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1 Posterior-Separable Cost Functions

The starting point for our analysis is a data set D that can be represented by a posterior separable
cost function. Here we reproduce the definition of posterior separability.

Definition 1 An attention cost function K is posterior separable if, given µ ∈ ∆Ω, there exists
a function Tµ : ∆(supp µ)→ R̄, such that

1. Tµ(γ) is strictly convex in γ.

2. Tµ(γ) is real-valued on int ∆(supp µ)

3. Tµ(γ) ≥ 0 with Tµ(µ) = 0

4. given any Bayes’consistent posteriors Q ∈ Q(µ),

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ).

The next section introduces notation. We then present and prove three important lemmas: the
Lagrangian Lemma, Feasibility Implies Optimality, and Continuity.

1.1 Notation and Terminology

In stating and proving these lemmas we fix µ ∈ ∆Ω. Recall that given a decision problem (µ,A),
the set of feasible posterior-based strategies is Λ (µ,A)

Λ (µ,A) ≡ {(Q, q)|Q ∈ Q(µ), q : supp Q→ ∆A}
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where

Q(µ) =

Q ∈ ∆∆supp µ

∣∣∣∣∣∣ µ =
∑

γ∈supp Q
γQ(γ)


Recall that the value of strategy (Q, q) ∈ Λ(µ,A) given cost function K is

V (Q, q|µ,A,K) = U(Q, q|µ,A)−K(µ,Q)

= U(Q, q|µ,A)−
∑

γ∈supp Q
Q(γ)Tµ(γ),

where
U(Q, q|µ,A) =

∑
γ∈supp Q

∑
a∈A

Q(γ)q(a|γ)u(γ, a).

Recall also that Na
µ(γ) is the net utility of action a given posterior γ,

Na
µ(γ) ≡ u(γ, a)− Tµ(γ),

where u(γ, a) ≡
∑

ω∈supp γ γ(ω)a(ω) denotes the expected utility of action a given posterior γ. This
provides an alternative method of identifying the value of (Q, q) ∈ Λ(µ,A) as,

V (Q, q|µ,A,K) =
∑

γ∈supp Q

∑
a∈A

Q(γ)q(a|γ)Na
µ(γ).

Finally, recall that V̂ (µ,A|K) refers to the supremum of V over all feasible strategies (Q, q) and
Λ̂(µ,A|K) is the set of strategies that achieve the supremum:

V̂ (µ,A|K) ≡ sup
(Q,q)∈Λ(µ,A)

V (Q, q|µ,A,K);

Λ̂(µ,A|K) ≡
{

(Q, q) ∈ Λ (µ,A) |V (Q, q|µ,A,K) = V̂ (µ,A|K)
}
.

It is useful for the results that follow to assign “values”to strategies that are feasible from the
prior µ′ ∈ ∆(supp µ) rather than for the given prior µ ∈ ∆(Ω). We first define in a standard
manner the gross utility of strategy (Q′, q′) ∈ Λ(µ′, A) for µ′ ∈ ∆(supp µ) as,

U(Q′, q′|µ′, A) =
∑

γ′∈supp Q′

∑
a∈A

Q′(γ′)q′(a′|γ′)u(γ′, a′)

We then define a “µ-based”net utility function for strategies (Q′, q′) ∈ Λ(µ′, A) for µ′ ∈ ∆(supp
µ) using the costs associated with µ,

Vµ(Q′, q′|µ′, A,K) ≡ U(Q′, q′|µ′, A)−
∑

γ∈supp Q′
Q′(γ)Tµ(γ). (1.1)

Note that, as supp µ′ ⊆supp µ, we can treat ∆(supp µ′) as a subset of ∆(supp µ) by assuming
that any distribution γ ∈ ∆(supp µ′) puts zero probability on any state ω ∈supp µ/supp µ′. Thus
Tµ is well defined for all relevant posteriors.
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If µ′ = µ and therefore (Q′, q′) ∈ Λ(µ,A) then this is the standard value function,

Vµ(Q′, q′|µ,A,K) = U(Q′, q′|µ,A)−K(µ,Q′)

= V (Q′, q′|µ,A,K).

Finally, we use the following notation to denote the set of posteriors that are ever used as part of
an optimal strategy from some prior given cost function K

Γ̃(µ|K) = {γ ∈ supp µ|∃A ⊂ A and (Q, q) ∈ Λ̂(µ,A|K) with γ ∈ supp Q}. (1.2)

We will show in Corollary 1.1 below that Γ̃(µ|K) is equal to the set Γ̂(µ|K), which is the of
posteriors at which Tµ is subdifferentiable.1

The posterior separable cost function K and choice set A are fixed for much of the analysis
that follows, so we suppress them whenever possible, for example writing Vµ(Q′, q′|µ′) in place of
Vµ(Q′, q′|µ′, A,K) and Λ(µ′) in place of Λ(µ′, A) for feasible strategies.

1.2 The Lower Epigraph of Vµ

Key to the proof of the Lagrangian lemma is the lower epigraph of Vµ for a fixed A. To specify we
reduce the dimension of the state space by defining J = |supp µ|, correspondingly index states by
1 ≤ j ≤ J , and identify each prior by µ ∈ RJ−1

+ with
∑J−1

j=1 µ(j) ≤ 1 and with µ(J) = 1−
∑J−1

j=1 µ(j)

left as implicit. Let ∆J−1 denote the set of vectors in RJ−1
+ with

∑J−1
j=1 µ(j) ≤ 1.

Definition 2 The lower epigraph of Vµ(Q′, q′|µ′) is

E(µ) ≡
{

(y, µ′) ∈ R×∆J−1 |y ≤ Vµ(Q′, q′|µ′) some (Q′, q′) ∈ Λ(µ′)
}
.

What makes this set of interest is that it is convex and therefore we can apply the separating
hyperplane theorem. This is a key step in the Lagrangian characterization of optimal strategies in
Lemma 1.

Remark 1 For every µ ∈ ∆(Ω), E(µ) is a convex subset of RJ .

To establish convexity we introduce a mixture operation on the collection of sets Λ(µ′) for all
µ′ ∈ ∆(supp µ). Given any finite set of strategies, {(Ql, ql) ∈ Λ(µl)}1≤l≤L , and strictly positive
probability weights {αl}1≤l≤L, we define the corresponding mixture strategy (Qα, qα) by:

Qα(γ) =
∑
l

αlQl(γ) all γ ∈ ∪lsupp Ql ≡ supp Qα;

qα(a|γ) =

∑
l αlql(a|γ)Ql(γ)

Qα(γ)
all γ ∈ supp Qα, a ∈ A;

1See Rockafeller [1970] for an extensive discussion of the subdifferentiability of convex functions.
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Defining µ(α) =
∑

l αlµl as the corresponding weighted average of priors it is immediate that
(Qα, qα) ∈ Λ(µ(α)) and it can readily be confirmed that Vµ is linear in the mixture operation,

Vµ(Qα, qα|µ(α)) =
∑
l

αlVµ(Ql, ql|µl).

This directly implies that E(µ) is a convex.

1.3 Three Lemmas

In this section we establish three lemmas concerning posterior-separable models. The first two,
the Lagrangian lemma and Feasibility Implies Optimality, present properties of the solution to the
problem of maximizing expected utility subject to a posterior separable cost function. The third,
Continuity, presents a property of posterior-separable cost functions that represent data.

1.3.1 The Lagrangian Lemma

We now establish the Lagrangian lemma, which makes direct use of the above mixture operation as
well as of the convexity of E(µ). In stating the lemma we reintroduce the fixed posterior-separable
cost function K and choice set A. We suppress them where clear in the body of the proof.

Lemma 1 (Lagrangean): Given a posterior-separable cost function K and decision problem
(µ,A), (Q, q) ∈ Λ̂(µ,A|K) if and only if ∃θ ∈ RJ−1 such that, given γ ∈supp Q and a ∈ A
with q(a|γ) > 0,

Na′
µ (γ′)−

J−1∑
j=1

θ(j)γ′(j) ≤ Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j),

all γ′ ∈ ∆(supp µ) and a′ ∈ A.

Proof. We first show necessity: that this holds for any optimal strategy (Q, q) ∈ Λ̂(µ). We note
first that optimality implies that (V (Q, q|µ), µ) is an upper boundary point of cl(E(µ)), the closure
of E(µ). If not then there exists y > V (Q, q|µ) such that (y, µ) ∈ cl(E(µ)), and hence also (y′, µ) ∈
E(µ) such that y′ > V (Q, q|µ). Hence there exists (Q′, q′) ∈ Λ(µ) with V (Q′, q′|µ) > V (Q, q|µ),
contradicting the optimality of (Q, q). Since (V (Q, q|µ), µ) is a boundary point of the closure of
E(µ), which inherits convexity, we can identify a supporting hyperplane θ(j) for 0 ≤ j ≤ J −1 with
θ(j) 6= 0 for some j such that,

θ(0)y −
J−1∑
j=1

θ(j)µ′(j) ≤ θ(0)V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j), (1.3)

all (y, µ′) ∈ E(µ). We show now that θ(0) > 0.

First, suppose to the contrary that θ(0) < 0. In this case we can renormalize to θ(0) = −1 to
conclude that,

−y −
J−1∑
j=1

θ(j)µ′(j) ≤ −V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j),
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which is a clear contradiction, since the set of feasible y’s is unbounded below and so the left hand
side is unbounded above.

Now suppose instead that θ(0) = 0. If so we conclude from (1.3) that,

J−1∑
j=1

θ(j)µ(j) ≤
J−1∑
j=1

θ(j)µ′(j). (1.4)

all µ′ ∈ ∆(supp µ). Note that by definition µ(j) > 0 all j. Hence,

min

 min
1≤j≤J−1

{µ(j)}, 1−
J−1∑
j=1

µ(j)

 > 0.

To minimize the expression on the RHS in (1.4), one can set µ′(j̄) = 1 where the index j̄ is chosen
so that,

θ(j̄) = min
1≤j≤J−1

{θ(j)}.

Hence (1.4) can be valid only if θ(j) = θ(j̄) = θ̄ for all j. Hence what is required is,

θ̄

J−1∑
j=1

µ(j) ≤ θ̄
J−1∑
j=1

µ′(j),

all µ′ ∈ ∆(supp µ). Since 0 <
J−1∑
j=1

µ(j) < 1 while
J−1∑
j=1

µ′(j) has a range that includes 0 and 1, this

is impossible unless θ̄ = 0, a contradiction to the non-zero separating plane in (1.3).

Given that θ(0) > 0, we renormalize to θ(0) = 1 in (1.3) to conclude that,

y −
J−1∑
j=1

θ(j)µ′(j) ≤ V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j). (1.5)

all (y, µ′) ∈ E(µ). Given γ′ ∈ ∆(supp µ) this applies for all y ≤ Vµ(Q′, q′|γ′) for some (Q′, q′) ∈ Λ(γ′).
In particular this includes those strategies which are inattentive, and so Q′(γ′) = 1, and involve
deterministic choice of any action a′ ∈ A, so q′(a′|γ′) = 1. For these particular strategies,

Vµ(Q′, q′|γ′) = Na′
µ (γ′).

This implies that (Na′
µ (γ′), γ′) ∈ E(µ), hence by (1.5)

Na′
µ (γ′)−

J−1∑
j=1

θ(j)γ′(j) ≤ V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j). (1.6)

all a′ ∈ A and γ′ ∈ ∆supp µ.
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All that remains is to show that we can replace V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j) withNa
µ(γ)−

∑J−1
j=1 θ(j)γ(j)

for any γ ∈supp Q and a ∈ A with q(a|γ) > 0 on the right hand side of (1.6). First observe that

V (Q, q|µ) =
∑

γ∈suppQ
Q(γ)

∑
a∈A

q(a|γ)Na
µ(γ)

and
J−1∑
j=1

θ(j)µ(j) =
∑

γ∈suppQ
Q(γ)

∑
a∈A

q(a|γ)

J−1∑
j=1

θ(j)γ(j)

 ,
as
∑
a∈A

q(a|γ) = 1 for every γ ∈supp Q and
∑

γ∈suppQQ(γ)γ(j) = µ(j) for every 1 ≤ j ≤ J − 1.

Thus we have

V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j) =
∑

γ∈suppQ
Q(γ)

∑
a∈A

q(a|γ)

Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j)

 . (1.7)

This expresses V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j) as a weighted average of terms Na
µ(γ)−

∑J−1
j=1 θ(j)γ(j)

with strictly positive weights. By (1.6), none of these terms can be strictly above V (Q, q|µ) −
J−1∑
j=1

θ(j)µ(j).

Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j) ≤ V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j).

Hence they must all be equal to it for any weighted average with strictly positive weights to be
equal to it,

Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j) = V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j),

all γ ∈supp Q and a ∈ A with q(a|γ) > 0. Combined with (1.6) this establishes that indeed, given
γ ∈supp Q and a ∈ A with q(a|γ) > 0,

Na′
µ (γ′)−

J−1∑
j=1

θ(j)µ′(j) ≤ Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j),

all γ′ ∈ ∆(supp µ) and a′ ∈ A, and with it necessity.

With regard to suffi ciency, consider (Q, q) ∈ Λ(µ,A) for which there exists ∃θ ∈ RJ−1 such that,
given γ ∈supp Q and a ∈ A with q(a|γ) > 0,

Na′
µ (γ′)−

J−1∑
j=1

θ(j)γ′(j) ≤ Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j), (1.8)
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all γ′ ∈ ∆(supp µ) and a′ ∈ A. As established in (1.7) we can rewrite

V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j) =
∑

γ∈suppQ
Q(γ)

∑
a∈A

q(a|γ)

Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j)

 .
Moreover, condition (1.8) implies that for any γ, γ′ ∈supp Q and a, a′ ∈ A with q(a|γ) > 0 and

q(a′|γ′) > 0 it must be the case that

Na′
µ (γ′)−

J−1∑
j=1

θ(j)γ′(j) = Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j),

and so, as
∑
a∈A

q(a|γ) = 1 ∀ γ ∈supp Q and
∑

γ∈suppQ
Q(γ) = 1

Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j) = V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j), (1.9)

all γ ∈supp Q and a ∈ A with q(a|γ) > 0.

Now consider arbitrary strategy (Q′, q′) ∈ Λ(µ,A) and repeat precisely the sequence of steps
that led to (1.7) to obtain

V (Q′, q′|µ)−
J−1∑
j=1

θ(j)µ(j) =
∑

γ′∈supp Q′
Q′(γ′)

∑
a′∈A

q′(a′|γ′)

Na′
µ (γ′)−

J−1∑
j=1

θ(j)γ′(j)

 . (1.10)

Picking an arbitrary γ ∈supp Q and a ∈ A with q(a|γ) > 0 we have from (1.8) that

∑
γ′∈supp Q′

Q′(γ′)
∑
a′∈A

q′(a′|γ′)

Na′
µ (γ′)−

J−1∑
j=1

θ(j)γ′(j)

 (1.11)

≤
∑

γ′∈supp Q′
Q′(γ′)

∑
a′∈A

q′(a′|γ′)

Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j)


= Na

µ(γ)−
J−1∑
j=1

θ(j)γ(j)

= V (Q, q|µ)−
J−1∑
j=1

θ(j)µ(j),

where the third line follows from the fact that
∑
a∈A

q(a|γ) = 1 ∀ γ ∈supp Q′ and
∑

γ∈supp Q′
Q′(γ) =

1, and the fourth follows from (1.9) above. Combining (1.10) and (1.11) and subtracting
∑J−1

j=1 θ(j)µ(j)
from each side gives
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V (Q′, q′|µ) ≤ V (Q, q|µ),

establishing that indeed (Q, q) ∈ Λ̂(µ) and with it the theorem.

1.3.2 Feasibility Implies Optimality

The next Lemma establishes that one can assign to any posterior that is ever optimal, an action
such that the net utility of using that action at that posterior is zero, while the net utility of any
other posterior when choosing that action is less than zero. Coupled with the Lagrangian lemma
that means that one can construct decision problems in which it is optimal to use any collection of
such posteriors.

Lemma 1.2 (Feasibility Implies Optimality —first version): Given µ ∈ ∆Ω, a posterior-
separable cost function K, and a corresponding Tµ : ∆(supp µ)→ R̄, there exists a one-to-one
function f : Γ̃(µ|K)→ A with image Afµ such that, given γ ∈ Γ̃(µ|K),

Nf(γ)
µ (γ′) ≤ Nf(γ)

µ (γ) = 0, (1.12)

all γ′ ∈ ∆(supp µ). Moreover, given decision problem (µ,A) with A ⊂ Afµ, any (Q, q) ∈
Λ(µ,A) with supp Q ⊂

{
f−1(a)

}
a∈A that deterministically picks actions defined by this

function is optimal,

q(f(γ)|γ) = 1 for all γ ∈ supp Q =⇒ (Q, q) ∈ Λ̂(µ,A|K).

Proof. We define the function satisfying (1.12) in two phases. First we consider interior beliefs
γ with γ(ω) > 0 all ω ∈supp µ (we describe why the same approach will not necessarily work for
boundary posteriors below). We note that since −Tµ(γ) is a strictly concave function, its lower
epigraph is a convex set. Hence (−Tµ(γ), γ) is an upper boundary point of the closure of this lower
epigraph (as detailed when applying the supporting hyperplane theorem in the first paragraph of
Lemma 1). Since (−Tµ(γ), γ) is a boundary point of the closure of E(µ), which inherits convexity, we
can then apply the supporting hyperplane theorem to this point to identify a supporting hyperplane
θ(j) for 0 ≤ j ≤ J − 1 with θ(j) 6= 0 for some j such that, Hence we can apply the supporting
hyperplane theorem at (−Tµ(γ), γ) to identify multipliers β(0) and −β(j) on 1 ≤ j ≤ J − 1, not all
zero, such that,

−β(0)Tµ(γ′)−
J−1∑
j=1

β(j)γ′(j) ≤ −β(0)Tµ(γ)−
J−1∑
j=1

β(j)γ(j), (1.13)

all γ′ ∈ ∆(supp µ).

Given that γ(ω) > 0 all ω ∈supp µ we can mimic the proof in the third paragraph of Lemma
1 above to establish that β(0) 6= 0. It is also not possible that β(0) < 0. To see this suppose this
were so. In this case we could renormalize to β(0) = −1 in (1.13), implying

Tµ(γ′)−
J−1∑
j=1

β(j)γ′(j) ≤ Tµ(γ)−
J−1∑
j=1

β(j)γ(j), (1.14)
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all γ′ ∈ ∆(supp µ). Given that γ(ω) > 0 all ω ∈supp µ, we can find two distinct beliefs γ′1, γ′2 ∈
∆(supp µ) such that γ =

γ′1+γ
′
2

2 . Averaging inequality (1.14) applied to each of γ′1, γ
′
2 separately,

we conclude that,

Tµ(γ′1)−
J−1∑
j=1

β(j)γ′1(j) + Tµ(γ′2)−
J−1∑
j=1

β(j)γ′2(j)

2
=

Tµ(γ′1) + Tµ(γ′2)

2
−
J−1∑
j=1

β(j)γ(j)

≤ Tµ(γ)−
J−1∑
j=1

β(j)γ(j).

We conclude therefore that,

0.5Tµ(γ′1) + 0.5Tµ(γ′2) ≤ Tµ(γ) = Tµ(
γ′1+γ

′
2

2
), (1.15)

which contradicts strict convexity of Tµ.

With β(0) > 0, we can renormalize to β(0) = 1 in (1.13) and flip signs to conclude that,

Tµ(γ′) +
J−1∑
j=1

β(j)γ′(j) ≥ Tµ(γ) +
J−1∑
j=1

β(j)γ(j). (1.16)

all γ′ ∈ ∆(supp µ). Now define action f(γ) ∈ A so that, for 1 ≤ k ≤ J ,

fγ(k) =


Tµ(γ) +

J−1∑
j=1

β(j)γ(j)− β(k) for 1 ≤ k ≤ J − 1;

Tµ(γ) +
J−1∑
j=1

β(j)γ(j) for k = J ;

.

where fγ(k) is the k-th coordinate of f(γ). By construction note that,

Nf(γ)
µ (γ) =

J∑
k=1

fγ(k)γ(k)− Tµ(γ)

=

J−1∑
k=1

Tµ(γ) +

J−1∑
j=1

β(j)γ(j)− β(k)

 γ(k) +

Tµ(γ) +

J−1∑
j=1

β(j)γ(j)

 γ(J)− Tµ(γ)

= Tµ(γ) +
J−1∑
j=1

β(j)γ(j)−
J−1∑
k=1

β(k)γ(k)− Tµ(γ)

= 0.
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Also by construction note that for any γ′ ∈ ∆(supp µ),

Nf(γ)
µ (γ′) ≡

J∑
k=1

fγ(k)γ′(k)− Tµ(γ′)

=

J−1∑
k=1

Tµ(γ) +

J−1∑
j=1

β(j)γ(j)− β(k)

 γ′(k) +

Tµ(γ) +

J−1∑
j=1

β(j)γ(j)

 γ′(J)− Tµ(γ′)

= Tµ(γ) +

J−1∑
j=1

β(j)γ(j)−
[
Tµ(γ′) +

J−1∑
k=1

β(k)γ′(k)

]
≤ 0,

where the last inequality derives directly from equation (1.16).

Given a boundary posterior γ ∈supp Q with γ(ω) = 0 some ω ∈supp µ we cannot guarantee
that the multiplier β(0) in (1.13) is non-zero (costs based on Shannon mutual information are a
counterexample). The remaining cases therefore involve boundary posteriors that are part of an
optimal strategy for some decision problem - i.e. γ ∈ Γ̃(µ|K). By definition there exists a decision
problem (µ,A) and an optimal strategy (Q, q) ∈ Λ̂(µ,A) with γ ∈supp Q. Hence by the Lemma 1
there exists θ ∈ RJ−1 such that, for any a with q(a|γ) > 0,

J∑
j=1

a(j)γ′(j)− Tµ(γ′)−
J−1∑
j=1

θ(j)γ′(j) = Na
µ(γ′)−

J−1∑
j=1

θ(j)γ′(j)

≤ Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j) =

J∑
j=1

a(j)γ(j)− Tµ(γ)−
J−1∑
j=1

θ(j)γ(j)

all γ′ ∈ ∆(supp µ). Rearrangement yields,

J∑
j=1

a(j)γ′(j)−
J−1∑
j=1

θ(j)γ′(j)−

 J∑
j=1

a(j)γ(j)−
J−1∑
j=1

θ(j)γ(j)

+ Tµ(γ)− Tµ(γ′) ≤ 0. (1.17)

Now define action f(γ) ∈ A so that,

fγ(k) =


a(k)− θ(k)−

 J∑
j=1

a(j)γ(j)−
J−1∑
j=1

θ(j)γ(j)− Tµ(γ)

 for 1 ≤ k ≤ J − 1;

a(J)−

 J∑
j=1

a(j)γ(j)−
J−1∑
j=1

θ(j)γ(j)− Tµ(γ)

 for k = J.

By construction, given γ′ ∈ ∆(supp µ),

Nf(γ)
µ (γ′) =

J∑
j=1

a(j)γ′(j)−
J−1∑
j=1

θ(j)γ′(j)−

 J∑
j=1

a(j)γ(j)−
J−1∑
j=1

θ(j)γ(j)− Tµ(γ)

− Tµ(γ′) ≤ 0,
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by (1.17). It is direct that this value is zero at γ′ = γ,

Nf(γ)
µ (γ) =

J∑
j=1

a(j)γ(j))−
J−1∑
j=1

θ(j)γ(j)−

 J∑
j=1

a(j)γ(j)−
J−1∑
j=1

θ(j)γ(j)− Tµ(γ)

− Tµ(γ) = 0.

Hence we have established existence of a function f :int∆(supp µ) ∪ Γ̃(µ|K) → A with the
properties called for in (1.12). We define Afµ as the union of these actions,

Afµ = ∪int∆(supp µ)∪Γ̃(µ|K)f(γ).

We now pick an arbitrary Bayes’consistent distribution for prior µ, Q ∈ Q(µ) with suppQ ⊂int∆(supp
µ) ∪ Γ̃(µ|K) and consider the decision problem (µ,A) with ∪γ∈supp Qf(γ) ⊂ A ⊂ Afµ. We then
specify the strategy (Q, q) ∈ Λ(µ,A) that deterministically picks the action defined by this function,

q(f(γ)|γ) = 1,

all γ ∈supp Q.

We show now that (Q, q) ∈ Λ̂(µ,∪γ∈supp Qf(γ)). This follows from the suffi ciency aspect of the
Lagrangian Lemma (Lemma 1) with θ(j) = 0 ∀ 1 ≤ j ≤ J − 1. What we need to establish is that,

Nf(γ′)
µ (γ′′) ≤ Nf(γ)

µ (γ).

all γ, γ′ ∈supp Q and γ′′ ∈ ∆(supp µ). This is immediate from the construction since,

Nf(γ′)
µ (γ′′) ≤ Nf(γ′)

µ (γ′) = Nf(γ)
µ (γ) = 0.

At this point application of the Lagrangian lemma establishes that indeed (Q, q) ∈ Λ̂(µ,∪γ∈supp Qf(γ)).
To complete the proof, note that the 1-1 nature of f(γ) follows since otherwise there exists an op-
timal strategy that selects the same action at two different posteriors. Given that Tµ is strictly
convex, it would strictly lower costs without changing gross expected utility to pool the two poste-
riors and take this action only at the corresponding weighted average posterior.

The theorem is proved by finding a supporting hyperplane at each observed posterior and
constructing a problem that satisfies the Lagrangian lemma. An immediate implication is that the
set of observed posteriors, Γ̃, is equal to the set of posteriors at which Tµ is subdifferentiable, Γ̂.

Corollary 1.1: Γ̂(µ|K) = Γ̃(µ|K).

As a convex function is subdifferentiable on the interior of its effective domain (Rockafellar
[970], Theorem 23.4), it follows that int∆(supp µ) ⊂ Γ̃(µ|K).

Corollary 1.2: int∆(supp µ) ⊂ Γ̃(µ|K).

Together Lemma 1.1, Corollary 1.1 and Corollary 1.2 imply Lemma 2 in the text of the paper.

Lemma 2 (Feasibility Implies Optimality —final version): Fix µ ∈ ∆Ω and a posterior-
separable cost function K then
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1. Given Q ∈ Q(µ) such that γ ∈supp Q implies γ ∈ Γ̂(µ|K), there exist A and q such that
(Q, q) ∈ Λ̂(µ,A|K) and each action a ∈ A is chosen deterministically from one posterior
γ ∈supp Q.

2. Given γ ∈ Γ̂(µ|K), it is always possible to find an action a ∈ A such that for all
γ′ ∈ ∆supp µ we have Na

µ(γ′) ≤ 0 with equality if γ′ = γ.

3. int(∆(supp µ)) ⊂ Γ̂(µ|K).

1.3.3 Continuity

Convex functions are continuous on the interior of their effective domain, but may be discontinuous
on the boundary. The following lemma states that if D has a posterior-separable representation
K, then, without loss of generality, we may take Tµ to be continuous on the boundary. It rests on
a direct implication of existence of a representation of the data, which is that all decision problems
have solutions, since behavior is always observed. Note that we allow the cost function to be
infinite, so that the limit below can correspondingly be infinity.

Lemma 3 (Continuity): Consider a data set with D a posterior-separable representation

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ).

Let
K̂(µ,Q) =

∑
γ∈supp Q

Q(γ)T̂µ(γ).

where T̂µ(γ̄) = Tµ(γ̄) for all γ̄ ∈int(∆(supp µ)) and for γ̄ on the boundary,

T̂µ(γ̄) = lim
γ→γ̄

Tµ(γ) ∈ R̄+,

where the limit is taken with respect to γ ∈int(∆(supp µ)). Then K̂ also represents D.

Proof. Fix an arbitrary prior µ and and consider an arbitrary posterior γ̄ on the boundary
of ∆(supp µ), γ̄ ∈ ∂ (∆ (supp µ)) , such that T (γ̄) 6= T̂µ(γ̄) = limγ→γ̄ Tµ(γ) for γ ∈int(∆(supp
µ)). Since T is discontinuous at γ̄, T is not subdifferentiable at γ̄. It follows from Corollary 1.1
that γ̄ 6∈ Γ̂(µ|K). If also γ̄ 6∈ Γ̂(µ|K̂) then this discontinuity does not affect the ability of K̂ to
represents D. Therefore suppose γ̄ ∈ Γ̂(µ|K̂) and consider γ′ = µ−αγ

1−α . For a suitable choice of α,

γ′ ∈int(∆(supp µ)), and hence by Corollary 1.2, γ′ ∈ Γ̂(µ|K̂). Since both γ̄ and γ′ are in Γ̂(µ|K̂),
Feasibility Implies Optimality (Lemma 1.2) states that there exists a problem a decision problem
(µ,A) with two actions and an optimal policy (Q, q) ∈ Λ̂(µ,A|K̂) such that supp Q = {γ̄, γ′} and
each action is chosen from one of these two posteriors. Let ā denote the action chosen from γ̄ and
a′ the action chosen from γ′.

Now consider P(µ,A) ∈ D with revealed policy (Q,q). Since there are two actions we may
suppose that there are at most two revealed posteriors: γ ā and γa′ . Since K represents D and
γ̄ 6∈ Γ̂(µ|K), neither γ ā nor γa′ is equal to γ̄. Since (Q, q) ∈ Λ̂(µ,A|K̂), and (Q,q) is feasible,
V (Q, q|µ,A, K̂) ≥ V (Q,q|µ,A, K̂). If this inequality is strict then the continuity of K̂ implies
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that there exist better choices than (Q,q) in the neighborhood of (Q, q), a contradiction. Hence
V (Q, q|µ,A, K̂) = V (Q,q|µ,A, K̂) or

Qγ̄ (ā · γ̄)+Qγ′(a
′ ·γ′)−Qγ̄Tµ(γ̄)−Qγ′Tµ(γ′) = Qγā (ā · γ ā)+Qγa′ (a

′ ·γa′)−Qγ̄Tµ(γ ā)−Qγ′Tµ(γa′)

Construct the policy (Q̃, q̃) so that ā is chosen from the posterior Qγ̄ γ̄+Qγāγā
Qγ̄+Qγā

with probability
Qγ̄+Qγā

2 and
Qγγ′+Qγa′γa′
Qγ̄+Qγa′

with probability
Qγ′+Qγa′

2 . This policy has gross expected utility,

Qγ̄ + Qγā

2

(
ā ·

Qγ̄ γ̄ + Qγāγ ā
Qγ̄ + Qγā

)
+
Qγ′ + Qγa′

2

(
a′ ·

Qγ′ + Qγa′

2

)
,

which is the equally weighted average of that associated with (Q, q) and (Q,q). The cost of this
strategy is correspondingly,

Qγ̄ + Qγā

2
T̂µ

(
Qγ̄ γ̄ + Qγāγ ā
Qγ̄ + Qγā

)
+
Qγ′ + Qγa′

2
T̂µ

(
Qγγ

′ + Qγa′γa′

Qγ̄ + Qγa′

)
,

Given the strict convexity of T̂µ the cost of this policy is strictly less than the equally weighted
average of that associated with (Q, q) and (Q,q). Hence the value of this strategy is strictly higher
than the weighted average of the two supposedly optimal policies (Q,q) and (Q, q)

V (Q̃, q̃|µ,A, K̂) >
V (Q,q|µ,A, K̂) + V (Q, q|µ,A, K̂)

2
.

Given that V (Q, q|µ,A, K̂) = V (Q,q|µ,A, K̂) , this contradicts the assumption that (Q, q) is
optimal given K̂ and establishes the lemma.

2 Proof of Theorem 1

Theorem 1 states that the axiom Locally Invariant Posteriors is necessary and suffi cient for a data
set with a posterior separable representation to have a uniformly posterior separable representation.
We reproduce the definitions of uniform posterior separability, Locally Invariant Posteriors, and
the theorem here.

Definition 3 A posterior-separable cost function K is uniformly posterior separable, if for
each finite subset Ω̄ ⊂ Ω there exists a strictly convex function TΩ̄ : ∆(Ω̄) → R̄ such that, for all
µ ∈ ∆(Ω) and Q ∈ Q(µ),

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tsupp µ(γ)− Tsupp µ(µ).

Axiom 1 Locally Invariant Posteriors: Consider any decision problem (µ,A) and state de-
pendent stochastic choice data P(µ,A) ∈ D(µ,A) with revealed strategy (Q,q) such that q is
deterministic in the sense that for all γ ∈ supp Q there exists a ∈ A such that q(a|γ) = 1.
Consider (Q′, q′) with

∑
γ∈ supp Q′

γQ′(γ) = µ′. If supp Q′ ⊂supp Q, supp µ′ =supp µ,and

q′(γ) = q(γ) for all γ ∈supp Q′, then P(Q′,q′) ∈ D(µ′,A).
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Theorem 1: A data set D with a posterior-separable representation has a uniformly posterior-
separable representation if and only if it satisfies Locally Invariant Posteriors (Axiom 1).

As a preliminary observation, we note that, related to any posterior separable cost function is
a class of representations based on affi ne transforms of Tµ. This class is identified in the following
remark.

Remark 2 Let K be a posterior-separable cost function with associated Tµ : ∆(supp µ) → R̄
for some µ ∈ ∆(Ω). Given α ∈ R and β ∈ R|supp µ|, define T̂µ : ∆(supp µ)→ R̄ as

T̂µ(γ) =

{
∞ if Tµ(γ) =∞

Tµ(γ) + α+ β · γ otherwise

Then
K(µ,Q) =

∑
γ∈supp Q

Q(γ)T̂µ(γ)− T̂µ(µ)

2.1 Theorem 1: Suffi ciency

Theorem 1 (Suffi ciency) A data setD with a posterior-separable representation has a uniformly
posterior-separable representation if it satisfies Locally Invariant Posteriors (Axiom 1).

Proof. The result relates to a fixed set of possible states which we will refer to for simplicity as Ω̄.
We establish the result by defining µ1 be the uniform prior over Ω and picking any distinct prior
µ2 with the same support. We identify the corresponding strictly convex functions Ti : ∆Ω̄ → R
for which,

K(µi, Q) =
∑

γ∈supp Q
Q(γ)Ti(γ),

where K is the posterior-separable cost function in the representation of D. We will use Ki to refer
to K(µi, .).

On the basis of Remark 2, the proof strategy involves showing that Locally Invariant Posteriors
implies two things. First, T2 is a strictly positive affi ne transform of T1 for all γ that are optimal
in some decision problem from both both µ1 and µ2. Second the set of never optimal posteriors is
the same for both priors, meaning that we can without loss of generality set the cost of these to be
infinite according to both T1 and T2. Remark 1 then implies that, for any Q ∈ Q(µ2)

K(µ2, Q) =
∑

γ∈supp Q
Q(γ)T2(γ) =

∑
γ∈supp Q

Q(γ)T1(γ)− T1(µ2),

completing the proof.

Both parts of the proof rely on the construction of 1 ≤ k ≤ J = |Ω| interior “basis”posteriors
that allow us to construct distributions Q̄1 and Q̄2 over them that generate both µ1 and µ2. To do
this, we weight together the unit posteriors ek with 1 in position k and zeroes elsewhere with the
uniform posterior ē that puts probability 1/J on each state, to arrive at a set of interior posteriors
γ̄k ∈ ∆Ω̄ that span (in the linear algebra sense) the set ∆Ω̄ and that contain µ1 and µ2 in the
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interior of their convex hull, which is possible since we know that µ1 and µ2 are both interior to
∆Ω̄. Technically, we find δ ∈ (0, 1) such that, when we define the corresponding posteriors γ̄δk for
1 ≤ k ≤ J ,

γ̄δk(j) =

{
δ
J + (1− δ) if k = j;

δ
J if k 6= j .

(2.1)

the unique probability weights Q̄i(k) for i = 1, 2 and 1 ≤ k ≤ J with
J∑
k=1

Q̄i(k) = 1 that re-weight

the posteriors to regenerate each prior,

J∑
k=1

γ̄δkQ̄i(γ̄
δ
k) = µi;

are all strictly positive, Q̄i(γ̄δk) > 0 for i = 1, 2 and 1 ≤ k ≤ J . This can be done by setting
δ such that 0 < δ

J < minj=1..J {min {µ1(j), µ2(j)}}, where the latter term is greater than 0 by
construction. Going forward we suppress the δ parameter and set γ̄δk = γ̄k.

Note that, as these basis vectors are interior, by Corollary 1.2 they must be optimal in some
decision problem for both µ1 and µ2 - i.e. γ̄k ∈int∆Ω̄ implies γ̄k ∈ Γ̂(µ1|K) and γ̄k ∈ Γ̂(µ2|K)

We focus on prior µ1 and invoke from Feasibility Implies Optimality (Lemma 1,2), the 1-1
function f : Γ̂(µ1|K) → A with f(γ̄k) ≡ f̄k for 1 ≤ k ≤ J such that, when we substitute into the
corresponding net utility function,

N f̄k
1 (γ′) ≤ N f̄k

1 (γ̄k) = 0,

all γ′ ∈ ∆Ω̄. Defining Ā = ∪kf(γ̄k), Feasibility Implies Optimality then implies that the strategy
(Q̄1, q̄1) ∈ Λ(µ1, Ā|K1) having posteriors supp Q̄1 = ∪Jk=1γ̄k, placing probability weights on them
according to Q̄1, and involving deterministic choice at each possible posterior of the corresponding
action,

Q̄1(γ̄k) = Q̄1(k) > 0;

q̄1(f̄k|γ̄k) = 1.

is an optimal strategy,
(Q̄1, q̄1) ∈ Λ̂(µ1, Ā|K1)

Note that since K1 represents the data and (Q̄1, q̄1) ∈ Λ̂(µ1, Ā|K1), the corresponding SDSC data
satisfies P(Q̄1,q̄1) ∈ D(µ1, Ā). Let (Q1,q1) be the corresponding revealed strategy. Note that the
one-to-one nature of the function f means that each action in Ā is chosen from exactly one posterior,
meaning that the set of revealed posteriors is the same as those used in the strategy - i.e. supp
Q1 =supp Q̄1 - and q̄1 is deterministic - i.e. q1(f(γ̄k)|γ̄k) = 1 ∀ γ̄k ∈int∆Ω̄.

We now consider the strategy (Q̄2, q̄2) which has the same possible posteriors, the same de-
terministic choice at each possible posterior, yet places probability weights on them according to
Q̄2,

Q̄2(γ̄k) = Q̄2(k).

Since supp Q̄2 ⊂supp Q1, supp µ1 =supp µ2, and q̄2 has the same deterministic choice strategy as
q1, Locally Invariant Posteriors implies that P(Q̄2,q̄2) ∈ D(µ2, Ā).
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It is straightforward to show that (Q̄2, q̄2) ∈ Λ̂(µ2, Ā|K2). Note first that sinceD has a posterior-
separable representation, there is an optimal strategy so that Λ̂(µ2, Ā|K2) is non-empty. Moreover,
that optimal strategy must generate the data P(Q̄2,q̄2). What is unique about (Q̄2, q̄2) is that each
action is chosen at only one posterior. Any alternative strategy to (Q̄2, q̄2) that produces the same
data must have at least one action chosen at strictly more than one posterior. By strict convexity
of T and linearity of EU, one can strictly improve upon this by using the strategy that coalesces
choice onto the average of these. Hence indeed (Q̄2, q̄2) ∈ Λ̂(µ2, Ā|K2).

The Lagrangian Lemma then ensures there are multipliers θ ∈ RJ−1 s.t. for 1 ≤ k, l ≤ J

N f̄k
2 (γ̄k)−

J−1∑
j=1

θ(j)γ̄k(j) = N f̄l
2 (γ̄l)−

J−1∑
j=1

θ(j)γ̄l(j);

or,
J∑
j=1

f̄k(j)γ̄k(j)− T2(γ̄k)−
J−1∑
j=1

θ(j)γ̄k(j) =
J∑
j=1

f̄l(j)− T2(γ̄l)−
J−1∑
j=1

θ(j)γ̄l(j). (2.2)

By construction of the function f we know that N f̄k
1 (γ̄k) = N f̄l

1 (γ̄l) = 0 and so,

T1(γ̄k) =
J∑
j=1

f̄k(j)γ̄k(j); and,

T1(γ̄l) =

J∑
j=1

f̄l(j)γ̄l(j).

Substitution in (2.2) yields,

T1(γ̄k)− T2(γ̄k)−
J−1∑
j=1

θ(j)γ̄k(j) = T1(γ̄l)− T2(γ̄l)−
J−1∑
j=1

θ(j)γ̄l(j).

Hence, for all 1 ≤ k, l ≤ J,

J−1∑
j=1

θ(j) [γ̄k(j)− γ̄l(j)] = T1(γ̄k)− T2(γ̄k)− T1(γ̄l) + T2(γ̄l). (2.3)

We show now that these equations have unique solutions. Setting k = j and l = J , note that
posteriors γ̄j and γ̄J differ by δ > 0 in coordinates j and J and are otherwise the same. Hence,

J−1∑
k=1

θ(k)
[
γ̄j(k)− γ̄J(k)

]
= δθ(j).

This allows us to precisely pin down θ(j) in terms of the given functions T1(γ̄) and T2(γ̄) and δ as
defined in (2.1),

θ(j) =
T1(γ̄j)− T2(γ̄j)− T1(γ̄J) + T2(γ̄J)

δ̄
,
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The next key claim is that with Lemma 1.2 the equation above applies not only to the spanning
posteriors but to all pairs of posteriors, γ, γ′ ∈ Γ̂(µ1|K). To see this, set γ = γ̄J+1 and γ

′ = γ̄J+2

and repeat the above argument for the larger set of posteriors ∪J+2
k=1 γ̄k and the corresponding actions

defined by f : Γ̂(µ1|K)→ A as identified in Lemma 1.2,

B̄ = Ā ∪ f(γ) ∪ f(γ′).

We now identify strictly positive probability weights Q′i(k) for i = 1, 2 on 1 ≤ k ≤ J + 2 that
re-weight the posteriors to regenerate each prior,

J+2∑
k=1

γ̄kQ
′
i(k) = µi.

This is possible because the vectors γ̄k span ∆Ω̄, so that there are weights α(k) and α′(k) on them
that average back to each of γ,γ′:

J∑
k=1

α(k)γ̄k = γ;

J∑
k=1

α′(k)γ̄k = γ′

Note also these weights must sum to 1, as

1 =
∑
ω∈Ω

γ(ω) =
∑
ω∈Ω

J∑
k=1

α(k)γ̄k(ω) =
J∑
k=1

α(k)
∑
ω∈Ω

γ̄k(ω) =
J∑
k=1

α(k).

Moreover, for all ε > 0 and for i = 1, 2,

ε
(
γ + γ′

)
+

J∑
k=1

γk
[
Q̄i(k)− ε

[
α(k) + α′(k)

]]
= µi.

Given that Q̄i(k) > 0 all k, we can select ε small enough to keep all terms

Q̄i(k)− ε
[
α(k) + α′(k)

]
,

strictly positive, as required. Thus, we define new weights by setting Q′i(k) equal to the above
expression for 1 ≤ k ≤ J , and equal to ε for J + 1 and J + 2. Repeating the entire remainder of
the argument, we apply the Lagrangian Lemma to ensure the existence of multipliers defined by
η ∈ RJ−1 that produce the corresponding equality for all possible posteriors, hence in particular
for γ and γ′:

T1(γ)− T2(γ)−
J−1∑
j=1

η(j)γ(j) = T1(γ′)− T2(γ′)−
J−1∑
j=1

η(j)γ′(j).

A key observation is that the multipliers on the larger set are identical to those on the smaller set,
η = θ. To see this, note that the equality conditions that uniquely pin down θ(j) also characterize
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η(j). This implies that, for any γ, γ′ ∈ Γ̂(µ1|K),

T2(γ) = T1(γ)−

T1(γ′)− T2(γ′)−
J−1∑
j=1

θ(j)γ′(j)

− J−1∑
j=1

θ(j)γ(j)

= T1(γ) +H12(γ′)− θ.γ,

where H12(γ′) = −
[
T1(γ′)− T2(γ′)−

∑J−1
j=1 θ(j)γ

′(j)
]
∈ R is independent of γ. This establishes

that, on the subdomain Γ̂(µ1|K), T2 can be obtained by adding an affi ne function of γ to T1 :
Γ̂(µ1|K)→ R̄ so that we can define,

T ′2(γ) = T2(γ) +H12(γ′)− θ.γ = T1(γ);

on the domain of posteriors that are ever optimal from µ1.

The final observation is that the above argument ensures that any posteriors that are ever
optimal at µ1 must also be be chosen, and therefore optimal, in some decision problem for µ2 -
i.e. Γ̂(µ1|K) ⊂ Γ̂(µ2|K). However, the argument can also be reversed to ensure that Γ̂(µ1|K) ⊃
Γ̂(µ2|K), and so the two sets are equal. Thus, we can set T1(γ) = T2(γ) = ∞ for any γ ∈
∆Ω̄/Γ̂(µ1|K). Remark 2 can then be applied to complete the proof.

2.2 Theorem 1: Necessity

Theorem 1 (Necessity) A data set D with a posterior-separable representation has a uniformly
posterior-separable representation only if it satisfies Locally Invariant Posteriors (Axiom 1).

Proof. We first note that, an obvious corollary of the Lagrangian Lemma is that, if a cost function
is uniformly posterior-separable, for any decision problem (µ,A), (Q, q) ∈ Λ̂(µ,A|K) if and only if
∃θ ∈ RJ−1 such that, given γ ∈supp Q and a ∈ A with q(a|γ) > 0,

Na′
supp µ(γ′)−

J−1∑
j=1

θ(j)γ′(j) ≤ Na
supp µ(γ)−

J−1∑
j=1

θ(j)γ(j), (2.4)

all γ′ ∈ ∆(supp µ) and a′ ∈ A, where

Na
supp µ(γ) ≡ u(γ, a)− Tsupp µ(γ).

Now consider any decision problem (µ,A) and state dependent stochastic choice data P(µ,A) ∈
D(µ,A) with deterministic revealed strategy (Q, q) = (QP(µ,A)

,qP(µ,A)
). Note that since this is

a posterior-separable representation and P(µ,A) ∈ D(µ,A) the corresponding revealed strategy is
optimal, since any other strategy that produces this data involves picking the same action at two
different posteriors, hence cannot be optimal. Hence,

(Q, q) ∈ Λ̂(µ,A|K).

Let θ ∈ RJ−1 be the multipliers that satisfy the inequalities defined in (2.4) above. Now consider
(Q′, q′) with supp Q′ ⊂supp Q and supp µ′ = supp µ, and the same deterministic choice strategy
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as qP(µ,A)
at all γ ∈supp Q′. Noting that supp µ′ = supp µ implies that Na

supp µ(γ) = Na
supp µ′(γ)

for all γ ∈ ∆(supp µ) = ∆(supp µ′), these conditions imply that, given γ ∈supp Q′ and a ∈ A with
q′(a|γ) > 0,

Na′
supp µ′(γ

′)−
J−1∑
j=1

θ(j)γ′(j) ≤ Na
supp µ′(γ)−

J−1∑
j=1

θ(j)γ(j)

all γ′ ∈ ∆(supp µ) and a′ ∈ A, guaranteeing that (Q′, q′) ∈ Λ̂(µ′, A|K)

Since the data has a posterior-separable representation, we know therefore that P(Q′,q′) ∈
D(µ′,A). Moreover, as we know that (Q′, q′) implies picking distinct actions at each posterior
P(Q′,q′) = P(Q′,q′), completing the proof.

3 Proof of Theorem 2

Theorem 2: A data set D with a posterior-separable representation has an invariant posterior-
separable representation if and only if it satisfies Invariance under Compression (Axiom 2).

We begin by defining terms. We then prove suffi ciency and necessity, in turn. We close the
section by showing that Invariance under Compression, or equivalently an invariant posterior-
separable cost function, implies that the cost function K is symmetric.

3.1 Definitions

3.1.1 Invariant Cost Functions

Consider a fixed state space Ω̄ ⊂ Ω of finite dimension, and consider a partition of Ω̄ into disjoint
events {Ω̄z}z=1,...Z such that Ω̄i ∩ Ω̄j = ∅ and ∪iΩ̄i = Ω̄. Consider µ such that µ(Ω̄z) > 0 for all
Ω̄z, and Q ∈ Q(µ). Define the function νΩ̄z ,µ : Q(µ) → Q(µ) as follows. For each γ ∈supp Q,
construct γ′ such that γ′ assigns the same probability to each subset Ω̄z,

γ′(Ω̄z) ≡
∑
ω∈Ω̄z

γ′(ω) =
∑
ω∈Ω̄z

γ(ω) ≡ γ(Ω̄z), (3.1)

and within each subset Ω̄z, the conditional probability of each state is equal to that of the prior,

γ′(ω|Ω̄z) = µ(ω|Ω̄z) (3.2)

Finally let
Q′(γ′) = Q(γ) (3.3)

where γ is the posterior in Q used in the construction of γ′. Then Q′ = νΩ̄z ,µ(Q). It will be useful
to use the notation νΩ̄z ,µγ for γ

′ constructed as above.

Definition 4 A cost function K is invariant if for all finite sets of states Ω̄ ⊂ Ω, all partitions of
Ω̄, all pairs of priors µ and µ′ that place equal probability on each partition subset, and all feasible
strategies Q ∈ Q(µ):

K(µ,Q) ≥ K(µ, νΩ̄z ,µ(Q))
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and
K(µ, νΩ̄z ,µ(Q)) = K(µ̄, νΩ̄z ,µ̄(Q)).

A cost function is invariant posterior-separable if it is both invariant and posterior-separable.

3.1.2 Basic Forms

Our second theorem states that a single invariance axiom takes us from a posterior-separable
representation to an invariant posterior-separable representation. This axiom insists that choices
not change when payoff equivalent states are “compressed” into a single state. In a sense, the
payoffs are what define the states that are relevant for choice. Having multiple states with similar
payoffs has no effect on the propensity for any action to be chosen. We first define compression
and then present out axiom.

Consider a set of actions A, and label these actions (a1, . . . aN ). Let A(ω) = (a1(ω), . . . aN (ω))
denote the vector of payoffs in state ω. We say that a decision problem (µ̄, A) is a reduction
of (µ,A) if (1) the support of µ̄ is contained in the support of µ, supp µ̄ ⊂supp µ, and (2) the
probability of each payoff profile is the same under both measures, µ̄{ω|A(ω) = f} = µ{ω|A(ω) =
f} for all observed payoff vectors f . The idea of a reduction is that we have reduced the number
of states with strictly positive probability (point 1) without altering the frequency with which any
vector of outcomes is observed (point 2). We say that a decision problem (µ,A) is basic if there
exists no decision problem (µ̄, A) that is a reduction of (µ,A). Intuitively, basic decision problems
are those in which no two states have the same profile of payoffs. Let B(µ,A) denote the set of
basic decision problems that are reductions of (µ,A). We will call elements of B(µ,A) basic forms
of (µ,A).

The following characterization of basic forms is useful in the proof

Lemma 3.1 Given (µ,A), (µ̄, A) ∈ B(µ,A) if and only if:

1. There exists a partition {Ωz}1≤l≤L of supp µ ∈ Ω such that given ω ∈ Ωl and ω′ ∈ Ωm,

l = m iff a(ω) = a(ω′) for all a ∈ A.

2. There exists a selection ξ : {Ωz}1≤z≤Z → Ω such that ξ(Ωz) ∈ Ωz such that

µ̄(ω) =

{ ∑
ω′∈Ωz

µ(ω′) if ω = ξ(Ωz)

0 otherwise

Proof. Immediate.

Given a decision problem (µ,A), Point 1 states that the payoff equivalent, or redundant, states
define a partition {Ωz}1≤z≤Z of the support of µ. Point 2 defines a mapping ξ which selects a state
from each subset Ωz. All of the prior probability of Ωz is assigned to this state.
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3.1.3 Invariance under Compression

Our Invariance under Compression axiom insists that patterns of choice are equivalent in all decision
problems with a common basic form. Given a decision problem (µ,A) and a basic form (µ̄, A) ∈
B(µ,A), we can define a reduction mapping ξ :supp µ→supp µ̄ which assigns to each state in the
support of µ the unique state in of the support of µ̄ with the same payoff profile: A(ω) = f implies
A(ξ(ω)) = f . Invariance under Compression states that the observed frequency of action a in state
ω in the decision problem (µ,A) is the same as the observed frequency of action a in state ξ(ω) in
the basic form (µ̄, A).

Axiom 2 Invariance under Compression: Given any (µ,A) and (µ̄, A) such that (µ̄, A) ∈
B(µ,A), then P(µ,A) ∈ D(µ,A) if and only if there exists P̄(µ̄,A) ∈ D(µ̄,A) s.t. P(µ,A)(a|ω) =
P̄(µ̄,A)(a|ξ(ω)), for all ω ∈supp µ.

While we state the axiom in terms of a decision problem and its basic form, an immediate
implication is that behavior is similar in any two problems that share a basic form. Given (µ1, A)
and (µ2, A) with a common basic form (µ̄, A) and the associated reduction mappings ξ1 and ξ2,
P(µ1,A)(a|ω) = P(µ2,A)(a|ω′) whenever ξ1(ω) = ξ2(ω′). The axiom therefore relates all problems
with comparable payoff profiles.

3.2 Theorem 2: Suffi ciency

Theorem 2 (Suffi ciency): A data set D with a posterior-separable representation has an invari-
ant posterior-separable representation if it satisfies Invariance under Compression (Axiom
2).

Proof. Suppose that D has a posterior-separable representation, then D has representation with
a cost function

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ)

where Tµ is a strictly convex function. Suppose further that D satisfies Invariance under Compres-
sion, we show that the cost function K must be invariant.

Fix an arbitrary set of states Ω̄ and an consider an arbitrary partition of Ω̄,
{

Ω̄z

}
1≤z≤Z . Consider

two priors µ and µ′ that place equal probability on each partition subset, and a feasible strategy
Q ∈ Q(µ). We wish to show that

K(µ,Q) ≥ K(µ, νΩ̄z ,µ(Q)) (3.4)

and
K(µ, νΩ̄z ,µ(Q)) = K(µ̄, νΩ̄z ,µ′(Q)). (3.5)

We begin assuming that all γ ∈supp Q lie in the interior of∆Ω̄. We first consider (3.4). Consider
a selection ξ : {Ωz}1≤l≤L → Ω̄. Let Ω̄ξ denote the image of ξ, and consider the probability density
µ̄ ∈ ∆Ω̄ξ such that

µ̄(ωl) =

{ ∑
ω∈Ωz

µ(ω) if ωl = ξ(Ωz)

0 otherwise
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Consider Q̄ = νΩ̄z ,µ̄(Q) constructed by defining for each γ ∈ Q posterior γ̄(γ) such that

γ̄(ωl) =

{ ∑
ω∈Ωz

µ(ω) if ωl = ξ(Ωz)

0 otherwise

and setting Q̄(γ̄(γ)) = Q(γ). Note that Q ∈ Q(µ) implies Q̄ ∈ Q(µ̄).

Since each γ ∈supp Q lies in the interior of ∆Ω̄, each γ̄ ∈supp Q̄ lies in the interior of ∆supp µ̄.
Corollary 1.2 then implies that the γ̄ ∈ Γ̂(µ̄|K). Feasibility Implies Optimality (Lemma 1.2) then
states that there exists a decision problem (µ̄, A) such that (Q̄, q̄) is the optimal policy (where q̄
associates each each posterior in Q̄ with a single action in A and all actions in A are associated with
some posterior). Also since only payoffs on supp µ̄ are relevant for the decision problem (µ̄, A), we
can choose A such that the payoffs on all states ω ∈ Ωz are identical to the payoff on ξ(Ωz). By
Lemma 3.1, (µ̄, A) is a basic form for (µ,A).

By Invariance under Compression, P(Q̄,q̄) ∈ D implies that there exists P(µ,A) ∈ D such that

P(µ,A)(a|ω) = P(Q̄,q̄)(a|ξ(ω))

for all a ∈ A. Let (Q,q) denote the revealed policy associated with P(µ,A). Since K represents D,
(Q,q) ∈ Λ̂(µ,A|K). By Bayes rule, the posterior associated with the choice of a ∈ A is

γa(ω) =
P(µ,A)(a|ω)µ(ω)

P(a)

It follows that

γa(ω) = γ̄a(ξ(ω))
µ(ω)

µ̄(ξ(ω))

were γ̄a is the posterior associated with action a in the problem (µ̄, A). It follows immediately that
Q = νΩ̄z ,µ(Q). Hence (νΩ̄z ,µ(Q),q) ∈ Λ̂(µ,A|K).

Since (νΩ̄z ,µ(Q),q) is optimal for (µ,A),

V (νΩ̄z ,µ(Q),q|µ,A,K) ≥ V (Q, q|µ,A,K)

where (Q, q) was the strategy that we started with. Note that the expected utility to strategies
(νΩ̄z ,µ(Q),q) and (Q, q) are identical as the posteriors only differ on redundant states. It follows
that

K(µ,Q) ≥ K(µ, νΩ̄z ,µ(Q))

which establishes (3.4).

To establish (3.5), consider also an action a′ that pays off V (Q̄, q̄|µ̄, A,K) in all states of the
world, so that strategy of not learning, (Qµ̄, qµ̄) with Qµ̄(µ̄) = 1 and qµ̄(a′|µ̄) = 1, yields the same
payoff as (Q̄, q̄). Both (Q̄, q̄) and (Qµ̄, qµ̄) are optimal in the augmented problem (µ̄, A ∪ a′).

Now consider the problem (µ,A∪a′). By Invariance under Compression, the strategies (νΩ̄z ,µ(Q),q)
and (νΩ̄z ,µ(Qµ̄), q′µ̄) where q′µ̄(a′|µ) = 1 are both optimal for this problem. Note that by construc-
tion (νΩ̄z ,µ(Qµ̄), q′µ̄) pays V (Q̄, q̄|µ̄, A,K) in all states of the world and has no information cost.
Moreover, by construction the expected utility to (νΩ̄z ,µ(Q),q) is identical to the expected utility
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of (Q̄, q̄). It follows that,
K(µ̄, Q̄) = K(µ, νΩ̄z ,µ(Q))

As µ is an arbitrary prior that places positive probability on each subset Ω̄z, this establishes (3.5).

We now consider the case in which some γ ∈supp Q, lies on the boundary of ∆Ω̄. By Lemma 1.3
we may take K to be continuous on the boundary. (3.4) and (3.5) therefore hold on the boundary
as well.

3.3 Theorem 2: Necessity

Theorem 2 (Necessity) A data set D with a posterior-separable representation has an invariant
posterior-separable representation only if it satisfies Invariance under Compression (Axiom
2).

Proof. Suppose D has a representation with a cost function K that is posterior separable with
strictly convex function Tµ. Suppose that K is invariant. We show that D satisfies Axiom 2.

Consider an arbitrary decision problem (µ,A) with redundant states, and consider a basic form
(µ̄, A) ∈ B(µ,A). Let {Ωz} denote the partition of supp µ into payoff equivalent states and let
ξ : {Ωz} →supp µ denote the selection associated with the basic form (µ̄, A).

Consider an arbitrary optimal strategy (Q, q) ∈ Λ̂ (µ,A). Consider the policy (νΩ̄z ,µ(Q), q′)
where q′ is defined in the natural way as q′(a|γ′) = q(a|γ) where γ′ = νΩ̄z ,µγ. Suppose that
(Q, q) 6= (νΩ̄z ,µ(Q), q′). We will derive a contradiction.

Note that since γ and γ′ only differ on redundant states, the expected utility of (Q, q) and
(Q′, q′) are equal. Since K is invariant, and hence monotonic,

K(µ,Q′) ≤ K(µ,Q).

Since (Q, q) ∈ Λ̂ (µ,A), we must have K(µ,Q′) = K(µ,Q) and (Q′, q′) is optimal as well.

Since Q 6= Q′, consider the policy (Q′′, q′′) which is the convex combination of (Q, q) and
(Q′, q′) formed as follows. Given γ ∈supp Q and α ∈ (0, 1), there exists γ′′ ∈supp Q′′ such
that γ′′ = αγ + (1 − α)νΩ̄z ,µγ. Set (Q′′, q′′) such that for each γ ∈supp Q, Q′′(γ′′) = Q(γ) and
q′′(γ′′) = q(γ). Since Tµ is strictly convex in γ, K(µ,Q′′) < K(µ,Q′) = K(µ,Q). The expected
payoff to (Q′′, q′′) is the same as (Q, q) and (Q′, q′) and the cost is strictly lower. Hence (Q′′, q′′)
dominates both (Q, q) and (Q′, q′) contradicting the assumption that (Q, q) was optimal. It follows
that (νΩ̄z ,µ(Q), q′) is the optimal policy.

Bayes rule then implies that state dependent stochastic choice the same redundant states. Given
ω, ω′ ∈ Ωz,

P (a|ω) =
P (a)γ(ω)

µ(ω)
=
P (a)γ(ω′)

µ(ω′)
= P (a|ω′)

where the second inequality follows from Q = Q′. It follows that the data set satisfies Invariance
under Compression.
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3.4 Symmetry

Our notion of symmetry is based on bijections between sets of states, actions and posteriors. We say
that two probability distributions γ1, γ2 ∈ ∆Ω are symmetric, if there exists a bijection σΩ :supp
γ1 →supp γ2 such that, for all ω ∈supp γ1,

γ1(ω) = γ2(σΩ(ω)).

Correspondingly, we say that two decision problems (µ1, A1) and (µ2, A2) are symmetric if there
exists a bijection σω :supp µ1 →supp µ2 such that, for all ω ∈supp µ1,

µ1(ω) = µ2(σΩ(ω))

and a bijection σA : A1 → A2 such that for b = σA(a)

a(ω) = b(σΩ (ω)).

We say (µ1, Q1) and (µ2, Q2) are symmetric where µ1 and µ2 are priors, Q1 ∈ Q(µ1) and Q2 ∈
Q(µ2), if there exists a bijection σΩ :supp µ1 →supp µ2 such that, for all ω ∈supp µ1,

µ1(ω) = µ2(σΩ(ω))

and a bijection σQ :supp Q1 →supp Q2 such that for γ̂ = σQ(γ)

Q1(γ) = Q2(γ̂)

and
γ(ω) = γ̂(σ(ω))

for all ω ∈supp µ1.

Finally, we say that a cost function K(µ,Q) is symmetric if given two symmetric learning
strategies (µ1, Q1) and (µ2, Q2) imply equal costs, K(µ1, Q1) = K(µ2, Q2).

Lemma 3.2 (Symmetric Costs) If D has a posterior-separable representation K and satisfies
Invariance under Compression, then K is symmetric.

Proof. By Theorem 2, If D has a posterior-separable representation K and satisfies Invariance
under Compression then K is invariant.

Consider symmetric (µ1, Q1) and (µ2, Q2). By assumption there exists a bijection σΩ :supp
µ1 →supp µ2 such that, for all ω ∈supp µ1,

µ1(ω) = µ2(σΩ(ω))

and a bijection σQ :supp Q1 →supp Q2 such that for γ̂ = σQ(γ)

Q1(γ) = Q2(γ̂)

and
γ(ω) = γ̂(σ(ω)).
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Suppose for the moment that supp µ1 and supp µ3 are disjoint. Consider now a third learning
strategy (µ3, Q3) on supp µ1∪supp µ2 such that

µ3(ω) =
1

2
µ1(ω) +

1

2
µ2(ω)

and for all γ ∈supp Q1, there exists γ
′ ∈supp Q3

Q3(γ
′
) = Q1(γ)

and
γ
′
(ω) =

1

2
γ(ω) +

1

2
γ̂(ω)

where γ̂ = σQ(γ). Let γ′ = σ3(γ). Consider also the partition that groups each ω ∈supp µ1

with its image under σΩ, Ωz = {ω, σΩ(ω)}. Note that (µ1, Q1) = (µ1, νΩ̄z ,µ1
(Q3) and (µ2, Q2) =

(µ2, νΩ̄z ,µ2
(Q3)). Invariance implies that

K(µ1, νΩ̄z ,µ1
(Q3) = K(µ2, νΩ̄z ,µ2

(Q3))

It follows that K(µ1, Q1) = K(µ2, Q2) for any given symmetric information strategies (µ1, Q1) and
(µ2, Q2) over disjoint states.

Now if supp µ1 and supp µ3 are not disjoint, we can consider a learning strategy (µ4, Q4) which
is symmetric to both (µ1, Q1) and (µ2, Q2) such that supp µ4 ∩ {supp µ1∪supp µ2} = ∅. By the
above, it follows that

K(µ1, Q1) = K(µ4, Q4) = K(µ2, Q2)

Hence K is symmetric.

4 Proof of Theorem 3

In this section we prove that Axioms 1 and 2 are necessary and suffi cient for a Shannon represen-
tation. We know from Theorems 1 and 2 that Axiom 1 is equivalent to the cost function being
uniformly posterior-separable, and that Axiom 2 is equivalent to the cost function being invari-
ant posterior-separable. Proving that these qualities characterize the Shannon cost function is
equivalent to proving that Axioms 1 and 2 characterize the Shannon cost function.

Theorem 3: The Shannon cost function is unique in that it is invariant and uniformly posterior-
separable.

4.1 Theorem 3: Necessity

Theorem 3 (Necessity): The Shannon cost function is invariant and uniformly posterior-separable.

Necessity is immediate. The Shannon cost function is
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KS
κ (µ,Q) ≡ κ

 ∑
γ∈supp Q

Q(γ)
∑

ω∈supp γ
γ(ω) ln γ(ω)−

∑
ω∈supp µ

µ(ω) lnµ(ω)

 . (4.1)

This is clearly uniformly posterior separable. The Kullback-Leibler divergence is invariant (Amari,
2016 , pp. 54-57). It follows that the Shannon cost function, as the expected Kullback-Leibler
divergence, is invariant.

4.2 Theorem 3: Suffi ciency

Theorem 3 (Suffi ciency): An invariant and uniformly posterior-separable cost function is the
Shannon cost function.

4.2.1 A sketch of the argument

The proof is long and builds on a series of lemmas. We use a result from the information geometry
literature that, when considering probability distributions over a fixed set of states the Kullback-
Leibler divergence is unique in that it is at once invariant, differentiable, and a type of function
known as a Bregman divergence. There are four gaps that lie between the standard result from
information geometry and the suffi ciency statement in Theorem 3. We need to show that Tµ is
differentiable. We need to show that Tµ rather than K is invariant. We need to write Tµ as a
Bregman divergence. Finally, once we have established the form of Tµ for one set of states, we need
to show that that form is constant across states. This boils down to showing that κ is constant
across decision problems. We address each gap in turn. Before we show that Tµ is differentiable,
however, it is useful to show that Tµ is symmetric.

We initially consider a fixed state space Ω̄ ⊂ Ω of cardinality J ≥ 4 and consider priors µ with
support Ω̄. Since K is uniformly posterior separable, we can write

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ)

with
Tµ(γ) = TΩ̄(γ)− TΩ̄(µ)

Since the state space Ω̄ is fixed we will simplify notation and simply write T (γ) for TΩ̄(γ).

While K is unique, T is not. We can add a linear function to T without changing K (See
remark in Appendix Section 1). Since K is invariant, Lemma 4 states that K is symmetric. We
first show that there exists a choice of T that is symmetric (Lemma 4.1).

The proof that T is differentiable rests on two key insights. The first observation is that the
Lagrangian Lemma (Lemma 1) implies that there is a common hyperplane tangent to each of the
net utility functions at each chosen posterior. This links the subdifferentials of the net utility
function at distinct optimal posteriors (Lemma 4.6). If net utility is differentiable, then the partial
derivatives must be equal

Na
(ji)(γ

a) = N b
(ji)(γ

b)

where Na
(ji) is the change in the net utility of action a from raising γ(ωi) and reducing γ(ωj).

26



A second observation is that Invariance under Compression places structure on the sets of
posteriors that can be linked by considering decision problems with equivalent states. In Figure A1,
we illustrate this implication of Invariance under Compression with three states, but the intuition
applies generally. Consider a decision problem with three states (ω1, ω2, ω3) and two actions A =
{a, b}, in which the payoffs in states ω1 and ω2 are equivalent. Figure A1 displays the space of
potential priors and posteriors. Suppose that µ̄1 is the prior in the basic problem in which all of
the combined probability of ω1 and ω2 is assigned to ω1 and µ̄2 is the prior in the case in which
ω2 receives all of the weight. Since µ̄1(ω1) = µ̄(ω2) the line segment connecting these two priors
is parallel to the segment connecting (1, 0, 0) and (0, 1, 0). The line segment connecting µ̄1 and µ̄2

represents the set of potential priors for which,

µ(ω1) + µ(ω2) = µ̄1(ω1) = µ̄2(ω2),

so that (µ̄1, A) and (µ̄2, A) are basic versions of (µ,A).

The above shows that, letting µ to be an arbitrary prior in this set, Invariance under Compres-
sion places restrictions on the relationship between the optimal posteriors for the problems (µ,A),
(µ̄1, A) and (µ̄2, A) (Lemma 4.7). Consider γa. Bayes rule states that γa(ω) = P (a|ω)µ(ω)/P (a).
Invariance under Compression implies that P (a|ω) and P (a) are the same for all µ on the segment
connecting µ̄1 and µ̄2, including µ̄1 and µ̄2 themselves. This implies that as µ moves from µ̄1 to
µ̄2, γ

a and γb are always proportionate to µ. It follows that γa and γb lie at the intersection of a
line through µ and (0, 0, 1), the dashed grey line in the figure, and a line parallel to the segment
connecting (1, 0, 0) and (0, 1, 0), the solid red and blue lines in the figure. γ̄a1 and γ̄

b
1 in the figure

denote the optimal posteriors for (µ̄1, A), and γ̄a2 and γ̄
b
2 the optimal posteriors for (µ̄2, A).

Figure A1: Implications of Compression

These two observations when combined relate the derivatives of T at γa and γb in the Figure.
The Lagrangian Lemma implies that there is a hyperplane tangent to both N(γa) and N(γb).
Suppose that the partial derivatives T(ij)(γ

a) and T(ij)(γ
b) both exist. Since prize-based expected
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utility is linear, the difference between T(ji)(γ
a) and T(ji)(γ

b) must equal u(a, ωi) − u(a, ωj) −
u(b, ωi)+u(b, ωj). Since shifts in µ from µ̄1 to µ̄2, do not affect prize based utility, T(ji)(γ

a)−T(ji)(γ
b)

must be independent of µ whenever both derivatives exist (Lemma 4.8).

Figure A2: The Trapezoid

Consider now two priors µ and µ̂, each lying between µ̄1 and µ̄2. Figure A2 shows that the four
posteriors γa,γb,γ̂a, and γ̂b form a trapezoid. If T is differentiable at all four points we would know
that:2

T(ji)(γ
a)− T(ji)(γ

b) = T(ji)(γ̂
a)− T(ji)(γ̂

b). (4.2)

Equation (4.2) is close to the rectangle condition for additive separability. To apply the rectangle
condition, we deform the simplex so that the trapezoid becomes a rectangle, and then return to
the simplex. This results in the following characterization of the directional derivative which we
state in terms of the dimension J since it requires J ≥ 4 (Lemma 4.16):

T(ji)(γ) = A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(2), ..., γ(J − 1)) , (4.3)

for some functions A : R+ −→ R and B : RJ−2 −→ R, and for all 2 ≤ i 6= j ≤ J − 1. As (4.2)

must hold for a range of γ(1) and γ(J) we can show that A
(

γ(1)
γ(1)+γ(J)

)
must be constant (Lemma

5.17). The symmetry of T then implies that, if T(ji)(γ) does not depend on γ(1) and γ(J), B
cannot depend on any γ(k) other than γ(i) and γ(j) (Lemma 4.18). Finally, we use the fact that
T(ji)(γ) = T(ki)(γ) − T(kj)(γ) whenever the latter are well defined to establish that there exists a
function f on (0, 1) such that for all γ ∈int∆(Ω̄) (Lemma 4.24):

T(ji)(γ) = f(γ(i))− f(γ(j)).

The convexity of T implies that f is monotonic (Lemma 4.24). We complete the proof of differen-
2Lemma 5.12 establishes (4.2) everywhere for the directional derivatives T−→

ji
by finding pairs of differentiable points

that simultaneously converge to the four posteriors γa,γb,γ̂a, and γ̂b.
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tiability by showing that if T(ji)(γ) does not exist, then f is discontinuous at either γ(i) or γ(j),
but this implies that T(ji)(γ̂) does not exist for any γ̂ with γ̂(i) = γ(i) or γ̂(j) = γ(j). But this
contracts observation that T is differentiable along almost all rays such as those from ω3 in Figure
A1.

Given the differentiability of T , we employ the arguments of Hébert and La’0 [2020] to argue
that Tµ is invariant. Our next task is to write Tµ as a Bregman divergence. We do so by taking
limits of Tµ as µ and γ approach the boundary ∂∆Ω̄. At this point we have a differentiable,
invariant, Bregman divergence. The theorem of Jiao, et al. [2015] implies that Tµ is the Kullback-
Leibler divergence. The final step is to use invariance to equate the constant κ in the Shannon cost
function across sets of states Ω̄.

We now turn to the details.

4.2.2 Symmetry of T

As previously stated we work with a fixed state space Ω̄ in sections 4.2.2 through 4.2.4. We will
consider decision problem with priors µ such that supp µ = Ω̄. We assume that the cardinality of
Ω̄ is greater than or equal to four so that we can construct problems with redundant states. To
conserve notation we will write T for Tsupp µ where supp µ = Ω̄. We will also write γ(j) for γ(ωj).

By assumption K has a uniform posterior-separable representation

K(µ,Q) =
∑

Q(γ)T (γ)− T (µ)

We say that T is symmetric if given symmetric γ1 and γ2, T (γ1) = T (γ2).

While the cost function K is unique, the function T is not necessarily unique. The requirement
that

∑
Q(γ)γ = µ implies that we can add any function that is linear in γ to T without affecting

K. Since these linear functions tilt T , most T’s are not symmetric. The next lemma shows that
given any T we can always find a linear function ᾱ · γ so that T̂ (γ) = T (γ)− ᾱ · γ is symmetric.

Lemma 4.1 Given a uniformly posterior-separable cost function K, there exists a symmetric func-
tion T̂ such that K(µ,Q) =

∑
Q(γ)T̂ (γ)− T̂ (µ).

Proof. Since K(µ,Q) is uniformly posterior separable, we can write

K(µ,Q) =
∑

Q(γ)T (γ)− T (µ)

Suppose J ≥ 3, and consider the J distributions γ̄j =
(

1
2(J−1) ,

1
2(J−1) . . .

1
2 . . .

1
2(J−1)

)
where

the 1/2 is in the jth place. Let µ̄ denote the uniform distribution on Ω̄. Consider the linear
transformation of T ,

T̂ (γ) = T (γ)− T (µ̄)− ᾱ · (γ − µ̄)

where ᾱ solves
T̂ (γ̄j) = T̄
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Since the γ̄j are independent such an ᾱ exists. Note

K(µ,Q) =
∑

Q(γ)T̂ (γ)− T̂ (µ)

since
∑
Q(γ)[ᾱ · (γ − µ̄)] = ᾱ · [

∑
Q(γ)(γ − µ̄)] = 0.

We now show that T̂ (γ) is symmetric. Consider any γ1 and γ2 that are symmetric in that there
exists a bijection σ : Ω̄ → Ω̄ such that γ1(ω) = γ2(σ(ω)). Consider the information strategy that
places weight Q(γ1) on γ1 and (1−Q(γ1))βj on each of the γ̄j such that∑

βj γ̄j = µ̄− Q(γ1)

1−Q(γ1)
(γ1 − µ̄) (4.4)

Given the independence of the γ̄j , this set of βj exists. Note that this policy lies in Q(µ̄) by
construction. Now consider the information strategy that places weight Q(γ1) on γ2 and βj on
γ̄σ(j). Given the symmetry of γ1 and γ2,∑

βj γ̄σ(j) = µ̄− Q(γ1)

1−Q(γ1)
(γ2 − µ̄)

and this policy is also in Q(µ̄). The symmetry of K (Lemma 3.2) implies

Q(γ1)T̂ (γ1) +
∑

βj T̂ (γ̄j)− T̂ (µ̄) = Q(γ1)T̂ (γ2) +
∑

βj T̂ (γ̄σ(j))− T̂ (µ̄)

As the T̂ (γ̄j) = T̄ , this reduces to
T̂ (γ1) = T̂ (γ2)

so that T̂ is symmetric.

From this point on in the proof we will assume that T (γ) is chosen to be symmetric.

4.2.3 Differentiability of T

Our goal in this section is to prove the following lemma.

Lemma 4.2: Suppose that K is uniformly posterior separable and invariant, then Tsupp µ is dif-
ferentiable.

Basic Results The fundamental objects of interest in what follows are certain derivatives of the
function T on Ω̄. Note that Ω̄ does not allow for independent variation in any single state-specific
posterior γ(j) due to the adding up constraint on probabilities. In general, given convex function
T : ∆Ω̄→ R and γ ∈int∆Ω̄, the directional derivative at γ in direction y ∈ RJ is defined as,

T̃ ′(γ|y) = lim
ε↓0

T̃ (γ + εy)− T̃ (γ)

ε
, (4.5)

if it exists. We use special notation for the directional derivatives of interest. We are interested in
derivatives in the direction of raising the probability of one state ωi and lowering the probability
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of another ωj . We define the one-sided derivative in direction ji, T−→
ji

(γ), as the directional
derivative associated with increasing the ith coordinate and equally reducing the jth:

T−→
ji

(γ) = lim
ε↓0

T (γ + ε(ei − ej))− T (γ)

ε
; (4.6)

where ek ∈ RJ is the vector with its only non-zero element being 1 in the kth coordinate. Where it
exists, we define the two-sided derivative in direction ji, T(ji), by:

T(ji)(γ) = lim
ε→0

T (γ + ε(ei − ej))− T (γ)

ε
. (4.7)

We now translate a few standard results on derivatives of convex functions into our setting. Al-
most all of these results are adapted directly from Rockafellar’s comprehensive treatise (Rockafellar
[1970]). The first such standard result that we translate to our setting establishes existence of one-
sided directional derivatives, as well as an inequality concerning one-sided directional derivatives in
opposite directions. For completeness, we note also the standard results that a real-valued convex
function is continuous on its relative interior.

Lemma 4.3: The following hold:

1. T is continuous on γ ∈int∆Ω̄.

2. Given 1 ≤ i 6= j ≤ J , T−→
ji

(γ) exists for all γ ∈int∆Ω̄.

3. We have
−T−→

ij
(γ) ≤ T−→

ji
(γ). (4.8)

Proof. Continuity of T on its relative interior is Theorem 10.1 in Rockafellar [1970]. Given
γ ∈int∆Ω̄, T−→

ji
(γ) is equal to the the one-sided directional derivative of T at γ with respect to the

vector y = ei − ej (Rockafellar [1970], p. 213). Rockafellar [1970] Theorem 23.1 establishes that,
since T : RJ → R̄ is convex and T (γ) is finite at γ ∈intΩ̄, T−→

ji
(γ) exists.

This same theorem establishes

−T−→
ij

(γ) = −T ′(γ|ej − ei) ≤ T ′(γ|ei − ej) = T−→
ji

(γ).

We are particularly interested in posteriors γ ∈intΩ̄ at which the inequality (4.8) is replaced with
an equality. The next result shows this to be equivalent to existence of the two-sided derivative. We
add also the standard result that differentiability of T implies existence of all 2-sided directional
derivatives.

Lemma 4.4: T(ji)(γ) exists if and only if (4.8) holds with equality,

−T−→
ij

(γ) = T−→
ji

(γ), (4.9)
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in which case
T(ji)(γ) = T−→

ji
(γ) = −T−→

ij
(γ) = −T(ij)(γ). (4.10)

Moreover, if T is differentiable at γ ∈int∆Ω, T(ji)(γ) exists for all 1 ≤ i 6= j ≤ J .

Proof. Note first that if (4.9) holds so that T−→
ji

(γ) = −T−→
ij

(γ), this corresponds to equality of the
limits from the left and right

lim
ε↓0

T (γ + ε(ei − ej))− T (γ)

ε
= T−→

ji
(γ) = −T−→

ij
(γ) = − lim

ε↓0

T (γ + ε(ej − ei))− T (γ)

ε

= − lim
δ=−ε↑0

T (γ − δ(ej − ei))− T (γ)

−δ = lim
δ↑0

T (γ + δ(ei − ej))− T (γ)

δ
.

It is standard that this implies that the equal left and right limits define the limit itself,

T(ji)(γ) = lim
ε↓0

T (γ + ε(ei − ej))− T (γ)

ε
,

establishing equivalence of (4.9) and existence of T(ji)(γ).

Conversely, note that if T(ji)(γ) exists,

T(ji)(γ) = lim
ε−→0

T (γ + ε(ei − ej))− T (γ)

ε
= lim

ε↑0

T (γ + ε(ei − ej))− T (γ)

ε
= T−→

ji
(γ);

and,

T(ji)(γ) = lim
ε−→0

T (γ + ε(ei − ej))− T (γ)

ε
= lim

ε↓0

T (γ + ε(ei − ej))− T (γ)

ε

= − lim
δ=−ε↑0

T (γ + δ(ej − ei))− T (γ)

−δ = lim
δ↑0

T (γ + δ(ej − ei))− T (γ)

δ
= −T−→

ij
(γ).

These equations together verify that (4.9) holds and also that,

T(ji)(γ) = T−→
ji

(γ) = −T−→
ij

(γ). (4.11)

To complete the proof that (4.10) holds, note that since T−→
ji

(γ) = −T−→
ij

(γ), we know from (4.9)
that T(ij)(γ) exists, and therefore that it satisfies the corresponding equality,

T(ij)(γ) = T−→
ij

(γ) = −T−→
ji

(γ). (4.12)

In combination, (4.12) and (4.11) imply (4.10).

With regard to the final clause of the Lemma, that T(ji)(γ) exists for all 1 ≤ i 6= j ≤ J, if T is
differentiable at γ ∈int∆Ω̄, Rockafellar [1970] Theorem 25.2 shows that all directional derivatives
T ′(γ|y) exist and are linear in y = (y(1), ..., y(J)). Hence they can be written in terms of partial
derivatives Tj(γ) as,

T ′(γ|y) =
J∑
j=1

y(j)Tj(γ).
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Hence, given 1 ≤ i 6= j ≤ J ,

−T−→
ij

(γ) = − [Tj(γ)− Ti(γ)] = Ti(γ)− Tj(γ) = T ′(γ|ei − ej)) = T−→
ji

(γ),

verifying (4.9) and thereby establishing existence of all 2-sided directional derivatives.

Our next preliminary result shows that symmetry of the cost function has implications for
directional derivatives. The lemma specifies the inherited symmetry property precisely.

Lemma 4.5: If T(ji)(γ) exists, then for any bijection σ : {1, .., J} → {1, .., J},

T(ji)(γ) = T(σ(j)σ(i))(γ
σ),

where,
γσ(j) = γ(σ−1(j)).

Proof. Suppose that T(ji)(γ) exists and note by symmetry of T on ∆Ω̄ (Lemma 4.1) and the
bijective nature of σ,

T (γ) = T (γσ).

Now consider the posterior γσ + ε(eσ(i) − eσ(j)) and note that,

γ̃(k) =


γσ(k) + ε = γ(σ−1(σ(i)) + ε = γ(i) + ε if k = σ(i);
γσ(k)− ε = γ(σ−1(σ(j))− ε = γ(j)− ε if k = σ(j);

γσ(k) else.

Hence, γσ + ε(eσ(i) − eσ(j)) are γσ + ε(ei − ej) symmetric, so that by the symmetry of T,

T
[
γσ + ε(eσ(i) − eσ(j))

]
= T (γ + ε(ei − ej)).

Hence,

T(ji)(γ
σ) = lim

ε→0

T
[
γσ + ε(eσ(i) − eσ(j))

]
− T (γσ)

ε
= lim

ε→0

T [(γ + ε(ei − ej))σ]− T (γσ)

ε
= T(ji)(γ),

establishing the Lemma.

Lagrangians and Directional Derivatives The following result explains to some extent the
relevance of directional derivatives to our approach. It follows from the Lagrangian Lemma (Lemma
1.1).

Lemma 4.6 (Optimality and Directional Derivatives): Consider a uniformly posterior-separable
cost function K and an optimal strategy (Q, q) ∈ Λ̂(µ,A|K) with supp µ = Ω̄. Suppose
a, b ∈ A are chosen with positive probability and suppose γa is the posterior associated with
choice a and γb is the posterior associated with the choice b where γa, γb ∈int∆Ω̄. Consider
θ ∈ RJ−1 s.t.,

N c(γ)−
J−1∑
j=1

θ(j)γ(j) ≤ sup
c′∈A,γ′∈Ω̄

N c′(γ′)−
J−1∑
j=1

θ(j)γ′(j),
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all γ ∈ Ω̄ and c ∈ A. Then for all pairs of states 1 ≤ i 6= j ≤ J :

1. For c ∈ {a, b},
−T−→

ij
(γc) ≤ c(i)− c(j)− [θ(i)− θ(j)] ≤ T−→

ji
(γc); (4.13)

2. For c ∈ {a, b}, if T(ji)(γ
c) exists,

T(ji)(γ
c) = c(i)− c(j)− [θ(i)− θ(j)]; (4.14)

3. If T(ji)(γ
a) and T(ji)(γ

b) both exist

Na
(ji)(γ

a) = N b
(ji)(γ

b). (4.15)

Proof. Note that the Lagrangian Lemma (Lemma 1.1) implies the existence of the θ in the
statement of the lemma, so the lemma is well posed. Note also that given that J ≥ 3, we apply
Lemma 4.5 to ensure that directional derivatives are invariant to re-indexing states if needed to
make that state J is neither i nor j.

Define the function F c(γ) on c ∈ A and γ ∈ ∆Ω̄:

F c(γ) ≡ N c(γ)−
J−1∑
k=1

θ(k)γ(k); (4.16)

where,

N c(γ) =

J∑
k=1

c(k)γ(k)− T (γ),

The Lagrangian Lemma implies that the supremal value of F c(γ) is achieved by the posteriors
associated with any optimal policy. Hence

sup
c′∈A,γ′∈Ω̄

F c(γ) =
J∑
k=1

c(k)γc(k)− T (γc)−
J−1∑
k=1

θ(k)γc(k)

for c ∈ {a, b}.

By Lemma 4.4, if T(ji)(γ) does not exist, we know that the derivative from the left must be
non-negative and from the right non-positive and that they cannot be equal. This corresponds
precisely to

−T−→
ij

(γc) + c(i)− c(j)− [θ(i)− θ(j)] ≤ 0 ≤ T−→
ji

(γc) + c(i)− c(j)− [θ(i)− θ(j)],

confirming (4.13) .Conversely, if T(ji)(γ
c) exists for c ∈ {a, b}, this maximization implies that the

corresponding derivative F c(γc) must equal zero,

F c(ji)(γ
c) = N c

(ij)(γ)− [θ(i)− θ(j)] = c(i)− c(j)− T(ji)(γ
c)− [θ(i)− θ(j)] = 0, (4.17)

confirming (4.14).
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To complete the proof, note that if T is differentiable at both posteriors, then then T(ji)(γ)

exists as well. Applying (4.17) at both γa and γb yields,

Na
(ji)(γ

a) = θ(i)− θ(j) = N b
(ji)(γ

b),

confirming (4.15) and establishing the Lemma.

Ratio Sets and Linearity of Posteriors The next key observation is that we can design decision
problems in which the derivatives of net utility are informative about the cost function. To do this
we use decision problems for which with redundant states and show that the invariance of K places
restrictions on how optimal posteriors behave as the prior is shifted across these redundant states.
We first define the sets of posterior that we can relate through invariance. These are posteriors in
which the odds ratio is equal to a fixed constant. We then present an extension of Feasibility Implies
Optimality which shows that given any two posteriors with a common odds ratio for two states, we
can construct a problem in which they are the optimal choice. Moreover, we can construct a set of
problems indexed by t which differ only in how they allocate probability among these two states.

Definition 5 Given α ∈ (0,∞) and two states 1 ≤ k 6= l ≤ J , we define the corresponding ratio
set Γkl(α) ⊂ ∆Ω̄ as the set of posteriors in for which γ(k)

γ(l) = α:

Γkl(α) =

{
γ ∈ ∆Ω̄

∣∣∣∣γ(k)

γ(l)
= α

}
.

Γkl(α) is the intersection of ∆Ω̄ and a J − 2 dimensional linear subspace of RJ . It is therefore
convex and has dimension J − 2. Figure A3 depicts ∆Ω̄ for J = 4. The blue triangle represents
Γ12(α) for α = 2 so that γ ∈ ∆Ω̄ if and only if γ(1) = 2γ(2). In the Figure Γ12(2) connects all
points with γ(1) = γ(2) = 0 (i.e. the line segment connecting γ(3) = 1 to γ(4) = 1) to the point
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with γ(1) = 2
3 and γ(2) = 1

3 .

Figure A3

We now show that given γ and η ∈ and Γkl(α) we can construct a problem (µ,A) such that γ
and η are optimal posteriors.

Lemma 4.7: Suppose thatK is uniformly posterior separable and invariant. Consider γ 6= η ∈intΩ̄
with for J ≥ 3, and 1 ≤ k 6= l ≤ J such that γ, η ∈ Γkl(α) some α ∈ (0,∞),

γ(k)

γ(l)
=
η(k)

η(l)
= α. (4.18)

Define the mean belief,

µ̄(j) =
γ(j) + η(j)

2
,

for all j, and for t ∈ [0, 1] define µt,:

µt(j) =


t[µ̄(k) + µ̄(l)] for j = k;

(1− t)[µ̄(k) + µ̄(l)] for j = l;
µ̄(j) otherwise;

(4.19)

define γt, and ηt analogously. Then there exists a, b ∈ A with a(k) = a(l) and b(k) = b(l)
such that, (Qt, qt) ∈ Λ̂(µt, A) where Qt(γt) = Qt(ηt) = 1

2 and qt(a|γt) = 1 and qt(b|ηt) = 1.
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Specifically, for t̄ = µ̄(k)
µ̄(k)+µ̄(l) ∈ (0, 1), µt̄ = µ̄ and,

χt̄(j) = χ(j)

for χ = γ, η.

Proof. Fix γ 6= η ∈intΩ̄ with for J ≥ 3, and 1 ≤ k 6= l ≤ J such that (4.18) holds. Note that this
is only possible if J ≥ 3 since otherwise (4.18) implies γ = η.

Consider first the case t = 1, so that µ1(l) = γ1(l) = η1(l) = 0, µ1(j) = µ̄(j) and χ1(k) = χ(j)
for j 6= k, l, and

µ1(k) = µ̄(k) + µ̄(l);

χ1(k) = χ(k) + χ(l);

for χ = γ, η.

Note that since γ 6= η and (4.18) holds, we know that there exists j ∈ Ω̄\{k, l} with γ(j) 6= η(j),
so that γ1 6= η1. Since γ,η ∈int∆Ω̄, γ1,η1 ∈int∆(Ω̄\l). Corollary 1.2, implies the existence of a
problem with A = {a, b} such that there is an optimal strategy

(Q1, q1) ∈ Λ̂(µ1, {a, b}|K)

in which the only chosen posteriors are γ1 and η1 and Q1(γ1) = Q1(η1) = 0.5. Feasibility Implies
Optimality (Lemma 1.2) implies also that the deterministic strategy involving each action being
chosen deterministically at its corresponding posterior is optimal. Without loss of generality, we
set

q1(a|γ1) = q1(b|η1) = 1.

Given that µ1(l) = γ1(l) = η1(l) = 0, the payoffs to a and b in state l do not affect choice. We are
therefore free to choose them as we wish. We set a(l) = a(k) and b(l) = b(k) so that states k and l
are redundant.

We now consider decision problem (µt, {a, b}). Consider the partition {Ω̄z} which combines
states k and l and leaves all other states as singleton sets. Because states k and l are redundant,
expected utility is independent of the probability µt. Because K is invariant

K(µt, Q) ≥ K(µt, ν{Ω̄z},µtQ).

Since the policy (Q1, q1) is optimal for the problem (µ1, {a, b}), it follows that (ν{Ω̄z},µtQ1, q
′)

is optimal for (µt, {a, b}) where q′(c|ν{Ω̄z},µtγ) = q1(c|γ) for c = a, b. It remains to show that
ν{Ω̄z},µtQ1 = Qt. But this follows from the fact that

χt(k) = t[χ(k) + χ(l)]

=
µt(k)

µ̄(k) + µ̄(l)
[χ(k) + χ(l)]

= ν{Ω̄z},µtχ1(k)

for χ = {γ, η}.
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The final step in the proof involves direct substitution to show that,

t̄ =
µ̄(k)

µ̄(k) + µ̄(l)
=⇒ µt̄ = µ̄,

and correspondingly that,

χt̄(j) = t[χ(k) + χ(l)]

=
χ(k) + χ(l)

µ̄(k) + µ̄(l)
µ̄(k)

=
χ(k)

µ̄(k)
µ̄(k)

= χ(j)

for χ = γ, η. The third equality follows form the assumption γ, η ∈ Γkl(α).

The Trapezoid Condition We are building towards using the rectangle condition for additive
separability. The rectangle condition states that a function f(a, b) on XA × XB is additively
separable if

f(a1, b1)− f(a2, b1) = f(a1, b2)− f(a2, b2).

for all a1, a2 ∈ XA and b1, b2 ∈ XB. Instead of constructing rectangles, we use the ratio sets to
construct trapezoids which we then transform into rectangles. To construct these trapezoids we
match sets of posteriors that lie on different ratio sets and differ in two dimensions. We now define
the set of posteriors that differ only on states k and l.

Definition 6 Given γ̂ ∈int∆Ω̄ and two states k, l ∈ J , we let Φkl(γ̂) denote the set of posteriors
that agree with γ on all states j 6= k, l

Φkl(γ̂) = {γ|γ(j) = γ̂(j), j 6= k, l}

Φkl(γ̂) represents a line in ∆Ω̄ through γ̂ in the direction ek − el where ej is the unit vector in RJ
with a one in the jth coordinate.

Figure A4 reproduces Figure A3 and adds the point γ̂ ∈ Γ12(2). The red line in the Figure
represents Φ12(γ̂). It is the set of points for on which γ (3) = γ̂(3) and γ(4) = γ̂(4). This line
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segment is parallel to the line connecting γ(1) = γ(2) = 1.

Figure A4

With these definitions we introduce the key sets of four posteriors.

Definition 7 A set of four distinct posteriors γ1, γ2, η1, η2 ∈int∆Ω̄ satisfy the trapezoid condi-
tion if there exist distinct α1 6= α2 > 0 and 1 ≤ k 6= l ≤ J such that:

1. γ1,η1 ∈ Γkl(α1),
γ1(k)

γ1(l)
=
η1(k)

η1(l)
= α1.

2. γ2,η2 ∈ Γkl(α2),
γ2(k)

γ2(l)
=
η2(k)

η2(l)
= α2.

3. γ2 ∈ Φkl(γ1), so that γ2(j) = γ1(j) for j 6= k, l.

4. η2 ∈ Φkl(η1), so that η2(j) = η1(j) for j 6= k, l.

Note that the condition α1 6= α2 is imposed since with α1 = α2, the conditions would give rise
to γ1 = γ2 and η1 = η2, contrary to the defining feature that these are distinct posteriors.

Figure A5 illustrates the Trapezoid Condition. γ1 and η1 both lie in Γ12(α1) and γ2 and η3

both lie in Γ12(α2). γ1 and γ2 both on the line segment Φ12(γ1) and η1 and η2 both on the line
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segment Φ12(η1). The key observation is that, since the points in Φ12(γ1) and Φ12(η1) only differ
in their first and second coordinate, the two line segments are parallel, so that the points γ1, γ2, η1

and η2 form a trapezoid. Below we will use this observation to establish the additive separability
of T(ji)(γ1).

Figure A5

Equalization of Differences For Two-Sided Directional Derivatives Our next result re-
lates the Trapezoid Condition, invariance, and the Lagrangian lemma. If four posteriors γ1, γ2,
η1, and η2 satisfy the Trapezoid Condition and if T is differentiable at each of these points, then
invariance and the Lagrangian Lemma relate the change in T(ji) between γ1 and γ2 to that between
η1 and η2.

Lemma 4.8: Suppose K is invariant and uniformly posterior separable and suppose that T is
differentiable at γ1, γ2, η1, η2 ∈int∆Ω̄ that satisfy the Trapezoid Condition for some pair of
distinct states 1 ≤ k 6= l ≤ J , then

T(ji)(γ1)− T(ji)(γ2) = T(ji)(η1)− T(ji)(η2) (4.20)

for all pairs of distinct states 1 ≤ i 6= j ≤ J

Proof. Consider γ1,η1, γ2 and η2 satisfying the Trapezoid Condition such that T(ji) exists at all
four points.
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By Lemma 4.7, defining,

µ̄ =
γ1 + η1

2
,

there exists a, b ∈ A with a(k) = a(l) and b(k) = b(l) such that, for t ∈ [0, 1], (Qt, qt) ∈ Λ̂(µt, A)
where Qt(γt) = Qt(ηt) = 1

2 , qt(a|γt) = 1 and qt(b|ηt) = 1,and where,

µ(t, j) =


t[µ̄(k) + µ̄(l)] for j = k;

(1− t)[µ̄(k) + µ̄(l)] for j = l;
µ̄(j) otherwise.

and

χ(t, j) =


t[χ(k) + χ(l)] for j = k;

(1− t)[χ(k) + χ(l)] for j = l;
χ(j) otherwise.

for 1 ≤ j ≤ J ;

for χ = {γ1, η1}. Where we have placed t as an argument in brackets and avoided the subscript so
as to avoid confusion with γ1 and η1. In particular, for t̄1 = α1

α1+1 ∈ (0, 1),

γ(t̄1, k)

γ(t̄1, l)
=

t[χ(k) + χ(l)]

(1− t)[χ(k) + χ(l)]
= α2

so that γ(t̄1) = γ1. Similarly

η(t̄1) = η1.

µ(t̄1) = µ̄,

Moreover, since T is differentiable at both γ1 and η1, Lemma 4.6, the Optimality and Directional
Derivatives Lemma, then implies,

Na
(ji)(γ1) = N b

(ji)(η1), (4.21)

for all i, j ∈ J .

Now consider
t̄2 =

α2

α2 + 1
.

We have
γ(t̄2, k)

γ(t̄2, l)
=

t[χ(k) + χ(l)]

(1− t)[χ(k) + χ(l)]
= α2

As γ2 ∈ Φkl(γ1), γ(t̄2) = γ2. Similarly η(t̄2) = η2. Therefore given the problem (µ(t̄2), A), γ2 is
the revealed posterior associated with a and η2 is the revealed posterior associated with b. Since T
is differentiable at both γ2 and η2, Lemma 4.6 then implies that,

Na
(ji)(γ2) = N b

(ji)(η2) (4.22)

for all i, j ∈ J . Since Na(γ) =
∑

j a(j)γ(j)− T (γ), equations (4.21) and (4.22) imply

T(ji)(γ1) = b(i)− b(j)− a(i) + a(j) + T(ji)(η1)

and
T(ji)(γ2) = b(i)− b(j)− a(i) + a(j) + T(ji)(η2)
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Subtracting these two equations yields the desired result.

Monotonicity and Limits Condition (4.20) only holds at points at which the two-sided direc-
tional derivatives exist. Our next goal is to generalize to one-sided directional derivatives which
always exist, thereby extending the result to all sets of posteriors in ∆Ω̄ that satisfy the Trapezoid
Condition. Our strategy will be to take limits of well-chosen sequences at which the two-sided
derivatives exist. Two standard features of the subdifferential map (associating with each posterior
γ ∈int∆Ω̄ the full set of corresponding subderivatives of T ) allow us to select appropriate sequences.
The first is that the sub-differential maps of convex functions are monotone. The second is that
they satisfy a form of lower hemi-continuity. The next two lemmas translate these standard results
to our setting, starting with the monotonicity lemma.

Lemma 4.9: Given γ ∈int∆Ω̄ and ε > 0 such that γ + ε(ei − ej) ∈int∆Ω̄,

T−→
ji

(γ) ≤ −T−→
ij

(γ + ε(ei − ej)) ≤ T−→ji (γ + ε(ei − ej)) (4.23)

Proof. The result follows directly from monotonicity properties of the subdifferential maps of con-
vex functions (Rockafellar [1970], p. 240). This is particularly simple for one dimensional functions
as the general version of the statement that differentiable convex functions have non-decreasing
first derivatives. To use in this simple setting, let δ > ε > 0 such that,

Y ≡ (γ − δ(ei − ej), γ + δ(ei − ej)) ⊂ γ ∈ int∆Ω̄,

which is possible since int∆Ω̄ is relatively open on the line. We then define convex function
G : R→ R to have value

G(α) = T (γ + α(ei − ej)),

on α ∈ (−δ, δ), with its value being infinite elsewhere. It is direct from the definitions that
T−→
ji

(γ + α(ei − ej)) and the right derivatives of G(α) are equivalent at corresponding points,

T−→
ji

(γ + α(ei − ej)) = lim
ς↓0

T (γ + α(ei − ej) + ς(ei − ej))− T (γ + α(ei − ej))
ς

= lim
ς↓0

G(α+ ς)−G(α)

ς
≡ G′+(α).

Similarly, −T̃−→
ij
and the left derivatives of G

′
−(α) are equivalent where

G
′
−(α) = − lim

ς↑0

G(α+ ς)−G(α)

ς

Rockafellar [1970] Theorem 24.1 establishes monotonicity properties for G
′
+(α) and G

′
−(α) when

G is convex. In particular for ε > 0,

G
′
+(0) ≤ G′−(ε) ≤ G′+(ε).

which, given the equivalence between T̃ and G, establishes (4.23).
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Lemma 4.10: Given any sequence {εn}∞n=1 with εn > 0 and limn→∞ εn = 0,

lim
n→∞

T−→
ji

(γ + εn(ei − ej)) = T−→
ji

(γ) (4.24)

Proof. By the directional derivative monotonicity Lemma 4.9, given {εn}∞n=1 with εn > 0, and
limn→∞ εn = 0, such that γ + εn(ei − ej) ∈int∆Ω̄, (4.23) implies that the limit exists and that the
inequality survives,

lim
n→∞

T−→
ji

(γ + εn(ei − ej)) ≥ T−→ji (γ). (4.25)

Conversely, Rockafellar [1970] Theorem 24.5 shows with full generality that given convex function
T : RJ → R̄, any γ ∈ RJ at which T (γ) is finite, and any sequence {γn}∞n=1 → γ and y ∈ RJ ,

lim supT ′(γn|y) ≤ T ′(γ|y). (4.26)

Defining γn = (γ + εn(ei − ej) and y = ei − ej we get,

lim
n→∞

T−→
ji

(γ + εn(ei − ej)) ≤ T−→ji (γ). (4.27)

Combining (4.25) with (4.27) establishes (4.24), and completes the proof of the Lemma.

Equal Difference Conditions for One-Sided Directional Differences To complete the
transition from equal difference conditions on two-sided to one-sided directional derivatives, we
apply standard results on “almost everywhere” differentiability of convex functions on various
important subdomains. These are all convex subdomains of int∆Ω̄ whose affi ne hull is of lower
dimension, several of which have appeared already in the proof. When thinking about T even
on its full domain int∆Ω̄, there is a subtlety in the statement. Since int∆Ω̄ respects the adding
up constraint on probabilities, it has measure zero as a subset of RJ . For that reason the full
measure result applies “relative to”int∆Ω̄. This is how we state the corresponding result for more
general convex subdomains Y . We note also the preservation of one-sided and two-sided directional
derivatives on subdomains. The precise formalism is standard.

Definition 8 Given a non-empty convex set Y ⊂ RJ , define ∆ΩY =int∆Ω̄(Y ) to be the corre-
sponding subdomain of int∆Ω̄,

∆ΩY ≡ Y ∩ int∆Ω̄;

and define T Y : ∆ΩY → R with T Y (γ) ≡ T (γ) to be the restriction of T to this domain. Finally,
given γ ∈ ∆ΩY and 1 ≤ i 6= j ≤ J such that there exists δ > 0 such that,

[γ − δ(ei − ej), γ + δ(ei − ej)] ⊂ int∆Ω̄(Y ), (4.28)

we define one and two-sided directional derivative T Y−→
ji
and T Y(ji) in the standard manner.

We now state the key result about convergence of one-sided directional derivatives for appro-
priately selected sequences of posteriors.

Lemma 4.11: For any non-empty convex set Y ⊂ RJ , T Y is almost everywhere differentiable in
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the relative interior of ∆ΩY and whenever T Y−→
ji

(γ) is well-defined,

T Y−→
ji

(γ) = T−→
ji

(γ). (4.29)

Proof. Given that Y is non-empty and convex set, T Y is a proper convex function. Rockafellar
[1970] Theorem 25.5 translates precisely to the fact that the set {γ ∈ ∆ΩY |T Y is differentiable}
is dense in ∆ΩY and its complement, the points of non-differentiability, is of measure zero in the
relative interior of ∆ΩY . The equality T Y−→

ji
= T−→

ji
is definitional given the existence of appropriate

convergent sequences in the shared domain and equality of the underlying function.

Lemma 4.12: SupposeK is invariant and uniformly posterior separable. Given {γ1, γ2, η1, η2} ⊂int∆Ω̄
satisfying the Trapezoid Condition for some pair of distinct states 1 ≤ k 6= l ≤ J , then

T−→
ji

(γ1)− T−→
ji

(η1) = T−→
ji

(γ2)− T−→
ji

(η2), (4.30)

for all pairs of distinct states i, j ∈ {1, . . . J}\{k, l} that are distinct from k and l.

Proof. Consider an arbitrary set of four posteriors {ξm} ⊂int∆Ω̄ for ξ = γ, η and m = 1, 2 satis-
fying the Trapezoid Condition. We construct four corresponding sequences of posteriors {ξnm}∞n=1

that converge to ξm as n → ∞. We ensure that at each n (4.20) holds and that (4.20) converges
to (4.30). Specifically, let Θ(ξm) be the set containing posteriors that lie within 1

n of ξm in the

direction
−→
ji :

Θ(ξm) = {γ ∈ int∆Ω̄|γ = ξm + λ(ei − ej) and λ ∈ (0,
1

n
)}.

for all γ ∈ Θ(ξm).

Note that Θ(ξm) is a convex subset of int∆Ω̄, hence satisfies the conditions of the Lemma 4.11,
so that TΘ(ξm))

(ji) = T(ji) exists for almost all λ ∈ (0, 1
n). Let Λn(ξm) denote the set of λ ∈ (0, 1

n) at
which the two-sided directional derivative T(ji) exists,

Λn(ξm) = {λ ∈ (0,
1

n
)|T(ij)(γ) exists at γ = ξm + λ(ei − ej)}.

It follows that Λn(ξm) has measure 1
n , as does the corresponding intersection,

Λ(n) ≡ ∩ξ=η,ν ∩m=1,2 Λn(ξm).

Select λ̄(n) ∈ Λ(n) and correspondingly define,

ξnm = ξm + λ̄(n)(ei − ej),

for ξ = γ, η and m = 1, 2.

By construction, for each n, ξnm ∈int∆Ω̄ for ξ = γ, η and m = 1, 2 satisfy the Trapezoid
Condition. To confirm, note that for ξ = γ, η and m = 1, 2, ξnm(k) and ξm(k) differ only in
coordinates i and j. Hence we know that ξnm(k) = ξm(k) and ξnm(l) = ξm(l). Given that the ξm
satisfy the Trapezoid Condition, it follows that the ξnm satisfy the Trapezoid Condition as well.
Since T(ji) exists at each of the ξ

n
m, and since the ξ

n
m satisfy the Trapezoid Condition, Lemma 4.8
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states
T(ji)(γ

n
1 )− T(ji)(η

n
1 ) = T(ji)(γ

n
2 )− T(ji)(η

n
2 ) (4.31)

Now consider each element T(ji)(ξ
n
m) and note that, since λ̄(n) > 0 and

ξnm = ξm + λ̄(n)(ei − ej),

we can apply Lemma 4.9 directly to conclude that (4.23) holds,

T−→
ji

(ξnm) ≥ T−→
ji

(ξm) (4.32)

Since λ̄(n) → 0 we know in addition that limn−→∞ ξ
n
m = ξm, so that Lemma 4.10 applies to show

that,
lim
n→∞

T−→
ji

(ξnm) = lim
n→∞

T(ji)(ξ
n
m) = T−→

ji
(ξm). (4.33)

Substituting (4.33) in (4.31) establishes (4.30), and completes the proof.

Propagating Existence of Directional Derivatives A key result shows how to propagate
existence of directional derivatives. If the two-sided directional derivative T(ji)(γ) exists at a point

γ, then T(ji)(η) exists for all η ∈ Γαji where α = γ(j)
γ(i) . The intuition for the result is that this set of η

can be linked to γ by a problem in which the states i and j are redundant. Invariance then allows
us to alter the prior on i and j and thereby smoothly shift the the resulting posteriors. These
posteriors maintain the original ratio between states j and i. If T (γ) is smooth in the direction
(ji), T (η) must also be smooth, if the posteriors are to evolve proportionately.

Before proving the result we establish some additional continuity properties that we can import
to our apparatus directly from Rockafellar [1970].

Lemma 4.13: Given γ ∈int∆Ω̄ and 1 ≤ i 6= j ≤ J such that T(ji)(γ) exists, then T(ji)(η) exists
for all η ∈int∆Ω̄ such that:

η(j)

η(i)
=
γ(j)

γ(i)
. (4.34)

Proof. The proof is by contradiction. Choose γ such that T(ji)(γ) exists and suppose that there
exists η satisfying (4.34) such that T(ji)(η) does not exist. By Lemma 4.4 above, this means that
−T−→

jl
(η) 6= T−→

lj
(η).

By Lemma 4.7 there exists (µ,A) with A = {a, b} such that γ is the revealed posterior related
to a and η is the revealed posterior related to b and the states i and j are redundant. Lemma 4.7
also guarantees that given the parameterized set of problems (µt, A) where

µt(k) =


t [µ(i) + µ(j)] for k = i;

(1− t) [µ(i) + µ(j)] for k = j;
µ(k) otherwise;

for t ∈ (0, 1), and γt, the revealed posterior for action a, and ηt,the revealed posterior for action
b, are defined analogously. Let t̄ be defined by µt̄ = µ.
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By the Lagrangian Lemma, for each t, there exists θt ∈ RJ−1 such that

Na(γt)−
J−1∑
k=1

θt(k)γt(k) = N b(ηt)−
∑
k 6=j

θt(k)ηt(k) ≥ N c(γ′)−
J−1∑
k=1

θ(k)γ′(k)

for all γ′ ∈ ∆Ω̄ and c = {a, b}.

Since T(ji)(γ) exists, the Optimal Directional Derivative Lemma (Lemma 4.6) tells us that

T(ji)(γ) = a(i)− a(j)− θt̄(i)− θt̄(j) (4.35)

and since T(ji)(η) does not exist, Lemma 4.6 implies that,

−T−→
ij

(η)− b(i) + b(J) + θt̄(i) + θt̄(j) ≤ 0 ≤ T−→
ji

(η)− b(i) + b(J) + θt̄(i) + θt̄(j),

with one of these two inequalities strict. Without loss of generality suppose

T−→
ji

(η)− b(i) + b(J) + θt̄(i) + θt̄(j) = ∆ > 0. (4.36)

Define now Y ⊂ RJ as all vectors γt,

Y = {γt ∈ int∆Ω̄|t ∈ [0, 1]},

noting that, since ∆Ω̄Y = Y since Y ⊂int∆Ω̄. Lemma 4.11 implies that T Y is differentiable for
almost all γt, so that Lemma 4.4 implies that the two-sided directional derivative,

T Y(ji)(γt) = T(ji)(γt),

also exists for almost all γt ∈ Y .

Now consider a sequence γt(n) → γ such that t(n) > t̄ and T(ji)(γt(n)) exists. Lemma 4.10
implies that

lim
t(n)→t̄

T(ji)(γt(n)) = T(ji)(γ).

Therefore there exists t(m) 6= t̄ such that T(ji)(γt(m)) ∈ (T(ji)(γ), T(ji)(γ) + ∆). Given that
T(ji)(γt(m)) exists,

T(ji)(γt(m)) = a(i)− a(j)− θt(m)(i)− θt(m)(j). (4.37)

Hence, with T(ji)(γt(m)) − T(ji)(γ) ∈ (0,∆), we can subtract the right-hand sides of (4.35) from
(4.37) to conclude that,

θt̄(i) + θt̄(j)− θt(m)(i)− θt(m)(j) ∈ (0,∆),

so that,
−θt(m)(i)− θt(m)(j) < −θt̄(i)− θt̄(j) + ∆. (4.38)

Applying now the Optimal Directional Derivative Lemma (Lemma 4.6) to ηt(m) we conclude that,

−T−→
ij

(ηt(m)) ≤ b(i)− b(j)− θt(m)(i)− θt(m)(j) ≤ T−→ji (ηt(m)).
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Substitution of (4.38) thereupon yields,

−T−→
ij

(ηt(m)) ≤ b(i)− b(j)− θt(m)(i)− θt(m)(j) < b(i)− b(j)− θt̄(i)− θt̄(j) + ∆ = T−→
ji

(η)

But t(m) > t̄, so that the Lemma 4.9 implies directly that −T−→
ij

(ηt(m)) > T−→
ji

(η). This contradiction
establishes the result.

Weak Form Additive Separability In this section we establish a weak form of additive sepa-
rability. The basic observation is that (4.20) is very close to the rectangle condition for this form of
additive separability. The difference is that γ1, γ2, η1, η2 ∈int∆Ω̄ satisfying the Trapezoid Condi-
tion form a trapezoid, not a rectangle. We rectify this problem by deforming int∆Ω̄ and applying
additive separability to the new space.

Our deformation is the combination of two mappings. The first maps int∆Ω̄ into the set of
vectors ZJ−1of length J − 1 whose elements zj are strictly positive and sum to a number that is
strictly less than one. Let

ZM = {(z1, . . . zJ−1) ∈ RJ−1|zj > 0 all m and
∑
m

zj < 1},

We define the mapping Ψ1 :int∆Ω̄→ ZJ−1 by dropping the coordinate γ(J)

Ψ1(γ(j)) = γ(j) for 1 ≤ j ≤ J − 1.

The second mapping maps ZJ−1 into X = (0, 1)× ZJ−2. Define Ψ2(z) : ZJ−1 → X by,

Ψ2(z(j)) =

{
z(j)

1−
∑J−1
m=2 z(m)

for j = 1;

z(j) for 2 ≤ i 6= j ≤ J − 1.

Now X is a rectangle. We define the mapping Ψ :int∆Ω̄→ X as the composition of Ψ1 and Ψ2 :

Ψ = Ψ2 (Ψ1(γ)) =

{
Ψ1(γ(j))

1−
∑J−1
m=2 Ψ1(γ(m))

for j = 1;

Ψ1(γ(j)) for 2 ≤ i 6= j ≤ J − 1.

=

{
γ(j)

1−
∑J−1
m=2 γ(m)

for j = 1;

γ(j) for 2 ≤ i 6= j ≤ J − 1.

The next lemma shows that Ψ is bijective.

Lemma 4.14: Ψ = Ψ2 ◦Ψ1 is bijective.

Proof. Clearly Ψ1 :int∆Ω̄→ ZJ−1 is bijective. With regard to Ψ2, note that if that z1, z2 ∈ ZJ−1

both map to x ∈ X, it is immediate that z1 = z2. Hence Ψ2 : ZJ−1 → X is injective. To show that
it is also surjective, given x ∈ X, define h(x) ∈ ZJ−1 by,

h(x(j)) =

{ [
1−

∑J−1
m=2 x(m)

]
x(1) if j = 1

x(j) for 2 ≤ j ≤ J − 1.
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We now consider Ψ2(h(x)) ∈ X. By construction, this satisfies:

Ψ2(h(x(j))) =

{
h(x(j))

1−
∑J−1
m=2 h(x(m))

for j = 1;

x(j) for 2 ≤ i 6= j ≤ J − 1.

where

h(x(j))

1−
∑J−1

m=2 h(x(m))
=

[
1−

∑J−1
m=2 x(m)

]
x(1)[

1−
∑J−1

m=2 x(m)
] = x(1).

Hence Ψ2(h(x)) = x so that Ψ2 is surjective. Given that it is also injective, it is bijective. The
composition of two bijective mappings is bijective. This completes the proof.

The next lemma shows that, in this space, the Trapezoid Condition transforms into a rectangle
condition on X.

Lemma 4.15: Given γ1, γ2, η1, η2 ∈int∆Ω̄ that satisfy the Trapezoid Condition for states k = 1
and j = J , the elements x1, x2, y1, y2 ∈ X such that xm = Ψ(γm) and ym = Ψ(ηm) for
m = 1, 2, form a rectangle:

x1(1) = x2(1) and y1(1) = y2(1);

x1(j) = y1(j) and x2(j) = y2(j); for 2 ≤ j ≤ J − 1.

Proof. Consider x1, x2, y1, y2 ∈ X such that xm = Ψ(γm) and ym = Ψ(ηm) for m = 1, 2. By the
Trapezoid Condition and the definition of Ψ, for 2 ≤ j ≤ J − 1 and m = 1, 2,

xm(j) = Ψ(γm(j)) = γm(j) = ηm(j) = Ψ(ηm(j)) = ηm(j).

Note also that,

x1(1)− x2(1) =
γ1(1)

γ1(1) + γ1(J)
− γ2(1)

γ2(1) + γ2(J)

=

γ1(1)
γ1(J)

γ1(1)
γ1(J) + 1

−
γ2(1)
γ2(J)

γ2(1)
γ2(J) + 1

=
α

α+ 1
− α

α+ 1
= 0

Similarly,

y1(1)− y2(1) =

η1(1)
η1(J)

η1(1)
η1(J) + 1

−
η1(1)
η1(J)

η1(1)
η1(J) + 1

= 0,

completing the proof.

With this we are in position to establish our first version of additive separability.

Lemma 4.16: Suppose that K is invariant and uniformly posterior separable. Then, given 2 ≤
i 6= j ≤ J − 1, T−→

ji
(γ) is additively separable in

[
γ(1)

γ(1)+γ(J)

]
and {γ(j)| 2 ≤ j ≤ J − 1} in that

there exists A : R+ −→ R and B : RJ−2 −→ R such that,

T−→
ji

(γ) = A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(2), ..., γ(J − 1))
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Proof. We consider any four posteriors γ1, γ2, η1, η2 ∈int∆Ω̄ that satisfy the Trapezoid Condition
for states k = 1 and l = J . We now define x1, x2, y1, y2 ∈ X by xm = Ψ(γm) and ym = Ψ(ηm) for
m = 1, 2. We transfer the directional derivatives to this space by defining the function T : X → R
by,

T (x) ≡ T−→
ji

(Ψ−1(x)),

using the bijective function Ψ :int∆Ω̄→ X introduced in Lemma 4.14 above.

Note that the space X is of the cross-product form X = XA × XB with XA = (0, 1) and
XB = ZJ−2. A standard condition for such an arbitrary function f : X −→ R on such a space to
be additively,

f(a, b) = f1(a) + f2(b)

is that the rectangle conditions are satisfied: given a1, a2 ∈ XA and b1, b2 ∈ XB,

f(a1, b1)− f(a2, b1) = f(a1, b2)− f(a2, b2).

To confirm, pick arbitrary
(
ā, b̄
)
∈ XA ×XB and note that for any (a, b) ∈ XA ×XB,

f(a, b) = f(a, b̄) + f(ā, b)− f
(
ā, b̄
)
,

which is of the additively separable form for f1(a) = f(a, b̄)− f
(
ā, b̄
)
and f2(b) = f(ā, b).

Since γ1, γ2, η1, and η2 satisfy the Trapezoid Condition, Lemma 4.8, states,

T−→
ji

(γ1)− T−→
ji

(η1) = T−→
ji

(γ2)− T−→
ji

(η2)

By the definition of T we have,

T (x1)− T (y1) = T (x2)− T (y2)

By Lemma 4.15, xm = Ψ(γm) and ym = Ψ(υm) for m = 1, 2, form a rectangle:

x1(1) = x2(1) ≡ a1 and y1(1) = y2(1) ≡ a2;

x1(j) = y1(j) and x2(j) = y2(j); for 2 ≤ j ≤ J − 1.

Define bm ∈ ZJ−2 for m = 1, 2 by,

bm(j) = xm(j + 1) for 2 ≤ j ≤ J − 1,

substitution yields the rectangle condition,

T (a1, b1)− T (a2, b1) = T (x1)− T (y1) = T (x2)− T (y2) = T (a1, b2)− T (a2, b2).

It follows that T is additively separable between a ∈ XA = (0, 1) and b ∈ XB = ZJ−2

T (a, b) = A(a) +B(b)
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In the final step, we use Ψ to move from T to T−→
ji
. Given x = Ψ(γ),

T−→
ji

(γ) = T (Ψ−1(γ)) = T (x) = A(x(1)) +B(x(2), .., x(J − 1))

= A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(2), .., γ(J − 1)) ,

completing the proof.

Strong Form Additive Separability In this section we establish a stronger form of additive
separability relying on already established symmetry and differentiability properties of the T func-
tion.

Lemma 4.17: Suppose that K is invariant and uniformly posterior separable. If T is differentiable
at γ ∈int∆Ω̄, then, given 1 < i 6= j < J there exists B : RJ−2 −→ R such that

T(ji)(γ) = B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1)) (4.39)

Proof. We arbitrarily order states, fix states 1 and J , and consider distinct states 2 ≤ i 6= j ≤ J−1.
By Lemma 4.4, if T is differentiable at γ then T(ji)(γ) exists. We set i = 2 and j = 3. Given the
symmetry of T (Lemma 4.1), this is without loss of generality.

Applying Lemma 4.16,

T(32)(γ) = A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1)) .

By Lemma 4.4, we also know that,

T(23)(γ) = −T(32)(γ) = −A
(

γ(1)

γ(1) + γ(J)

)
−B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1)) . (4.40)

Define the mapping σ : {1, .., J} −→ {1, .., J} that permutes elements 2 and 3:

σ(k) =


3 if k = 2;
2 if k = 3;
k otherwise.

Defining γσ ∈int∆Ω̄ as the correspondingly permuted posterior, γσ(j) = γ(σ−1(j)). Lemma 4.5
then states that, since T(ji)(γ) exists,

T(23)(γ) = T(32)(γ
σ)

Directly by Lemma 4.16,

T(32)(γ
σ) = A

(
γσ(1)

γσ(1) + γσ(J)

)
+B (γσ(2), γσ(3), ..., γσ(J − 2), γσ(J − 1))

= A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(3), γ(2), ..., γ(J − 2), γ(J − 1)). (4.41)
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Since both equal T(23)(γ) we know that the right-hand sides of (4.40) and (4.41) are equal,

2A

(
γ(1)

γ(1) + γ(J)

)
= −B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1))−B (γ(3), γ(2), ..., γ(J − 2), γ(J − 1))

(4.42)

By assumption T(32)(γ) exists so that by Lemma 4.13 it also exists for all η such that η(2)/η(3) =
γ(2)/γ(3), including all at which,

ρ ≡ η(1)

η(1) + η(J)
> 0

takes arbitrary values while η(k) = γ(k) for all k 6= 1, J, which by construction differ from i, j.
Hence (4.42) must hold for all ρ > 0. Since the right-hand side of the equation is independent of ρ,
A (ρ) is independent of ρ,

A (ρ) = Ā ∈ R.

Hence we can add Ā to B and normalize to A(x) = 0, completing the proof.

In the proceeding, there has been no guarantee that there is a singleB that works for all pairs of
states. In the next lemma we further restrict the functional dependence of the two-sided directional
derivative, and in the process show that there exists a single function B̄ that characterizes this
derivative.

Lemma 4.18: Suppose that K is invariant and uniformly posterior separable. Then there exists
B̄ : (0, 1)× (0, 1)→ R such that, given γ ∈int∆Ω̄, and states 1 ≤ i 6= j ≤ J ,

T(ji)(γ) = B̄(γ(i), γ(j)). (4.43)

Proof. Given arbitrarily fixed states 1 and J with J ≥ 4, Lemma 4.17 establishes that if we
consider distinct states i = 2 and j = 3, there exists B : RJ−2 −→ R such that

T(32)(γ) = B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1))

if T is differentiable at γ. If J = 4, then B has only two arguments and is of the desired form,

T(ji)(γ̄) = B (γ̄(i), γ̄(j)) ≡ B (γ̄(2), γ̄(3)) ≡ B̄ (γ̄(2), γ̄(3)) .

By the symmetry Lemma 4.5, this same function applies regardless of how we label states, com-
pleting the proof for J = 4.

T(ji)(γ̄) = B̄(γ̄(i), γ̄(j))

If J > 4 we again arbitrarily fixed states 1 and J , and consider state s 6= i, j with 2 ≤ s ≤ J−1.
Hence by Lemma 4.17 and Lemma 4.5, we can transpose posteriors 1 and s without changing the
form of the function, so that,

T(ji)(γ) = B(γ(2), .., γ(s− 1), γ(1), γ(s+ 1), ..., γ(J − 2), γ(J − 1)). (4.44)

Raising γ(s) and reducing γ(J) has no effect on the right hand side of (4.44), hence no effect on
the RHS of (4.39) so that B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1)) is independent of γ(s). Proceeding
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in this matter for all s 6= {i, j}, we have

T(ji)(γ) = B̄(γ(i), γ(j)),

where B̄(γ(i), γ(j)) is the common value. To complete the proof, note again that by the symmetry
of T (Lemma 4.1), the same function applies regardless of how we label the states, completing the
proof.

Note that the function B̄(γ(i), γ(j)) is pinned down only for γ at which T is differentiable and
not the full domain (0, 1) × (0, 1). However we know that it is pinned down on a dense subset of
this space, so that it is natural to think of using a limit operation to fill out the function. The
next Lemma establishes that this can be done in an unambiguous manner, and characterizes the
one-sided directional derivative.

Lemma 4.19: There exists B̄ : (0, 1)× (0, 1)→ R such that, given γ ∈int∆Ω̄,

T−→
ji

(γ) = B̄(γ(i), γ(j)). (4.45)

Proof. Where T(ji)(γ), exists, Lemma 4.4 shows that it is equal to T−→
ji

(γ). Hence the function
defined in (4.43) is of the appropriate form for all γ at which T is differentiable. What is left is to
establish that we can define B̄(γ(i), γ(j)) that equals T−→

ji
(γ) on γ at which T is not differentiable.

Consider γ at which T is not differentiable, and consider any sequence {γn}∞n=1 with γn =
γ + εn(ei − ej) such that T(ji)(γn) exists for all n and εn ↓ 0. To see that such a sequence must
exist, let Y (γ, i, j) = {x ∈ RJ |x(k) = γ(k) for all k 6= i, j}. Y (γ, i, j) is a convex set, and
T Y (γ,i,j) :int∆ΩY (γ, i, j) → R is the restriction of T to Y (γ, i, j)∩int∆Ω̄. Lemma 4.11 states that
T Y (γ,i,j) is almost everywhere differentiable in the relative interior of int∆ΩY (γ, i, j), and that
T
Y (γ,i,j)
(ij) = T(ji). We can therefore select the sequence {γn}∞n=1 from int∆ΩY (γ, i, j).

As T(ji)(γn) exists, Lemma 4.18 implies,

T(ji)(γn) = B̄(γn(i), γn(j)).

Lemma 4.10 then ensures that,

lim
n→∞

T−→
ji

(γ + εn(ei − ej)) = T−→
ji

(γ).

We therefore define B̄(γ) for γ at which T is not differentiable as,

B̄(γ) ≡ lim
n→∞

B̄(γn(i), γn(j)) = T−→
ji

(γ), (4.46)

By construction we know that T−→
ji

(γ) = B̄(γ) on the full domain, and that it is of the form

B̄(γ(i), γ(j)) on γ at which T is differentiable. Equation (4.46) implies that B̄(γ) takes the form
B̄(γ(i), γ(j)) at points of non-differentiability, completing the proof of (4.45) and with it the Lemma.

Note that the function B̄ : (0, 1) × (0, 1) → R as introduced above allows for certain jumps
at posteriors at the two sided directional derivatives fail to exist. In further characterizing the
implications of Invariance under Compression, such cases will be ruled out.
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Full Additive Separability We have now established that directional derivatives at any pos-
terior depends only on the probabilities of the two involved states. We now establish that the
corresponding function can be defined based on a fixed function of each probability alone. This is
what we refer to as full additive separability. The result is connected with a triangular pattern in
two-sided directional derivatives. If T(ji)(γ), T(ik)(γ), T(jk)(γ) all exist then they are interdependent,

T(ji)(γ) = T(jk)(γ) + T(ki)(γ). (4.47)

In the next lemma we show that this relationship rests only on existence of any two of these
three two-sided directional derivatives. The lemma also uses the negative inverse feature of these
directional derivatives to point to the method for identifying the appropriate form of the function
that generates the sought after representation.

Lemma 4.20 Given γ ∈int∆Ω̄, suppose that there exist three distinct indices 1 ≤ i, j, k ≤ J such
that T(ki)(γ) and T(kj)(γ) both exist. Then T(ji)(γ) exists and,

T(ji)(γ) = B̄(γ(i), γ(k))− B̄(γ(j), γ(k)). (4.48)

Proof. Given Lemma 4.1, we may take i = 1, j = 2 and k = 3 without loss of generality.

Given γ ∈int∆Ω̄, define the set X, as the set of positive pairs (x1, x1) that sum to something
less than the sum of γ (1), γ(2) and γ(3),

X ≡

x ∈ R2|x1, x2 > 0 and x1 + x2 <
∑

l={1,2,3}
γ(l)

 . (4.49)

Define η(x) ∈int∆Ω̄, as the vector that has x1 and x2 as its first arguments and agrees with γ for
all arguments greater than three:

[η(x)] (l) =


x1 if l = 1;
x2 if l = 2;∑

l={1,2,3}
γ(l)− x1 − x2 if l = 3;

γ(l) otherwise

(4.50)

Finally, define H : X → R by
H(x) = T (η(x)) (4.51)

Note that
η (γ(1), γ(2)) = γ

Note also that, given T(32)(γ) exists,

T(32)(γ) = lim
ε→0

T (γ + ε(e2 − e3))− T (γ)

ε
= lim

ε→0

T (η(γ(1), γ(2) + ε))− T (η(γ(1), γ(2)))

ε

= lim
ε→0

H(γ(1), γ(2) + ε)−H(γ(1), γ(2))

ε
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Hence,

T(32)(γ) =
∂

∂γ(2)
H(γ(1), γ(2)). (4.52)

Analogously,

T(31)(γ) =
∂

∂γ(1)
H1(γ(1), γ(2)).

Since both partials exist, note from Rockafellar [1970] Theorem 25.1 that H is differentiable
at (γ(1), γ(2)) and from Theorem 25.2 that the directional derivative function H ′(γ(1), γ(2)|y) is
linear in direction y ∈ R2. Hence the directional derivative in direction e1 − e2 is the difference
between the partials,

H ′(γ(1), γ(2)|e1 − e2) =
∂

∂γ(1)
H1(γ(1), γ(2))− ∂

∂γ(2)
H(γ(1), γ(2)) = T(31)(γ)− T(32)(γ). (4.53)

To complete the proof of (4.48), note directly from the definitions that H ′(γ|e2 − e1) is equal to
T(ji)(γ),

H ′(γ(1), γ(2)|e1 − e2) = lim
ε→0

H(γ(1) + ε, γ(2)− ε)−H(γ(1), γ(2))

ε
(4.54)

= lim
ε→0

T (γ + ε(e1 − e2))− T (γ)

ε
≡ T(21)(γ)

Setting the right-hand sides of (4.53) and (4.54) to equality establishes that

T(ji)(γ) = T(ki)(γ)− T(kj)(γ).

In light of Lemma 4.19 this completes the proof of (4.48).

Lemma 4.20 points the way to a possible method for expressing T(ji)(γ) in a fully additively
separable manner. Since T(ji)(γ) = B̄(γ(i), γ(k))− B̄(γ(j), γ(k)) and T(ji)(γ) only depends on γ(i)
and γ(j), it should be possible to fix γ(k) and write

T(ji)(γ) = B̄(γ(i), x̄)− B̄(γ(j), x̄)

so that T(ji)(γ) is additively separable in γ(i) and γ(j). The complication in establishing this form
of additive separability is that the requirement that x̄ < 1− γ(i)− γ(j) means that that no single
x̄ works for all γ ∈int∆Ω̄. In the following, we establish additive separability on a subset of int∆Ω̄
and then drive the value of x̄ down to zero to establish additive separability on the whole of int∆Ω̄.

Lemma 4.21: Given ε ∈ (0, 0.5), there exists x(ε) ∈
(
ε
8 ,

ε
4

)
and a full measure set I(ε) ⊂ (0, 1− ε)

such that, for any distinct states 1 ≤ i, k ≤ J , given γ ∈int∆Ω̄ with γ(k) = x(ε), T(ik)(γ)
exists whenever γ(i) ∈ I(ε).

Proof. Pick distinct states 1 ≤ i, k ≤ J and ε ∈ (0, 0.5). Let Y (k, ε) = {z ∈ RJ |z(k) ∈
(
ε
8 ,

ε
4

)
}

denote the set of vectors in RJ for which z(k) ∈ ( ε4 ,
ε
2) and focus on posteriors with γ(k) so

restricted,

int∆Ω̄Y (k, ε) =
{
γ ∈ int∆Ω̄|γ(k) ∈

( ε
8
,
ε

4

)}
. (4.55)
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Per the general prescription, define the restricted function T Y (k,ε) :int∆ΩY (k, ε)→ R, and note for
arbitrary indices 1 ≤ j 6= l ≤ J ,

T
Y (k,ε)
−→
lj

(γ) = T−→
lj

(γ),

given that there is suitable variation of the posterior in all directions.

By Lemma 4.11 we know that T Y (k,ε) is almost every differentiable in the relative interior of
∆ΩY (k, ε). At any point of differentiability of T Y (k,ε), we know by Lemma 4.4 that all two-sided
directional derivatives exists. Hence, we know that T(ik)(γ) exists for almost all γ ∈int∆ΩY (k, ε).
But we already know from Lemma 4.19 that such existence can only depend on the values γ(i) and
γ(k), so that existence is ensured on a full measure subset of the corresponding domain defined by:

γ(k) ∈
( ε

8
,
ε

4

)
and γ(i) ∈ (0, 1− γ(k)).

Now fix x ∈
(
ε
8 ,

ε
4

)
and define

I(x) = {y ∈ (0, 1− x)|T(ik)(γ) exists when γ(k) = x and γ(i) = y} ⊂ (0, 1− x). (4.56)

Note that the union of these sets across x ∈
(
ε
8 ,

ε
4

)
is precisely the set of γ ∈int∆ΩY (k, ε)

on which T(ik)(γ) exists, which we know to have the same measure as the relative interior of
int∆ΩY (k, ε). This means that there exists x(ε) ∈

(
ε
8 ,

ε
4

)
such that the measure of I(x(ε)) is

1− x(ε). As x(ε) ∈
(
ε
8 ,

ε
4

)
, take I(ε) = I(x(ε)) ∩ (1, 1− ε). This completes the proof.

We now show how to define an appropriate fully additively separable function of the form we
seek for any given ε ∈ (0, 0.5).

Lemma 4.22: Given ε ∈ (0, 0.5) and there exists a dense subset I(ε) ⊂ (0, 1 − ε) and a function
f ε : I(ε)→ R such that,

T(ji)(γ) = f ε(γ(i))− f ε(γ(j)), (4.57)

for all γ ∈int∆Ω̄ such that γ(i), γ(j) ∈ I(ε) and γ(i) + γ(j) < 1− ε.

Proof. Given ε ∈ (0, 0.5), fix x(ε) ∈
(
ε
8 ,

ε
4

)
and the dense subset I(ε) of (0, 1 − ε) so that the

conditions of the Lemma 4.21 are satisfied. Now consider int∆Ω̄(ε), the set of posteriors for which
Lemma 4.21 tells us that both T(ik)(γ) and T(jk)(γ) are well-defined,

int∆Ω̄(ε) =
{
γ ∈ int∆Ω̄|γ(i), γ(j) ∈ I(ε), γ(k) = x(ε)

}
,

Since both T(ik)(γ) and T(jk)(γ) exist on int∆Ω̄(ε), by Lemma 4.21,

T(ji)(γ) = B̄(γ(i), x(k))− B̄(γ(j), x(k)). (4.58)

for γ ∈int∆Ω̄(ε). We define the candidate function,

f ε(γ) = B̄(γ(i), x(ε)).

The Lemma requires one more step, which is to remove the condition that γ(k) = x(ε), which is
absent in the conditions of the Lemma. The key observation here is that according to Lemma 4.18,
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T(ji)(γ) depends only on γ(i) and γ(j). Hence given γ′ such that γ′(i) = γ(i) and γ′(j) = γ (i),

T(ji)(γ
′) = T(ji)(γ) = f ε(γ(i))− f ε(γ(j)).

Hence the characterization applies to all γ ∈int∆Ω̄ such that γ(i), γ(j) ∈ I(ε) and γ(i)+γ(j) < 1−ε
as required.

Lemma 4.23: There exists f : Ī → R with Ī ⊂ (0, 1) of full measure such that for all γ ∈int∆Ω̄
with γ(i), γ(j) ∈ Ī, T(ji)(γ) exists and,

T(ji)(γ) = f(γ(i))− f(γ(j)) (4.59)

Proof. We construct a diminishing sequence {ε(n)}∞n=1 > 0 with ε(n + 1) < ε(n) by setting
ε(1) ∈ (0.0.5) and thereupon successively halving,

ε(n+ 1) =
ε(n)

2
,

on n > 1. For each n, Lemma 4.21 states that there exists x(n) ∈
(
ε(n)

8 , ε(n)
4

)
and a set I(n) ⊂

(0, 1−ε(n)) which is dense in (0, 1−ε(n)) such that T(ji) exists whenever γ(j) = x(n) and γ(i) ∈ I(n).

We now show that I(n) ⊂ I(n + 1). Since I(n) is dense in (0, 1 − ε(n)) and I(n + 1) is dense
in (0, 1 − ε(n + 1)) and (0, 1 − ε(n)) ⊂ (0, 1 − ε(n + 1)), I(n) ∩ I(n + 1) is not empty. Consider
y ∈ I(n)∩ I(n+ 1) and choose η such that γ(i) = y, γ(j) = x(n). That this is possible follows from
the fact that

y + x(n) + x(n+ 1) < y +
ε(n)

4
+
ε(n+ 1)

4
≤ y +

ε(n)

4
+
ε(n)

8
< 1

Since γ(i) ∈ I(n), T(ji) exists, and since γ(i) ∈ I(n+ 1), T(ki) exists. It follows from Lemma 4.20,
that T(kj) exists. Now consider any y ∈ I(n), and consider η such that γ(i) = y, γ(j) = x(n), and
γ(k) = x(n+ 1). Since γ(i) ∈ I(n), T(ji) exists, and since T(kj) exists, it follows from Lemma 4.20,
that T(ki) exists. Hence y ∈ I(n+ 1).

By Lemma 4.22,
T(ji)(γ) = B̄(γ(i), x(n))− B̄(γ(j), x(n))

for all γ such that γ(i), γ(j) ∈ I(n). Fix z ∈ I(1), since I(n) ⊂ I(n+ 1), z ∈ I(n). For γ(i) ∈ I(n),
define

Gn(γ(i)) = B̄(γ(i), x(n))− B̄(z, x(n))

It follows that

T(ji)(γ) = B̄(γ(i), x(n))− B̄(γ(j), x(n))

= B̄(γ(i), x(n))− B̄(z, x(n))− B̄(γ(j), x(n)) + B̄(z, x(n))

= Gn(γ(i))−Gn(γ(j))
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We now compare Gn(γ(i)) to Gn+1(γ(i)). Consider γ(i) ∈ I(n) ⊂ I(n+ 1),

Gn+1(γ(i)) = B̄(γ(i), x(n+ 1))− B̄(z, x(n+ 1))

= B̄(γ(i), x(n))− B̄(x(n+ 1), x(n))− B̄(z, x(n)) + B̄(x(n+ 1), x(n))

= B̄(γ(i), x(n))− B̄(z, x(n))

= Gn(γ(i))

where the second equality follows from Lemma 4.20 applied to γ̃ with γ̃(i) = x(n+ 1), γ̃(j) = x(n)
and γ̃(k) = γ(i) :

T(ji)(γ̃) = B̄(x(n+1), x(n)) = B̄(x(n+1), γ(i))−B̄(x(n), γ(i)) = −B̄(γ(i), x(n+1))+B̄(γ(i), x(n))

and similarly for z in place of γ(i).

Hence we can define a limit function f : ∪∞n=1I(n) → R unambiguously by taking any x ∈
∪∞n=1I(n), selecting a particular n̄ such that x ∈ I(n̄), and defining,

f(x) = Gn̄(x).

By Lemma 4.22, we know that with γ(i), γ(j) ∈ I(n), a dense subset of (0, 1− ε(n)), (4.59) holds,

T(ji)(γ) = f(γ(i))− f(γ(j). (4.60)

Since limn→∞ ε(n) = limn→∞ ε(n) = 0, note that

Ī ≡ ∪∞n=1I(n)

is a dense subset of (0, 1), establishing the Lemma.

Lemma 4.24: The function f : Ī −→ R defined in Lemma 4.23 for which (4.59) holds is non-
decreasing, and can be extended to a function f : (0, 1) −→ R that is non-decreasing.

Proof. We pick arbitrary x, x + ε ∈ ∪∞n=1I(n) = Ī with ε > 0 and show that f(x + ε) ≥ f(x).
Consider γ ∈int∆Ω̄ with γ(i) = x and γ(j) = x+ ε, by Lemma 4.23,

T(ji)(γ) = f(γ(i))− f(γ(j)) = f(x)− f(x+ ε).

If we now define γ′ ∈int∆Ω̄ as,
γ′ = γ + ε(ei − ej),

Lemma 4.23 implies that,

T(ji)(γ
′) = f(γ′(i))− f(γ′(j)) = f(x+ ε)− f(x).

By the monotonicity lemma, Lemma 4.9, γ′ = γ + ε(ei − ej) for ε > 0 implies T(ji)(γ
′) ≥ T(ji)(γ),

which translates to,
f(x+ ε)− f(x) ≥ f(x)− f(x+ ε),

which directly implies f(x+ ε) ≥ f(x), completing the proof that f is non-decreasing on Ī.
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To complete the proof, pick x ∈ Ī\(0, 1). Since Ī ⊂ (0, 1) is of full measure in (0, 1), we can
find sequence {x(n)}∞n=1 > x with x(n + 1) < x(n) and limn→∞ x(n) = x such that x(n) ∈ Ī. We
define f(x) as the corresponding limit,

f(x) = lim
n→∞

f(x(n)

Since we have just shown f to be non-decreasing, the limit is well-defined, and also non-decreasing.

We now show a connection between continuity properties of f and existence of two-sided direc-
tional derivatives.

Lemma 4.25: Given η ∈int∆Ω̄, T(ji)(η) exists if and only if f(γ(i))− f(γ(j)) is continuous at η.

Proof. Consider η ∈int∆Ω̄. Pick distinct states 1 ≤ i, j ≤ J and define

Y (η, i, j) = {γ ∈ RJ |γ(k) = η(k), k 6= i, j}.

Note Y (η, i, j) is convex set. Per the general prescription, define the restricted function T Y (η,i,j).
By Lemma 4.11 this function is differentiable almost everywhere in the relative interior of the
restricted domain int∆ΩY (η, i, j). Hence the directional derivative in the only relevant direction,

T
Y (k,ε)
(ji) (γ) = T(ji)(γ),

exists almost everywhere. Hence we can find sequences approaching from η both corresponding
directions. We now select {ε(n)}∞n=1 > 0 with limn→∞ ε(n) = 0 such that given γn = η+ε(n)(ei−ej),
T(ji)(γn) exists. We select also {ε′(n)}∞n=1 < 0 with limn→∞ ε′(n) = 0 such that, defining γ′n =
η + ε′(n)(ei − ej), T(ji)(γ

′
n) exists.

Since T is convex we know that the one-sided directional derivatives are monotonically increas-
ing,

lim
n→∞

T(ji)(γ
′
n) ≤ −T−→

ji
(η) ≤ T−→

ji
(η) ≤ lim

n→∞
T(ji)(γn). (4.61)

We now use Lemma 4.23 to substitute in (4.61) at all γn and γ
′
n since T(ji)(◦) is well-defined at

these points, to arrive at,

T(ji)(γn) = f(η(i) + εn)− f(η(j)− εn);

T(ji)(γ
′
n) = f(η(i) + ε′n)− f(η(j)− ε′n);

Now suppose that f(γ(i))− f(γ(j)) is continuous at η. In this case,

lim
n→∞

[
f(η(i) + ε′n)− f(η(j)− ε′n)

]
= lim

n→∞
[f(η(i) + εn)− f(η(j)− εn)] ,

so that correspondingly,
lim
n→∞

T(ji)(γ
′
n) = lim

n→∞
T(ji)(γn),

hence by (4.61),
−T−→

ji
(η) = T−→

ji
(η),

establishing through Lemma 4.4 that T(ji)(η) exists.
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Suppose conversely that T(ji)(η) does not exist. In this case we know by Lemma 4.4 that
T−→
ji

(η) < T−→
ji

(η), so that by (4.61),

lim
n→∞

T(ji)(γn) = lim
n→∞

f(η(i) + ε′n)−f(η(j)− ε′n) < lim
n→∞

T(ji)(γn) = lim
n→∞

f(η(i) + εn)−f(η(j)− εn),

establishing that f(γ(i))− f(γ(j)) is discontinuous at η, and completing the proof.

Existence of Directional Derivatives

Lemma 4.26: Given η and given α = η(k)
η(l) , if T(kl)(η) exists then T is differentiable for almost all

γ ∈ Γkl(α).

Proof. Consider η ∈int∆Ω̄ such that T(kl)(η) exists and set α = η(k)
η(l) . Since Γkl(α) is convex, TΓkl(α)

almost everywhere differentiable on the relative interior of Γkl(α) by Lemma 4.11. At points of
differentiability, we know from Lemma 4.4 that T(ji)(γ) = T

Γkl(α)
(ji) (γ) exists provided Γkl(α) contains

a line segment through γ in direction (ei − ej), By definition of Γkl(α), this holds for all directions
except that defined by the pair of states (lk) whose posterior belief ratio is held fixed through the
set.

Consider γ ∈ Γkl(α) at which TΓkl(α) is differentiable. As T(kl)(η) exists, Lemma 4.13 implies
that T(kl)(γ) also exists. Hence at all such γ, we know that all 2-sided directional derivatives exist.
Following precisely the steps in Lemma 4.20, we can remove an arbitrary state k 6= i, j from the
domain and construct set X as in (4.49), then define η(x) ∈int∆Ω̄ on x ∈ X as in (4.50) and
function H(x) on X by (4.51), whose partial derivatives are precisely the directional derivatives
T(km)(γ),

T(km)(γ) = H1(γ(m), γ(i)),

all m 6= k.

Since all partials of this function therefore exist, we note from Rockafellar [1970] Theorem 25.2
that H(γ) is differentiable at γ and that the directional derivative function H ′(γ|y) is linear in
direction y ∈ R2. Re-application of Rockafellar [1970] Theorem 25.2 implies that T is differentiable
at γ, completing the proof.

Lemma 4.27: T(ji)(γ) exists for all i, j and γ ∈int∆Ω̄.

Proof. The proof is by contradiction. Consider a posterior η at which T(ji)(η) does not exist. It
follows from Lemma 4.25 that f(η(i))− f(η(j)) is discontinuous at this point:

lim
ε↑0

f(η(i) + ε)− f(η(j) + ε) ≤ lim
ε↓0

f(η(i) + ε)− f(η(j) + ε)

Without loss of generality, suppose that it is f(η(i)) that is discontinuous.

Since f is monotonic, f(γ(j)) is continuous for almost all γ(j) ∈ (0, 1 − η(i)) (Rudin [1976],
Theorem 4.30). The discontinuity of f at η(i) and the continuity of f almost everywhere else
implies that f(η(i)) − f(γ(j)) is discontinuous in the direction (ji) for almost all γ(j) ∈ (0, 1 −
η(i)). Hence by Lemma 4.25, T(ji)(γ) does not exist for almost all γ such that γ(i) = η(i) and
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γ(j) ∈ (0, 1 − η(i)). It follows that for almost all α ∈
(

η(i)
1−η(i) ,∞

)
, there exists γ ∈ Γαji such that

T(ji)(γ) does not exist. But by Lemma 4.13, if T(ji)(γ) exists for any η ∈ Γαji, then T(ji)(γ) exists

for all γ ∈ Γαji. Hence for almost all α ∈
(

η(i)
1−η(i) ,∞

)
, T(ji)(γ) does not exist for any γ ∈ Γαji.

But
{
γ|γ ∈ Γji(α), α ∈

(
η(i)

1−η(i) ,∞
)}

is a set of positive measure and T is differentiable almost

everywhere. This contradiction establishes the result.

Lemma 4.28: T is continuously differentiable on γ ∈int∆Ω̄ and f(γ(j)) is continuous on int∆Ω̄

Proof. Lemma 4.27 establishes that the directional derivatives T(ji)(γ) exist for all (ji) and all
γ ∈int∆Ω̄. It follows from Rockafellar [1970] Theorem 25.2 that T is differentiable and from
Rockafellar [1970] Corollary 25.5.1 that T is continuously differentiable on γ ∈int∆Ω̄. Since
T(ji)(γ) = f(γ(i))− f(γ(j)), the continuity of f follows.

4.2.4 Invariance

We can use the arguments in Lemma 3 of Hebert and La’O (2020) to show that if the cost function
K is differentiable invariant and posterior-separable, then Tµ(γ) is invariant where

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ)

First, given Ω̄, µ ∈int(supp Ω̄) and {Ω̄z}z=1,...Z , we define the operator. νΩ̄z ,µ : ∆Ω̄ → ∆Ω̄ as
follows. Given γ ∈ ∆Ω̄ construct γ′ = νΩ̄z ,µ(γ) as the probability distribution that satisfies the
following two conditions:

1. For all Ω̄z, γ(Ω̄z) = γ′(Ω̄z)

2. For all ω ∈ Ω̄z, γ
′(ω|Ω̄) = µ(ω|Ω̄z)

Given νΩ̄z ,µ, we define the invariance of Tµ(γ).

Definition 9 Tµ(γ) is invariant if for all finite sets of states, Ω̄ ⊂ Ω, all partitions of Ω̄,
{Ω̄z}z=1,...Z , all pairs of priors µ and µ′ that place equal probability on each partition subset, and
all posteriors γ ∈ ∆Ω̄:

Tµ(γ) ≥ Tµ(νΩ̄z ,µ(γ))

and
Tµ(νΩ̄z ,µ(γ)) = Tµ′(νΩ̄z ,µ′(γ)).

We now have the following lemma.

Lemma 4.29: Suppose that K is invariant posterior-separable such that

K(µ,Q) =
∑

γ∈supp Q
Q(γ)Tµ(γ)
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and that Tµ(γ) is differentiable. Then Tµ(γ) is invariant.

Proof. Fix a finite set of states Ω̄ ⊂ Ω, a partition {Ω̄z} of Ω̄, a pair of priors µ and µ′ that place
equal probability on each partition subset, and a posterior γ ∈ ∆Ω̄. We wish to show that:

Tµ(γ) ≥ Tµ(ν{Ω̄z},µ(γ)) (4.62)

and
Tµ(ν{Ω̄z},µ(γ)) = Tµ′(ν{Ω̄z},µ′(γ)). (4.63)

We begin by establishing monotonicity (4.62). Suppose, for now, that µ ∈int∆Ω̄. Consider two
information structures:

Qε(γ) = ε

Qε

(
µ− ε

1− ε(γ − µ)

)
= 1− ε

and

Q̂ε(ν{Ω̄z},µγ) = ε

Q̂ε

(
ν{Ω̄z},µγ −

ε

1− ε(µ− ν{Ω̄z},µγ)

)
= 1− ε

Note that Q̂ = ν{Ω̄z},µQ.

At ε = 0, neither Q0 and Q̂0 involves any learning and both sets of posteriors are equal to the
prior, so that

K(Q0, µ) = K(Q̂0, µ) = 0

Since K is invariant
K(Qε, µ) ≥ K(Q̂ε, µ)

It follows that
d

dε

[
K(Qε, µ)−K(Q̂ε, µ)

]
ε=0
≥ 0

Note that

d

dε
[K(Qε, µ)]ε=0 =

d

dε

[
εTµ(γ) + (1− ε)Tµ

(
µ− ε

1− ε(γ − µ)

)]
ε=0

=

[
Tµ(γ)− Tµ(µ) + (1− ε) d

dε
Tµ

(
µ− ε

1− ε(γ − µ)

)]
ε=0

= Tµ(γ)

where the last equality follows from the observations that Tµ(µ) = 0 and since Tµ(γ) is positive, the

directional derivatives are all zero at T (µ). Similarly d
dε

[
K(µ, Q̂ε)

]
ε=0

= Tµ(ν{Ω̄z},µγ). Together

we have,
Tµ(γ)− Tµ(ν{Ω̄z},µγ) ≥ 0

as desired.
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If µ ∈ ∂Ω̄, then we repeat the argument with Ω̄′ =supp µ.

Now consider (4.62). Consider µ1 and µ2 which place equal probabilities on each subset Ω̄z,
µ1(Ω̄z) = µ2(Ω̄z). Consider the information structures.

Q̂ε,x(ν{Ω̄z},µxγ) = ε

Q̂ε,x

(
µx −

ε

1− ε(ν{Ω̄z},µxγ − ν{Ω̄z},µxµ)

)
= 1− ε

for x = 1, 2. Since K is invariant

K(µ1, Q̂ε,1) = K(µ2, Q̂ε,2)

for all ε. Hence
d

dε

[
K(µ1, Q̂ε,1)−K(µ2, Q̂ε,2)

]
ε=0

= 0

Following the above logic
d

dε

[
K(µ1, Q̂ε,1)

]
ε=0

= Tµ1
(ν{Ω̄z},µ1

γ)

and
d

dε

[
K(µ2, Q̂ε,2)

]
ε=0

= Tµ2
(ν{Ω̄z},µ2

γ)

It follows that
Tµ1

(ν{Ω̄z},µ1
γ) = Tµ2

(ν{Ω̄z},µ2
γ)

as required.

4.2.5 A Bregman divergence

There is a relationship between posterior-separable attention costs functions and divergences. A
divergence is a weak notion of the distance between probability distributions. Given an arbitrary
state space S, a divergence D(p||q) is a function from int∆S×int∆S to R̄ satisfying D(p||q) ≥ 0
and D(q||q) = 0. As Tµ(γ) ≥ 0 and Tµ(µ), Tµ(γ) defines a divergence on supp µ.

Fix Ω̄ and consider µ ∈int∆Ω̄. Let DB(γ||µ) map int∆Ω̄×int∆Ω̄ into R̄ be defined as follows.
Given µ, γ ∈ ∆intΩ̄

DB(γ||µ) = Tµ(γ) = TΩ̄(γ)− TΩ̄(µ) +∇TΩ̄(µ) · (γ − µ)

Note that at this point we may apply Lemma 4.28 and assume that TΩ̄ is differentiable so that
∇TΩ̄(µ) is the gradient vector. DB(γ||µ) is a Bregman divergence. Since DB(γ||µ) is an invariant
and differentiable Bregman divergence. The result of Jiao, et al. [2014] implies that DB(γ||µ) is
the Kullback-Leibler divergence.3

3 In the working paper Caplin, Dean and Leahy [2017], we present an alternative proof that the Shannon cost
function is the only posterior-separable cost function that satisfies the two Axioms, Locally Invariant Posteriors and
Invariance under Compression.
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4.2.6 A single cost function

To this point we have fixed the state space Ω̄ and shown that for decision problems (µ,A) with
supp µ = Ω̄, the cost function is the expected Kullback-Leibler divergence with a parameter κ that
may depend on Ω̄. We complete the proof by by showing that κ is independent of Ω̄.

First, note that the Symmetric Cost Lemma (Lemma 3.2) implies that the cost function has the
same form for all state spaces with equal cardinality, so that κ is equalized for all Ω̄ with cardinality
J .

Now consider Ω̄1 and Ω̄2 with Ω̄2 = Ω̄1 ∪ ω̄. If Ω̄1 has cardinality J , then Ω̄2 has cardinality
J + 1. Suppose J ≥ 2. Consider an arbitrary decision problem (µ1, A) such that supp µ1 = Ω̄1.
Suppose that for all ω1, ω2 ∈ Ω̄1, the payoff profiles A(ω1) 6= A(ω2). So that (µ1, A) is a basic form
of itself, (µ1, A) ∈ B(µ1, A). Suppose further that there exists ω′ ∈ Ω̄1 such that A(ω̄) = A(ω′) and
µ2(ω̄) + µ2(ω′) = µ1(ω′) so that (µ1, A) is a basic form of (µ1, A), (µ1, A) ∈ B(µ2, A).

Since K is invariant, the data generated by K satisfies Invariance under Compression.

Consider (Q1, q1) ∈ Λ̂(µ1, A). Invariance under Compression implies the existence of (Q2, q2) ∈
Λ̂(µ2, A) such that P(Q2,q2|µ2,A)(a|ω) = P(Q1,q1|µ1,A)(a|ω) for all ω ∈ Ω̄1 where P(Q1,q1|µ1,A)(a|ω) is
the state dependent stochastic choice data generated by the policy (Q1, q1) in the problem (µ1, A).
As µ1(ω) = µ2(ω) for all ω ∈ Ω̄1\ω′, Bayes rule implies

γa1(ω) =
P(Q1,q1|µ1,A)(a|ω)µ1(ω)

P (a)
=
P(Q2,q2|µ2,A)(a|ω)µ2(ω)

P (a)
= γa2(ω) (4.64)

for all ω ∈ Ω̄1\ω′ where γa1 is the posterior such that q1(a|γ) > 0 and γa2 is the posterior such that
q2(a|γ) > 0. Note that since J ≥ 2, Ω̄1\ω′ is not empty.

Proposition 2 in Caplin, Dean and Leahy [2019] shows that if P(Q1,q1|µ1,A)(a) > 0 and P(Q1,q1|µ1,A)(b) >
0, then

exp(a(ω)/κJ)

exp(b(ω)/κJ)
=
γa1(ω)

γb1(ω)
(4.65)

for all ω ∈ Ω̄1. Here κJ is the parameter associated with decision problems of cardinality J .
Similarly,

exp(a(ω)/κJ+1)

exp(b(ω)/κJ+1)
=
γa2(ω)

γb2(ω)
(4.66)

for all ω ∈ Ω̄2.

Combining (4.64), (4.65), and (4.66) yields:

exp(a(ω)/κJ)

exp(b(ω)/κJ1)
=

exp(a(ω)/κJ+1)

exp(b(ω)/κJ+1)
(4.67)

for all ω ∈ Ω̄1\ω′. As the original decision problem (µ1, A) was arbitrary, this equation holds for
arbitrary a(ω) and b(ω) and, in particular, for a(ω) 6= b(ω). Rearrainging, (4.67) when a(ω) 6= b(ω),
yields:

κJ1 = κJ+1

Hence κ is equal for all decision problems with cardinality J ≥ 2. This completes the proof.
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