q(µ):

K(µ,Q) ≥ K(µ,Qµ)

and

K(µ,Qµ) = K(µ̄, Qµ̄).

A cost function is invariant posterior separable if it is both invariant and posterior separable.

We say that a data set D has an invariant posterior-separable representation if it can be
represented by an invariant posterior-separable cost function.

To understand the behavioral implications of invariance, suppose that the cost function is

invariant and consider a decision problem (µ,A) in which two states ω1 and ω2 are redundant in

the sense that for all a ∈ A we have a(ω1) = a(ω2). In this case, the expected utility of any policy

(Q, q) depends only on the sum γ(ω1) + γ(ω2) for each γ ∈supp Q, as the payoffs in these states
are identical. The cost of attention, however, depends individually on γ(ω1) and γ(ω2). With

an invariant cost function, however, it will always be cheaper to choose γ(ω1) and γ(ω2) so that

the conditional probability of ω1 given the event {ω1, ω2} is equal to the prior probability of ω1

conditional on {ω1, ω2}. There is no gain to learning the relative frequency of redundant states. It
follows immediately that γ(ω1) and γ(ω2) are proportionate to µ(ω1) and µ(ω2) so that

γ(ω1)

µ(ω1)
=
γ(ω2)

µ(ω2)

13Note that we define invariance of K(µ,Q). Hébert and La’O [2020] define invariance of Tµ(γ). It is certainly the
case that invariance of Tµ implies invariance of K. We conjecture that the converse is true, but we do not have a
proof. If so, then the two definitions are equivalent.
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Given q(a|γ) > 0, Bayes rule implies that:

P (a|ω1) =
γ(ω1)P (a)

µ(ω1)
=
γ(ω2)P (a)

µ(ω2)
= P (a|ω2)

Invariance therefore implies that the frequency with which each action is chosen is equalized across

states which provide the same payoff to all actions. The two states ω1 and ω2 may without loss of

generality be considered a single state. The “states” that matter for choice are not the states ω

but the partition of the state space defined by the payoffs.

5.2 Only Payoffs Matter

Our axiom of Only Payoffs Matter captures this idea that the true economically relevant states are

determined by the payoffs to actions. Given a set of actions A, let
−→
A = {a(1), . . . a(n)} define an

ordered labeling of the actions. Note that this labeling is arbitrary. Expected utility only depends

on the payoffs to actions and information costs depend only on posterior beliefs. Neither depends

on the labeling of actions. It follows permuting
−→
A does not affect behavior.

Given a labeling
−→
A = {a(1), . . . a(n)}, define the payoff profile −→A (ω) in state ω as the vector

(a(1)(ω), . . . a(n)(ω)) ∈ Rn. We say that two decision problems (µ1, A1) and (µ2, A2) are payoff
equivalent if there exist labelings

−→
A 1 and

−→
A 2, such that µ1{ω|

−→
A 1(ω) = f} = µ2{ω|

−→
A 2(ω) = f} for

all observed payoff vectors f ∈ Rn. Payoff equivalent decision problems assign the same probability
to each payoff vector. They differ only in the mapping between these payoffs and the states that

generate them. The labeling orders the actions so that the ith action in
−→
A 1 has the same distribution

of payoffs as the ith action in
−→
A 2. Note that given the fixed length of the vector f , two payoff

equivalent decision problems must have the same number of actions.

Given this notion of payoff equivalence, we can define what it means for behavior to depend only

on payoffs. Consider two payoff equivalent decision problems (µ1, A1) and (µ2, A2) and associated

labelings
−→
A 1 and

−→
A 2 such that µ1{ω|

−→
A 1(ω) = f} = µ2{ω|

−→
A 2(ω) = f}. Suppose that we have

state dependent stochastic choice data P(µ1,A1) for (µ1, A1) and P(µ2,A2) for (µ2, A2). For behavior

to depend only on payoffs, it must be the case that the probability of choosing the ith action from
−→
A 1 must be the same as the probability of choosing the ith action from

−→
A 2 across states with the

identical payoff profiles. Formally, given a(i)
1 ∈

−→
A 1 and a

(i)
2 ∈

−→
A 2 such that a

(i)
1 and a(i)

2 are each

the ith element in their respective labelings and given ω1 ∈supp µ1 and ω2 ∈supp µ2 such that−→
A 1(ω1) =

−→
A 2(ω2), we must have P(µ2,A2)(a

(i)
2 |ω2) = P(µ1,A1)(a

(i)
1 |ω1). Note that this condition

implies that the probability of choosing an action a from
−→
A 1 must be equal across states with the

same profile of payoffs, as we can match any two states in which
−→
A 1(ω) = f to a single state in

which
−→
A 2(ω) = f .

We now state the axiom.
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Axiom 2 Only Payoffs Matter: Given any two payoff equivalent decision problems (µ1, A1) and

(µ2, A2) and associated labelings
−→
A 1 and

−→
A 2 such that µ1{ω|

−→
A 1(ω) = f} = µ2{ω|

−→
A 2(ω) =

f} then P(µ1,A1) ∈ D(µ1,A1) if and only if there exists P(µ2,A2) ∈ D(µ2,A2) such that given

a
(i)
1 ∈

−→
A 1 and a

(i)
2 ∈

−→
A 2 such that a

(i)
1 and a(i)

2 are each the ith element in their respective

labelings and ω1 ∈supp µ1 and ω2 ∈supp µ2 such that
−→
A 1(ω1) =

−→
A 2(ω2), P(µ2,A2)(a

(i)
2 |ω2) =

P(µ1,A1)(a
(i)
1 |ω1).

5.3 From Posterior Separable to Invariant Posterior Separable

Only Payoffs Matter is a very powerful behavioral axiom. Theorem 2 establishes that it takes

us from a data set with a posterior-separable representation to one with an invariant posterior-

separable representation.

Theorem 2: A data set D with a posterior-separable representation has an invariant posterior-

separable representation if and only if it satisfies Only Payoffs Matter (Axiom 2).

The proof of Theorem 2 involves two steps. The first step is to show that Only Payoffs Mat-

ter is identical to another axiom which we call Invariance under Compression. Invariance under

Compression is similar to Only Payoffs Matter except that it applies to a fixed set of states and

a fixed set of actions. Only Payoffs Matter, on the other hand applies to all payoff equivalent

decision problems. We discuss Invariance under Compression in Section 7 below and establish its

equivalence to Only Payoffs Matter. It is then relatively straightforward to show that invariance

implies Invariance under Compression. Showing that Invariance under Compression implies invari-

ance, however, is a bit more involved. One complication is that for each attention strategy Q we

need to see the strategy Qµ in the data in order to apply Invariance under Compression. This may

be problematic if µ lies on the boundary of the simplex. Feasibility Implies Optimality (Lemma 2)

and the assumption that Tµ in a posterior separable cost function is continuous prove useful in this

regard.

6 Shannon Cost Functions and Representations

Recall from Section 2.2 that the Shannon cost function takes the form

KS
κ (µ,Q) ≡ κ

 ∑
γ∈supp Q

Q(γ)
∑

ω∈supp γ
γ(ω) ln γ(ω)−

∑
ω∈supp µ

µ(ω) lnµ(ω)

 .
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This function is weakly uniformly posterior separable with Tsupp µ(γ) proportionate to the negative

of the Shannon entropy of γ :

Tsupp µ(γ) = κ
∑

ω∈supp γ
γ(ω) ln γ(ω).

κ > 0 is the only free parameter, it translates the cost of information in nats into units of utility.

To see that KS
κ is invariant, note that K

S
κ can be rewritten as the expectation (across posteriors)

of the Kullback-Leibler divergence,
∑

ω∈supp Q γ(ω) ln γ(ω)
µ(ω) . K

S
κ then satisfies (11) and (12) as

∑
ω∈Ω̄

γ(ω) ln
γ(ω)

µ(ω)
≥ γ(Ω̄) ln

γ(Ω̄)

µ(Ω̄)

for any set of states Ω̄ ⊆supp Q with equality when γ is proportionate to µ over ω ∈ Ω̄.

Our last theorem states that the Shannon cost function is the unique invariant and weakly

uniformly posterior-separable cost function.

Theorem 3: The Shannon cost function is unique in that it is invariant and weakly uniformly
posterior separable.

We say that data set D has a Shannon representation if it can be represented by KS
κ for κ > 0.

It follows immediately from Theorems 1-3, that a data set with a posterior-separable representation

has a Shannon representation if and only if it satisfies both Axioms 1 and 2.

Corollary: A data set D with a posterior-separable representation has a Shannon representation

if and only if it satisfies both Locally Invariant Posteriors (Axiom 1) and Only Payoffs Matter

(Axiom 2).

That the Shannon cost function is invariant and uniformly posterior separable is easy to estab-

lish. The complication is in showing that these properties define the Shannon cost function. The

hard part of the proof is showing that Tsupp µ(γ) is differentiable in γ, which allows us to use results

from information geometry (See Section 8.4). The key insights are, first, that Only Payoffs Matter

allows for the construction of decision problems in which the chosen posteriors are proportionate

to the prior, and, second, that the Lagrangian Lemma (Lemma 1) relates the subdifferential of

Tsupp µ(γ) at these chosen posteriors.

7 Discussion and Extensions

We begin this section with an alternative statement of Axiom 2 and show that the two axioms

are equivalent. This alternative statement simplifies the proofs of Theorems 2 and 3 because it
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only requires comparing payoff equivalent decision problems that share the same set of states and

actions.

We also consider Assumption 1. Our starting point is a data set with a posterior-separable

representation. We assume that this representation is continuous, strictly convex and finite on

the interior of the support of the prior. We chose this starting point because we know that there

are behavioral axioms that yield this starting point (Caplin, Dean and Leahy [2017]). We discuss

briefly the implications of relaxing each of these assumptions.

7.1 Invariance under Compression

Given a labeled set of actions
−→
A = {a(1), . . . a(n)}, recall that a payoff profile −→A (ω) is the vector

(a(1)(ω), . . . a(n)) ∈ Rn. We say that a decision problem (µ̄, A) is a reduction of (µ,A) if (1) the

support of µ̄ is contained in the support of µ, supp µ̄ ⊂supp µ, and (2) the probability of each
payoff profile is the same under both priors, µ̄{ω|−→A (ω) = f} = µ{ω|−→A (ω) = f} for all observed
payoff vectors f ∈ Rn. The idea of a reduction is that we have reduced the number of states
with strictly positive probability (point 1) without altering the frequency with which any vector

of payoffs is observed (point 2). We say that a decision problem (µ,A) is basic if there exists no
decision problem (µ̄, A) that is a reduction of (µ,A). Basic decision problems are those in which no

two states have the same profile of payoffs. Let B(µ,A) denote the set of basic decision problems

that are reductions of (µ,A). We will call elements of B(µ,A) basic forms of (µ,A).

Our Invariance under Compression axiom insists that patterns of choice are equivalent in all

decision problems with a common basic form. Given a decision problem (µ,A) and a basic form

(µ̄, A) ∈ B(µ,A), we can define a reduction mapping ξ :supp µ →supp µ̄ which assigns each
state in the support of µ to the unique state in of the support of µ̄ with the same payoff profile:
−→
A (ω) = f implies

−→
A (ξ(ω)) = f . Invariance under Compression states that the observed frequency

of action a in state ω in the decision problem (µ,A) is the same as the observed frequency of action

a in state ξ(ω) in the basic form (µ̄, A).

Axiom 2a Invariance under Compression: Given any (µ,A) and (µ̄, A) such that (µ̄, A) ∈
B(µ,A), then P(µ,A) ∈ D(µ,A) if and only if there exists P̄(µ̄,A) ∈ D(µ̄,A) s.t. P(µ,A)(a|ω) =

P̄(µ̄,A)(a|ξ(ω)), for all ω ∈supp µ, where ξ :supp µ →supp µ̄ is the corresponding reduction
mapping.

Invariance under compression compares two decision problems with identical actions A and a

fixed set of states contained in the support of µ. This greatly simplifies the analysis. Only Payoffs

Matter, on the other hand, compares any two decision problems with the same frequency of payoff.

In spite of these differences, the two axioms are equivalent.
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Proposition 1: A data set D satisfies Invariance under Compression if and only if it satisfies Only

Payoffs Matter.

Only Payoffs Matter relates any two decision problems in which payoff profiles occur with

the same frequency. Invariance under Compression only compares decision problems which share

the same basic form. Only Payoffs Matter therefore directly implies Invariance under Compression.

While we state the Invariance under Compression in terms of a decision problem and its basic form,

it indirectly links problems that share a basic form. Given (µ1, A) and (µ2, A) with a common basic

form (µ̄, A) and the associated reduction mappings ξ1 and ξ2, the axiom implies that P(µ1,A)(a|ω) =

P(µ2,A)(a|ω′) whenever ξ1(ω) = ξ2(ω′). This insight can be used to show that Invariance under

Compression implies Only Payoffs Matter.

7.2 Continuity

Assuming posterior separable cost functions are continuous helps to alleviate a potential indetermi-

nacy in the definition of Tµ. Observed behavior can only characterize Tµ(γ) over the set of revealed

posteriors. If a particular posterior γ̄ on the boundary of ∆(supp µ) is never chosen in any decision

problem and if Tµ(γ̄) is finite, then raising Tµ(γ̄) further will not have any effect on optimal choice.

Continuity pins down Tµ(γ) at such points.

It turns out that given strict convexity, the assumption of continuity is without loss of generality.

Lemma 3 (Continuity): Consider a data set D that is represented by a cost function

K̂(µ,Q) =
∑

γ∈supp Q
Q(γ)T̂µ(γ).

where T̂µ is discontinuous at the boundary of ∆(supp µ). Let

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ).

where Tµ(γ̄) = T̂µ(γ̄) for all γ̄ ∈int∆(supp µ)) and for all γ̄ on the boundary,

Tµ(γ̄) = lim
γ→γ̄

T̂µ(γ) (13)

where the limit is taken with respect to γ ∈int(∆(supp µ)). Then K also represents D.

Note that (13) allows Tµ(γ̄) =∞.

The intuition behind the Lemma is simple. First note that since T̂µ is convex and real valued on

the interior of∆(supp µ), the theorem of Gale, Klee and Rockafellar (1968) states that the extension
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to the boundary Tµ exists and is unique. Now consider any posterior-separable cost function K̂ and

suppose that the associated T̂µ is discontinuous at some posterior γ̄ which lies on the boundary of

∆(supp µ). Note γ̄ 6∈ Γ̂(µ|K) since there are other posteriors in the neighborhood of γ̄ which yield

almost the same utility at strictly lower cost. Now replacing T̂µ(γ̄) with its continuous extension

either has no effect at all on choice or there exists some decision problem in which the optimal

policy changes. In the latter case, the new policy must involve γ̄, since this is the only change to

the cost function, and the new policy must have a value at least as high as the original policy or

else γ̄ would not be chosen. In this case, the strict convexity of the cost function implies that we

can find a third policy, which is a mixture of the new policy and the original policy, that improves

on the original policy in the original problem. this contradiction establishes the result.

The proof of this Lemma makes use of a special feature of revealed preference analysis, namely

that we observe choices in all decision problems. Therefore all decision problems have solutions.

Hence even when Tµ(γ) jumps at γ̄, some other posterior must be chosen. The usual problem that

occurs with discontinuous payoffs —the non-existence of policy that achieves the supremum —does

not arise.

7.3 Strict Convexity

Assumption 1 restricts our posterior separable cost functions to be strictly convex. This is where

we had left off in Caplin, Dean and Leahy [2017]. Many of the results, however, would go through in

amended form if the cost function were weakly convex. The one place that we use strict convexity

is in proving that continuity at the boundary is without loss of generality. This is no longer the

case if the cost function is weakly convex.

Note that in our definition of a representation it is not without loss of generality to assume that

the cost function is even weakly convex. This is because we assume that all strategies that achieve

the optimum in the theoretical model are observed in the data set. If a non-convex cost function is

replaced by a convex one, then the observed data will be contained among the theoretical optima,

but there may be theoretically optimal strategies that are not observed.

7.4 Real-valued

Assumption 1 states that Tµ is finite on the interior of ∆supp µ. Allowing Tµ to equal infinity on

the interior would make it possible to model situations in which certain posteriors are unlearnable

even if they do not rule out any a priori possible state. This change would have no effect on Lemmas

1 and 2, except for point 3 of Lemma 2, which would no longer hold. These results only need that

Tµ(γ) is a proper convex function.

Allowing Tµ to equal infinity on the interior of ∆supp µ would affect Theorems 1 and 3. The
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key to proving these theorems is that we can find decision problems that link the cost function at

different priors. In the case of Theorem 1, we need to find a decision problem for one prior such

that the convex hull of the revealed posteriors contains another prior. This allows us to invoke

Locally Invariant Posteriors. In the case of Theorem 3, we need to find decision problems in which

the chosen posteriors are proportionate to the prior on some pair of states. This allows us to

invoke Invariance under Compression. If Tµ is allowed to equal infinity on the interior, it is easy to

construct examples in which no such problems exist. The simplest example is one in which learning

is impossible: Tµ is infinite unless γ = µ. More complex examples allow for Locally Invariant

Posteriors to hold within partitions of the simplex, with costs infinite outside of a given partition.

Additional assumptions would need to be made that knit the simplex together.

7.5 Strong and Weak Uniform Posterior Separability

In this paper we introduce the concept of weak uniform posterior separability, in which the cost of

posterior beliefs is independent of the prior, as long as the support of the prior does not change.

It is also possible to define other, stronger versions of uniform posterior separability. For example,

the cost of posteriors in the Shannon model is completely independent of the prior regardless of

the support of the distribution. This, however, is not necessarily true of all cost functions that

one might want to include in the uniform posterior separable class, specifically those that make it

prohibitively costly to rule out ex-ante possible states. Consider, for example, costs based on Tsallis

entropy with σ < 0:

TSσ(γ) =
1

σ − 1

1−
∑

ω∈supp(µ)

γ(ω)σ


The cost of posteriors that set γ(ω) = 0 for some ω ∈supp(µ) is infinite. Yet the same posterior

belief can have finite cost if ω is not in the support of µ. This cost function therefore depends on the

support of the prior.14 To include such cost functions, Caplin, Dean and Leahy [2017] defined an

intermediate version of uniform posterior separability in which T (γ) was independent of the prior

for information structures that are optimal in some decision problem, while allowing for this set of

information structures that are ever used to depend on the prior.

The current weak version of the uniform posterior separability simplifies the analysis relative to

Caplin, Dean and Leahy [2017]. The version in that paper did not lead to a simple and straightfor-

ward “if and only if”characterization of the Shannon cost function. To prove that that version of

uniform posterior separability implied locally invariant posteriors, we needed an additional “Reg-

ularity” assumption that linked the sets of posteriors observed in decision problems that with

overlapping supports. In this paper, we use invariance to link the cost function across priors with

14 It is also true that the Shannon cost function implies that the set of posteriors that will be chosen in some decision
problem depends on the support of the prior, but since Shannon entropy is equal to zero on the boundary, this does
not necessitate that the cost function depend on the support of the prior.
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different supports.

Note many papers in the literature effectively use the weak version of uniform posterior sepa-

rability. These include Denti [2020] and Bloedel and Zhong [2020], both of whom use a fixed state

space and prior beliefs on the interior of the simplex.

7.6 Monotonicity vs Blackwell Ordering

Information monotonicity is a very different concept than a Blackwell ordering. The example given

in Section 5.1 provides two information structures Q and Q′ that are monotonic but not Blackwell

ordered. To see that Q′ cannot be more Blackwell informative than Q, introduce a decision problem

A with two actions: action b has utility 1 in all states and action a has utility 0 in all states except

ω1 in which it has a payoff u1 such that a is optimal when the probability of ω1 is 2/3 or higher

but not 1/2 or lower. For example u1 = 7/4. In this case it is optimal to choose b in for both γ′1
and γ

′
2, whereas a is chosen for γ1 and b for γ2. It follows that U(Q, q|µ,A) > U(Q′, q′|µ,A) were

q and q′ are the action choices just described. Q′ therefore cannot be more Blackwell informative

than Q. To see that the converse is true, consider the decision problem A′ = {a′, b} with action a′

that has utility 0 in all states except ω2 in which it has a payoff u′2 such that it is optimal to choose

a′ when the probability of ω2 is 1/2 but not 1/3 or lower. For example u′2 = 5/2. In this case it

is optimal to choose a′ for γ′1 and b for γ
′
2, whereas b is chosen for both γ1 and γ2. It follows that

U(Q′, q′|µ,A) > U(Q, q|µ,A) so that Q cannot be Blackwell more informative than Q.

It is also possible that two distributions are Blackwell ordered but not monotonic. With two

equiprobable states, perfect knowledge is more Blackwell informed than any other distribution but

there is no distribution that satisfies the restrictions of monotonicity: this is general for any number

of states.

8 Literature

We outline connections between our research and related research in four main areas. Before

doing this it is important to understand what is new in this paper relative to earlier versions it

incorporates. Uniformly posterior-separable models were introduced in Caplin and Dean [2013],

while Caplin, Dean, and Leahy [2017] introduced the broader category of posterior-separable cost

functions. For that reason uniformly posterior-separable cost functions are the best studied. After

reviewing recent research on cost functions in this class, we pull back in section 9.2 to the broader

literature on costs of information. A key feature of our approach is our focus on the behavioral

imprint of cost functions in rich choice data. In section 9.3 we therefore place our work in relation

to other research of this form. In section 9.4 we relate our work to the notion of invariance in

information geometry. Finally in section 9.5 we relate it to other axiomatic treatments of Shannon
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entropy and the Shannon cost function.

8.1 Uniformly Posterior-Separable Cost Functions

Uniformly posterior-separable models have been studied in part because there are settings in which

Locally Invariant Posteriors is intuitively reasonable. For example this behavioral axiom underlies

the Drift Diffusion model which has proven popular in psychology (see Ratcliff, et al. [2016] for

a recent review) and economics (Fehr and Rangel [2011]). According to the basic version of this

model, an agent gathers information to resolve prior uncertainty over two ex ante possible states and

acts only when posterior beliefs reach some threshold values. Since the thresholds do not change

as the agent learns, the same posteriors are used for any prior that lies between the posteriors.

Recent work of Morris and Strack [2017], Hébert and Woodford [2019], and Bloedel and Zhong

[2021] provides a related perspective on why uniformly posterior-separable cost functions may be of

interest. The work of Hébert and Woodford [2019] in particular is similarly motivated to ours: they

look to generalize the Shannon cost function to more closely match observation. To arrive at these

general forms, they consider models of optimal sequential learning. They model costly information

processing with essentially unrestricted flow costs of incremental updating from any given posterior.

They allow for differential costs of discriminating among states and analyze the corresponding

optimal stopping problem. Their theorem 1 pinpoints static uniformly posterior-separable cost

functions as being of particular interest. It shows equivalence between the information that is

acquired through their process of continuous updating and optimal stopping, and the information

acquired in a static model with a cost function in the uniformly posterior-separable class. They

also show how to derive the particular cost function from the local structure of learning. The

link between static uniformly posterior-separable models and continuous time models of optimal

stopping enhances interest both in the broad class and in those functions that capture particular

respects in which the Shannon model may be unrealistic in application.

Given the reasonable patterns of behavior they produce and their tractability, a number of

papers have made use of uniformly posterior-separable costs. Of particular note are papers that

have used posterior-separable cost functions to examine situations in which both costly information

acquisition and persuasion are important (Gentzkow and Kamenica [2014], Matyskova [2018]).

Moreover recent work by Miao and Xing [2019] has shown how a posterior-based approach lends

itself naturally to dynamic programming as the chosen posteriors today become the priors tomorrow.

Zhong [2017] also considers dynamic information acquisition under posterior separability.

There is also a stream of research explicitly aimed at introducing uniformly posterior-separable

cost functions that capture features of behavior ruled out by Only Payoffs Matter and Invariance

under Compression. The strong symmetry properties that these behavioral axiom convey often

fails in practice. To date, three such violations have been addressed by replacing the Shannon cost

function with other uniformly posterior-separable cost functions.
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As noted in section 5, the symmetry imposed by invariance rules out perceptual distance as a

factor in discriminating between states. Yet it is critical in many every day decisions: prices which

are closer together are harder to distinguish than those which are far apart. By way of confirmation,

Dean and Neligh [2017] design an experiment that highlights precisely this failing of the Shannon

model. A recent paper by Hébert and Woodford [2020] provides a family of uniformly posterior-

separable cost functions that can accommodate the notion of perceptual distance. They propose

a class of “neighborhood-based”cost functions. In order to construct these costs, the state space

is divided into I “neighborhoods”Ω1...ΩI . A posterior is assigned a cost for each neighborhood

based on some convex function of the distribution conditional on being in that neighborhood. The

total cost of the posterior is then the sum of costs across all neighborhoods. Hence neighborhood

based cost functions allow for it to be more expensive to differentiate between some states than

others: the cost of differentiating between two states depends on which neighborhoods they share.

Hence states that share more neighborhoods can be more costly to distinguish. Following Hébert

and Woodford [2020], Dean and Neligh [2017] consider a neighborhood-based cost function that

does a good job of fitting the data from an experimental design in which perceptual distance plays

a critical role in learning.

A second feature of the Shannon model, again implied by Invariance under Compression, is

that behavior should be invariant to changes in prior beliefs that move probabilities between payoff

equivalent states. Woodford [2012] cites experimental evidence that challenges this implication. He

discusses the experimental results of Shaw and Shaw [1977], in which a subject briefly sees a symbol

which may appear at one of a number of locations on a screen. Their task is to accurately report the

symbol. Since the location on the screen is payoff irrelevant, Invariance under Compression implies

that it should also be irrelevant to task performance. Yet in practice, performance is superior at

locations that occur more frequently. Caplin, Dean and Leahy [2017] show that a cost function

based on Tsallis entropy (Tsallis [1988]) is suffi ciently flexible to allow for this.

Third, the Shannon model makes precise predictions about the rate at which subjects improve

their accuracy in response to improved incentives: essentially, the observation of behavior in any

given decision problem pins down the model’s one free parameter, and so behavior in any other

decision problem. Caplin and Dean [2013] show in a simple two state, two action set-up that

agents are not responsive enough to changes in incentives: they do not pay enough attention at

high rewards given the attention paid at low rewards. Relaxing either Only Payoffs Matter or

Locally Invariant Posteriors can address this problem. Caplin and Dean [2013] and Dean and

Neligh [2017] relax Only Payoffs Matter and consider uniformly posterior-separable cost functions

based on generalized entropy (Shorrocks [1980]). Dean and Neligh [2017] show that statistical tests

on their experimental data favor a model with generalized entropy over the Shannon model. Dean

and Neligh [2017] also consider relaxing Locally Invariant Posteriors, by considering non-linear

transforms of Shannon mutual information.

These last two examples show that the uniformly posterior-separable class allows us to replace
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Shannon with other forms of entropic cost, which has proven valuable in other disciplines. Examples

include internet usage (Tellenbach, et al. [2009]), machine learning (Maszczyk and Duch [2008]),

statistical mechanics (Lenzi, Mendes and Da Silva [2000]), and many other applications in physics

(Beck [2009]). See Gell-Mann and Tsallis [2004] for a review.

8.2 Posterior-Separable and Invariant Cost Functions

There are well motivated cost functions in the literature that are posterior separable but not uni-

formly posterior separable, such as the Log-Likelihood Ratio cost function of Pomatto, Strack and

Tamuz [2018]. Yet the economic research in this area remains in its infancy. To date, most of the

literature has focused on uniformly posterior-separable costs and failings of Only Payoffs Matter.

While there is as yet little direct research demonstrating failings of Locally Invariant Posteriors,

we believe that this will change as cost functions become more widely studied. As these violations

are noted, posterior-separable cost functions will provide an attractive combination of tractability

and flexibility. In analytic terms, all of our results are made possible by the Lagrangian Lemma,

which show that the model can be solved by identifying the tangent to the concavified net utility

function. This approach has been widely used since its introduction to the economics literature (Au-

mann, Maschler, and Stearns [1995]). Most notably, the Bayesian Persuasion literature (Kamenica

and Gentzkow [2011]) has used concavification to successfully approach a number of problems in

information economics (see Alonso and Câmara [2016] and Ely and Szydlowski [2017] for recent

examples).

While new in the economic literature, the literature in information theory and on the design

of experiments has also focused on posterior-separable cost functions. For example, the Blackwell-

Sherman-Stein Theorem shows that posterior-separable cost functions can be used to characterize

the property of statistical suffi ciency, and so provide an alternative characterization of Blackwell’s

theorem. Given prior µ the theorem states that an information structure Q1 is statistically suffi cient

for Q2 (i.e. Q1 Blackwell dominates Q2) if and only if,∑
γ∈supp Q1

Q1(γ)Tµ(γ) ≥
∑

γ∈supp Q2

Q2(γ)Tµ(γ),

for every continuous, (weakly) convex Tµ (see for example Le Cam [1996]).15 Torgersen [1991]

further shows that the class of posterior-separable cost functions can be characterized by properties

of the costs themselves. Specifically, the (weakly convex) posterior-separable class of cost function

of information structures characterizes monotonicity in Blackwell informativeness and linearity in

a natural mixture operation.

Invariant posterior-separable cost functions arose independently in the work of Angeletos and

Sastry [2019] and Hébert and La’O [2020]. The former study the effi ciency of Walrasian equi-

15We thank Daniel Csaba for pointing this out to us.
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libria with learning and the latter ask how the endogeneity of information affects the effi ciency

of games with strategic interactions. In both cases, invariance is a suffi cient condition for equi-

librium attention strategies to be effi cient in settings in which the full information equilibrium is

effi cient. Without invariance, one can often construct signals that are uncorrelated with payoffs,

reduce the cost of information, and coordinate actions in suboptimal ways. The link between invari-

ant posterior-separable cost functions and the Invariance under Compression axiom (introduced in

Caplin, Dean and Leahy [2017]) is new to this paper, as is the formulation of this axiom in terms of

Only Payoffs Matter. It is noteworthy that this is the axiom that tends to fail in the experimental

literature, so the effi ciency of equilibria is far from assured.

8.3 Revealed Preference and Imperfect Information

The profession has long been grappling with a basic identification problem: that of separating beliefs

and preferences. Our work belongs to a recent body of literature addressed to this challenge.

One approach involves modeling processes of learning that have clear implications for standard

choice data. For example Masatlioglu, Nakajima, and Ozbay [2012] introduce a model of limited

attention that can be identified in standard choice data. Their method of identification requires

strong assumptions on the nature of inattention: options are either considered perfectly or not at

all, and the removal of an alternative that is not considered from a choice set does not affect what

is considered.

Another approach to identification involves data enrichment. In their pioneering work on sto-

chastic choice data and random utility, Block and Marschak [1959] noted that their data set was

inadequate to separate random perception from random utility. They proposed development of

new data sets to accomplish this separation.

As has been noted, the data enrichment on which our research lies involves observing not only

choices, but also underlying facts about the environment. The extent to which these underlying

realities impact choice is encoded in state dependent stochastic choice data. This data set turns

out to be useful for revealed preference analysis. Caplin and Martin [2015] establish “no improving

action switches”(NIAS) as the behavioral signature of Bayesian expected utility maximization in

this data, while Caplin and Martin [2020] use it to characterize robust welfare rankings of different

framings of one and the same decision problem. de Clippel and Rozen [2020] study the interplay

between costly perception and strategic inferences, both experimentally and theoretically. They

do so by characterizing, in state dependent stochastic choice data, the testable implications of

equilibrium play in a class of games with strategic communication. With regard to costs, Caplin

and Dean [2015] show that NIAS and an additional behavioral axiom, “no improving action cycles”

(NIAC) characterize data sets in which learning is optimized for a fixed information cost function.

Caplin, Csaba, Leahy, and Nov [2020], provide a simple method of recovering costs from this data

set. Chambers, Liu, and Rehbeck [2020] relax the assumption that information costs are additively
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separable from the gross utility resulting from choice.

Our contribution in this paper is to show that state dependent stochastic choice data is of great

value in identifying qualitative as well as quantitative aspects of attention costs. Yet our analysis

leaves many open questions in this regard. Most pertinently, the analysis in this paper starts with

a posterior-separable cost function. In the working paper version of this paper (Caplin, Dean and

Leahy [2017]) we provided additional behavioral axioms characterizing cost functions with this

property: these are neither intuitive nor easy to test. Recently Denti [2020] has provided a simpler

treatment given a finite number of decision problems, involving a “no improving posterior cycles”

axiom. Other open questions relate to the behavioral signatures of non posterior-separable cost

functions involving: costly purchase of normal signals (Verrecchia [1982], Llosa and Venkateswaran

[2012] and Colombo, Femminis, and Pavan [2014]); “all or nothing”information costs (Reis [2006]);

costs involving a hard constraint (Sims [2003]) or strictly convex in mutual information (Paciello

and Wiederholt [2014]); costs linear in Shannon capacity Woodford [2012]; or costs covered by the

sparsity-based model of Gabaix [2014]. How these cost functions restrict behavior, and so how they

differ from the posterior-separable class, remains open.

8.4 Information Geometry

Information geometry studies the geometry of divergences. A divergence is a weak notion of the

distance between probability distributions. Given an arbitrary state space S, a divergence D(p||q)
is a function from int∆S×int∆S to R̄ satisfying only that D(p||q) ≥ 0 and D(q||q) = 0. Tµ(γ) in a

posterior-separable representation is a divergence on int(∆supp µ) extended to γ on the boundary

of ∆supp µ. By Lemma 3 we may take this extension to be continuous. Our definition of an

invariant cost function is a direct adaptation of the definition of an invariant divergence to priors

and attention strategies (see Amari [2016]).

At various parts of the proof of Theorem 3 we make use of connections with the information

geometry. The most closely related result shows that the Kullback-Leibler divergence is unique

in that it is at once invariant and a Bregman divergence (see Jiao, et al. [2014]). A Bregman

divergence specifies the distance between γ and µ as the distance between γ and the hyperplane

tangent to a differentiable, convex function at µ. It takes the form

DB(γ||µ) = f(γ)− f(µ)−∇f(µ) · (γ − µ)

where f is the differentiable, convex function. The class of weakly uniformly posterior-separable

cost functions is the class of cost functions K that are expectations of Bregman divergences. To see

this note that since
∑

Q(γ)γ = µ, the linear term ∇f(µ) · (γ−µ) drops out when we calculate the

cost of an attention strategy Q ∈ Q(µ). We are left with a weakly uniformly posterior-separable

cost function with with TΩ̄ equal to f .
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A major portion of the proof of Theorem 3 involves showing that together invariance and

weak uniform posterior separability imply that TΩ̄ is differentiable on the interior of ∆Ω̄. With

differentiability in hand, we are able to show that the invariance of K implies that the Bregman

divergence TΩ̄(γ)−∇TΩ̄(µ) · (γ − µ) is invariant. The result of Jiao, et al. [2014] implies that this

divergence is the Kullback-Leibler divergence, and hence Tµ is the Kullback-Leibler divergence. We

complete the proof by linking together different state spaces. As a first step, we note that Axiom 2

implies that the cost function has the same form for all state spaces with the same cardinality, so

that the particular states in Ω̄ do not matter. We then show that invariance equates the coeffi cient

κ across sets of states with different cardinality. Intuitively, Invariance under Compression links

behavior in a decision problem with behavior in the basic version which may be of lower dimension.16

Optimization plays an essential role in the proof of differentiability. The Lagrangian Lemma,

which is entirely based on optimization theory, is essential in this proof. It relates the subdifferential

of TΩ̄ at different chosen posteriors and places structure on the set of posteriors at which TΩ̄ is

differentiable. Invariance under Compression, by placing structure on the set of posteriors that

are solutions to decision problems, also places structure on the set of posteriors at which TΩ̄ is

differentiable. There is no parallel to these results in the information geometry literature because

this literature is not built around decisions and behavior.

8.5 Foundations of the Shannon Model

This paper contributes to the literature on the axiomatic foundations of the Shannon information

cost function. de Olivera [2014] provides an alternative axiomatization of the Shannon cost function,

one that places axioms on preference orderings over menus. One of the axioms is a “symmetry

axiom” in which states that have the same probability can have their roles exchanged without

affecting preferences. This in turn means that costs and optimal information structures are also

symmetric, which is implied by Only Payoffs Matter. Invariance under Compression also appears

related to de Olivera’s Independence of Orthogonal Decision Problems axiom. This axiom involves

indifference between solving two decision problems with independent payoffs together or separately.

We originally had both Invariance under Compression and a version of Independence of Orthogonal

Decision Problems. We found, however, that we could dispense with the latter.

In addition to these characterizations, several recent papers have provided insights into the

behavior implied by the Shannon model. Matějka and McKay [2015] use first order conditions to

provide a generalized logit formula for optimal SDSC probabilities P (a|ω) in the Shannon model.

On its own, this condition is necessary but not suffi cient to characterize Shannon-consistent behav-

ior. Subsequent papers (Stevens [2019], Caplin, Dean and Leahy [2019]) show that the addition of

appropriate complementary slackness conditions provides both necessity and suffi ciency.

16 In Caplin, Dean and Leahy [2017] we provide an alternate proof of Theorem 3 that does not rely on the result of
Jiao et al [2014].
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9 Concluding Remarks

We introduce three new classes of attention cost function: posterior separable, weakly uniformly

posterior separable and invariant posterior separable. As with the Shannon cost function, we show

that they can all be solved using Lagrangian methods. Uniformly posterior-separable cost functions

capture many forms of sequential learning, hence play a key role in many applications. Invariant

posterior-separable cost functions make learning strategies depend exclusively on payoffuncertainty.

We characterize the resulting behavior in state dependent stochastic choice data. We show that

two behavioral axioms, Locally Invariant Posteriors and Only Payoffs Matter (or Invariance under

Compression), define posterior-separable functions respectively as uniformly and invariant posterior

separable. We show that in combination they pinpoint the Shannon cost function.
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