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Abstract

Apparently mistaken decisions are ubiquitous. To what extent does

this re�ect irrationality, as opposed to a rational trade o¤ between the

costs of information acquisition and the expected bene�ts of learning?

We develop a revealed preference test that characterizes all patterns

of choice �mistakes�consistent with a general model of optimal costly

information acquisition. We identify the extent to which information

costs can be recovered from choice data. We experimentally elicit the

state dependent stochastic choice data that our tests require. While

consistent with the general model, the data is inconsistent with com-

monly utilized functional forms.
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1 Introduction

Limits on attention impact choice. Shoppers may buy unnecessarily expensive

products due to their failure to notice whether or not sales tax is included in

stated prices (Chetty et al. [2009]). Buyers of second-hand cars focus their

attention on the leftmost digit of the odometer (Lacetera et al. [2012]). Pur-

chasers limit their attention to a relatively small number of websites when

buying over the internet (Santos et al. [2012]).

While apparently mistaken decisions are ubiquitous, this does not imply

that decision makers are irrational. The standard theory of choice asserts only

that individuals act optimally, given what they know. At least since the work

of Hayek [1945] and Stigler [1961], there has been a focus on optimization of

knowledge itself, with decision makers trading o¤ the cost of learning against

improved decision quality. As the universality of knowledge constraints has

been increasingly recognized, so the range of information cost functions used

to model them has expanded. Verrecchia [1982] models choice of variance of

a normal signal; Sims [2003] an unrestricted choice of information structure

with costs based on Shannon entropy; and Reis [2006] the binary choice on

whether or not to become fully informed.1

An important open question is how to test a model of optimal behavior

in the face of costly information. Information costs imply that many patterns

of apparently mistaken choices can be rationalized. Are there any patterns

of choice error that cannot be explained by some underlying information cost

function, or is such a general theory vacuous? We answer this question by

characterizing all patterns of stochastic choice consistent with rational decision

making in the face of information costs. Since we make no speci�c assumptions

about the costs and constraints that the decision maker faces when gathering

information, our tests encompass all existing models of optimal information

acquisition.

Our non-parametric approach is motivated by the unobservability of costs

1See for example van Nieuwerburgh and Veldkamp [2009] and Woodford [2012] for other
informational cost functions.
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of information acquisition and acquired knowledge, just as revealed preference

theory was motivated by the unobservability of preferences (Samuelson [1938]).

To overcome the resulting observational constraint requires rich choice data.

The tests that we develop apply to �state dependent�stochastic choice data,

which identi�es the probability of choosing each available action in each state

of the world. Such data allows us to directly observe choice �mistakes�, in

which a sub-optimal alternative is chosen given the true state. While only

recently introduced into revealed preference analysis (see Caplin and Martin

[2014], henceforth CM14), this data set is standard in psychometric research on

perceptual errors.2 It is also common in the econometric analysis of discrete

choice. For example, it is in just such data that Chetty et al. [2009] �nd

evidence of incomplete state awareness among buyers.

We identify two intuitive conditions that render such data consistent with

optimal acquisition of costly information. A �no improving action switches�

(NIAS) condition ensures that choices are optimal given what was learned

about the state of the world, as in CM14. A �no improving attention cycles�

(NIAC) condition ensures that total utility cannot be raised by reassigning

information structures across decision problems. Our main result is that these

conditions are both necessary and su¢ cient for any arbitrary �nite data set to

be consistent with a model of costly information acquisition.

In section 4 we show how observed choice data bounds the relative costs

of chosen information structures. We also show that adding the assumptions

that more information is more costly, that mixed strategies are feasible, and

that inattention is costless put no additional restrictions on the data.3 In

contrast, commonly used parametric cost functions have signi�cant additional

implications for behavior. We consider the case of information costs based on

the expected reduction in Shannon entropy between prior and posterior (Sims

[2003]), which has been heavily used in the applied literature.4 We outline

2In the mid-19th century, Ernst Weber pioneered its use in the experimental assessment
of how accurately individuals could di¤erentiate between objectively di¤erent stimuli (see
Murray [1993]).

3This result is in the spirit of Afriat [1967].
4e.g. Sims [2006], Woodford [2008], van Nieuwerburgh and Veldkamp [2009] Mackowiak
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key behavioral properties implied by this cost function, which are signi�cantly

more restrictive than NIAS and NIAC alone (see also Caplin and Dean [2013]).

In section 5 we provided an application of our theory to experimentally

generated data. We �rst specialize the NIAS and NIAC conditions to two act,

two state decision problems. We then introduce an experimental design for

generating state dependent stochastic choice data and present results from a

prototypical experiment in which we vary the rewards for making the correct

decision. We show that the aggregate state dependent stochastic choice data

satis�es the NIAS and NIAC conditions, while rejecting more restrictive mod-

els: Our data is inconsistent both with signal detection theory (SDT - Green

and Swets [1966]), which �xes the information structure independent of the

decision problem, and with the Shannon model, which predicts a speci�c elas-

ticity of knowledge to with respect to reward. A generalization of the Shannon

model introduced by Caplin and Dean [2013] provides a better match for the

observed behavior.

As detailed in section 6, our paper is most closely related to that of de

Oliveira et al. [2013], which derives similar results in the setting of choice over

menus. Other authors have considered the implications of more speci�c models

of costly information acquisition (Caplin and Dean [2011], Ellis [2012], Matejka

and McKay [2013]). Our work also �ts into a growing literature aimed at

identifying the behavioral implications of boundedly rational models in which

the information state of the decision maker is unknown (Manzini and Mariotti

[2012], Masatlioglu et al. [2012], Dillenberger et al. [2012], Bergemann and

Morris [2013b]). Analogous revealed preference approaches have recently been

applied to various behavioral models of individual and group decision making

(Crawford [2010], Cherchye et al. [2011], de Clippel and Rozen [2012]).

Section 2 introduces the costly information representation. Section 3 pro-

vides our key characterization theorem. Section 4 establishes limits on the

identi�ability of information costs. Section 5 details our experimental results.

Section 6 reviews related literature.

and Wiederholt [2010], Matejka [2010], Martin [2013].
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2 A Costly Information Representation

2.1 Data

We consider a decision maker (DM) who chooses among actions, the outcomes

of which depend on which of a �nite number of states of the world ! 2 

eventuates. Each action a is a mapping from 
 to a prize space X. We let

F = X
 denote the grand set of actions and F � fA � F jjAj < 1g the
set of decision problems (i.e. available alternatives from which the DM must

choose).

The behavior of the DM is observed in a �nite set of such decision problems.

In each decision problem we observe state dependent stochastic choice data,

which describes the probability of choosing each available action in each state

of the world. Such data is richer than standard stochastic choice data (e.g.

Gul and Pesendorfer [2006]), as it conditions choice probabilities on the state.

De�nition 1 A state dependent stochastic choice data set is a collection
of decision problems D � F and related set of state dependent stochastic choice
functions P = fPAgA2D where PA : 
 ! �(A). We denote as PA(aj!) the
probability of choosing action a conditional on state ! in decision problem A.

In addition to the pair (D;P ), the DM�s prior beliefs � 2 � = �(
) are
treated as known. Note that, in our data set, the empirical frequency of each

state is observable. Hence an alternative interpretation of the observability of

prior beliefs is that we assume � to be equal to this empirical frequency, in

which case our theory incorporates the hypothesis that the DM�s prior matches

the objective likelihood of each state.5

For simplicity we assume that the expected utility function u : X �! R is
known, with u(a(!)) denoting the utility of action a in state !. This allows us

to focus exclusively on the implications of unobserved information costs. We

address the case in which beliefs and preferences are unobservable in section

3.5.
5Although in principle our model allows for the DM�s prior beliefs to be di¤erent from

the true probability of each state.
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Our data set allows us to observe the pattern of choice �errors�made by

a decision maker - i.e. cases when they chose one option when another had a

higher payo¤given the state. Our goal is to characterize what form such errors

must take if they are to be consistent with rationality of attentional choice.

We show in section 5 that state dependent stochastic choice data can be

readily gathered in the laboratory. By aggregating across individuals, such

data can also be extracted from �eld settings in which �uctuations in an

underlying state (for example prices or tax rates) may or may not be fully

understood by the DM.

2.1.1 Example

We illustrate the concept of state dependent stochastic choice data with an

example which we will use throughout the paper, culminating in the exper-

imental tests described in section 5. Risk neutral6 subjects are faced with a

screen on which there are 100 balls, each of which may be either red or blue.7

Ex ante, subjects are informed that there is an equal chance that there will be

either 49 or 51 red balls on the screen. They choose between action a, which

pays $10 if there are 49 red balls and $0 otherwise, and action b, which pays

$10 if there are 51 red balls on the screen and $0 otherwise. In our framework,

this setting can be described as a decision problem with two states f!1; !2g,
prior probabilities �(!1) = �(!2) = 0:5, choice set A = fa; bg, and utility
function u(a(!1)) = u(b(!2)) = 10 and u(b(!1)) = u(a(!2)) = 0:

Subjects make repeated choices in this environment, with a new state and

realized array of balls drawn each time. On each trial, the experimenter ob-

serves both the true state, and the choice made by the subject. This reveals
�PA(ij!j), the empirical frequency of the subject choosing action i 2 fa; bg in
state !j, j = 1; 2. These frequencies provide an estimate of PA, the state

dependent stochastic choice data for set A: We discuss how this estimation

can be carried out in practice in section 5.2.1.
6An alternative to the assumption of risk neutrality would be to estimate a subject�s

utility function for money using choices over objective lotteries and use the estimated utility
function instead. See Caplin and Dean [2013] for an example of this approach.

7An example of such a screen is included in the experimental instructions in the appendix.
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2.2 Model

We model the behavior of a DM who can gather information about the state

of the world prior to choosing an action. Importantly, the DM can choose

what information to gather conditional on the decision problem they are fac-

ing. In the example above, the DM observes the contingent payo¤s of the two

actions they must choose between before deciding how much e¤ort to exert in

estimating the number of red balls on the screen. We assume that there are

costs associated with gathering information: in our running example, these

costs might represent the cognitive e¤ort of counting red balls, or the oppor-

tunity cost of the time spent doing so. The DM must therefore trade o¤ these

costs against the bene�t of better information, and therefore better subsequent

choices. We assume that the DM solves this trade o¤ optimally.

We take an abstract approach to modelling the DM�s choice of informa-

tion. In each decision problem, the DM chooses an information structure: a

stochastic mapping from objective states of the world to a set of subjective sig-

nals. Having selected an information structure, the DM can condition choice

of action only on these signals. Since we are characterizing expected utility

maximizers, we identify each subjective signal with its associated posterior

beliefs  2 �, which is equivalent to the subjective information state of the
DM following the receipt of that signal. As in Kamenica and Gentzkow [2011],

feasible information structures satisfy Bayes�rule.

De�nition 2 The set of information structures � comprises all mappings
� : 
!�(�) that have �nite support �(�) � � and that satisfy Bayes� law,

so that for all ! 2 
 and  2 �(�),

(!) = Pr(!j) = Pr(! \ )
Pr()

=
�(!)�(j!)X

�2

�(�)�(j�)

,

where �(j!) is the probability of signal  given state !.

We assume that there is a cost associated with the use of each information

structure.
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De�nition 3 An information cost function is a mapping K : �! �R with
K(�) 2 R for some � 2 �. We let K denote the class of such functions.

We put no restrictions on the cost function, meaning that our model nests

all standard models of information acquisition. This includes the rational inat-

tention model in which K is proportional to the Shannon mutual information

between prior and posterior information states (e.g. Sims [2003]).8 We al-

low costs to be in�nite to cover hard constraints on information acquisition

- as when a bound is imposed on the mutual information between prior and

posteriors (Sims [2003]), or when the DM can choose only certain partitional

information structures (Ellis [2012]) or speci�c types of signal (for example

Verrecchia [1982], in which the DM can choose only normal signals).

We de�ne G : F��! R as the gross payo¤ of using a particular informa-
tion structure in a particular decision problem. This is calculated assuming

that actions are chosen optimally following each signal,

G(A; �) �
X
2�(�)

"X
!2


�(!)�(j!)
#"
max
a2A

X
!2


(!)u(a(!))

#
:

Here the �rst bracketed term is the probability of each signal, and the second

is the maximum achievable expected utility from A given the resulting beliefs.

We model a DM who, for any given decision problem, chooses an infor-

mation structure to maximize gross payo¤s net of information costs. We use

�̂(K;A) to refer to the set of optimal information structures in decision prob-

lem A given cost function K:

�̂(K;A) = argmax
�2�

fG(A; �)�K(�)g :

While we focus on the case of a static, once-o¤ choice of information structure,

we show in Caplin and Dean [2014] that our results extend directly to the case

of sequential choice of information.

8In section 4.3 below we illustrate speci�c behavioral features associated with this cost
function.

8



2.3 Representation

Our aim is to understand the conditions under which state dependent sto-

chastic choice data can be represented as resulting from costly information

acquisition. Such a representation consists of three unobserved elements: (i)

an information cost function which captures the subjective cost of di¤er-
ent types of information; (ii) an attention function which captures the DM�s
choice of information structure in each decision problem; (iii) a choice func-
tion which captures the DM�s choice of action following the receipt of each
signal.9

Because we wish to model the behavior of a DM who behaves rationally

given their information costs, both the attention function and the choice func-

tion must be optimal in order to form part of a costly information acquisition

representation. This means that the choice of information structure in each

decision problem must be optimal given information costs, and an action can

only be chosen with positive probability after the receipt of a signal if it max-

imizes expected utility given the resulting beliefs. Furthermore, in order to

represent a given data set, the information structure and choice function for

each decision problemmust give rise to the observed pattern of state dependent

stochastic choice.

De�nition 4 Given � 2 � and u : X �! R, a state dependent stochastic
choice data set (D;P ) has a costly information representation if there ex-
ists information cost function K 2 K, attention function f�AgA2D and choice
function fCAgA2D such that, for all A 2 D:

1. Information is optimal: �A 2 �̂(K;A) � argmax�2� fG(A; �)�K(�)g :

2. Choices are optimal: the choice function CA : �(�A) ! �(A) is such

that, given a 2 A and  2 �(�A) with CA(aj) � Pr(aj) > 0;X
!2


(!)u(a(!)) �
X
!2


(!)u(b(!)) all b 2 A:

9We allow the DM to randomize their choices of actions conditional on each signal.
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3. The data is matched: given ! 2 
 and a 2 A,

PA(aj!) =
X

2�(�A)

�A(j!)CA(aj):

3 Characterization

We establish two conditions as necessary and su¢ cient for a state dependent

stochastic choice data set to have a costly information representation. The

�rst ensures optimality of the information structure with regard to some cost

function and applies to the collection of decision problems. The second ensures

optimality of �nal choice given an information structure and applies to each

decision problem separately.

3.1 The Revealed Information Structure

The key to our approach is the observation that one can learn much about

a DM�s attention strategy from state dependent stochastic choice data. For

each decision problem, we construct a �revealed information structure�, which

replaces the actual information structure the DM used in a decision problem

with an information structure that can be inferred directly from the data. We

do this by imagining that each action is chosen in at most one subjective infor-

mation state. If this assumption holds then the revealed information structure

will be identical to the true information structure used by the DM. If not,

then the revealed information structure is still related to the true information

structure, as we discuss below.

We begin by identifying the revealed posterior beliefs �aA associated with

each chosen act. This speci�es probabilities over states of the world conditional

on action a being chosen in data set PA. If the DM chooses each action in

at most one subjective information state then the revealed posteriors are the

same as their true posterior belief when each act is chosen.10 If they choose

10Note that here we are here assuming that � speci�es both the DM�s beliefs and the true
probability of each state. If not, the revealed posterior refers to the DM�s subjective belief
of the likelihood of each state after the choice of each act, which may be di¤erent from the
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the same action in more than one subjective state then the revealed posterior

is the appropriate weighted average of the corresponding beliefs.

De�nition 5 Given � 2 �, A 2 D, PA 2 P; and a 2 Supp(PA), the revealed
posterior �aA 2 � is de�ned by,

�aA(!) � Pr(!ja chosen from A)

=
�(!)PA(aj!)X

�2

�(�)PA(aj�)

:

In order to construct the revealed information structure, we use the set of

revealed posteriors as the set of signals. The probability of signal  in state of

the world ! is then calculated by adding up the choice probabilities in state !

of all actions that have  as their revealed posterior.

De�nition 6 Given � 2 �, A 2 D, and PA 2 P; the revealed information
structure ��A 2 � satis�es,

��A(j!) =
X

fa2Supp(PA)j�aA=g

PA(aj!):

Even if the DM is behaving according to the model described in section

2.2, their revealed information structure may not be the same as their true

information structure if they choose the same act following two di¤erent sig-

nals.11 However, it must be the case that the revealed information structure

is weakly less informative (in the sense of statistical su¢ ciency) than the true

information structure, and in fact any information structure consistent with

the data. Intuitively, this means that the revealed information structure can

be obtained by �adding noise�to the true information structure. This notion

is formalized in the following de�nition, adapted from Blackwell [1953].

true probability.
11An optimal DM would never choose to do this if more informative signals (in the sense

described below) are more expensive, but might do so if, for example, they are restricted to
using normal signals.
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De�nition 7 Information structure � 2 � is su¢ cient for information struc-
ture � 2 � (equivalently � is a garbling of �) if there exists a j�(�)j � j�(�)j
matrix B � 0 with

P
j2�(�) b

ij = 1 all i and such that, for all j 2 �(�) and
! 2 
,

�(jj!) =
X

�i2�(�)

bij�(�ij!):

This de�nition states that an information structure � is su¢ cient for infor-

mation structure � if � can be obtained by applying a stochastic matrix B to

�. One way to interpret the concept of garbling is by considering a procedure

by which � is constructed by �rst applying �, then adding noise by combining

the resulting information states together using the weights bij. Example 1

below includes an application of the concept of su¢ ciency.

Lemma 1 establishes that any information structure which is consistent

with the state dependent stochastic choice data in a given decision problem

must be su¢ cient for the revealed information structure.

Lemma 1 If � 2 � is consistent with PA 2 P; 12 then it is su¢ cient for ��A:
Proof. All proofs can be found in appendix 1.

Thus, while we cannot guarantee that the revealed information structure

is the same as the true information structure, we do know that it must be

more informative than the true information structure. The following section

makes use of this observation to identify a necessary condition for the costly

information representation.

The following example demonstrates the construction of the revealed in-

formation structure and its relationship with the true information structure.

12 i.e. there exists a C : �(�)! �(A) such that, for each  2 �(�),

C(aj) > 0 =)
X
!2


(!)u(a(!)) �
X
!2


(!)u(b(!)) all b 2 A

and for each ! 2 
 and a 2 A,

PA(aj!) =
X

2�(�)

�(j!)C(aj):
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Example 1 Consider a DM who, when faced with the decision problem de�ned

in section 2.1.1 employs an information structure with three signals, �; �;  2 �
such that the resulting posterior beliefs are:

� = (�(!1); �(!2)) =

�
3

4
;
1

4

�
; � =

�
1

4
;
3

4

�
;  =

�
1

2
;
1

2

�
:

and with conditional probabilities of receiving each signal:

�(�j!1) =
1

2
; �(�j!1) =

1

6
; �(j!1) =

1

3
;

�(�j!2) =
1

6
; �(�j!2) =

1

2
; �(j!2) =

1

3
:

Suppose that after the receipt of signal � the DM chooses act a for sure and

after the receipt of � they choose act b for sure. After the receipt of signal 

they randomize between the two acts, so

C(aj�) = C(bj�) = 1;

C(aj) = C(bj) = 1

2
:

This behavior would give rise to state dependent stochastic choice data,

P (aj!1) = �(�j!1) +
1

2
�(j!1) =

2

3
;

P (aj!2) = �(�j!2) +
1

2
�(j!2) =

1

3
;

The resulting revealed information structure would have two revealed posteri-

ors, one associated with the choice of a and the other with the choice of b.

Application of de�nition 5 gives,

�a =

�
2

3
;
1

3

�
and �b =

�
1

3
;
2

3

�
:
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The corresponding revealed information structure is then given by

��(�aj!1) = P (aj!1) =
2

3
;

��(�aj!2) = P (aj!2) =
1

3
:

Clearly, the revealed information structure is not the same as the true in-

formation structure, but the true information structure is su¢ cient for the

revealed information structure. This can be seen by applying the stochastic

matrix B to to �A, in order to obtain ��A, where

B =

8><>:
1 0

0 1
1
2

1
2

9>=>; :

The rows relate to signals �, � and  respectively, while the columns relate

to signals �a and �b respectively. Thus, for example

��(�aj!1) = b1;1�(�j!1) + b2;1�(�j!1) + b3;1�(j!1) = 1 �
1

2
+
1

2
� 1
3
=
2

3
;

as required. Note that the stochastic matrix B is closely related to the choice

function C: bij is the probability of choosing the act associated with the revealed

posterior in column j following the receipt of the signal associated with row i.

3.2 No Improving Attention Cycles

Our �rst condition restricts choice of information structure across decision

problems to ensure consistency with a �xed underlying information cost func-

tion. Essentially, total gross utility cannot be increased by reassigning infor-

mation structures across decision problems. To illustrate, consider again the

decision problem of section 2.1.1 and suppose, as in the example above, that

the observed choice behavior is,

PA(aj!1) =
2

3
= PA(bj!2):
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Now consider a second decision problem A0 = fa0; b0g such that u(a0(!1)) =
u(b0(!2)) = 2 and u(b0(!1)) = u(a0(!2)) = 0, with corresponding data,

PA0(a
0j!1) =

3

4
= PA0(b

0j!2):

Intuitively, these data should not have an optimal information representa-

tion. Action set A provides greater reward for discriminating between states,

yet the DM is more discerning under action set A0. To crystallize the resulting

problem, note that, for behavior to be consistent with costly information ac-

quisition for some cost function K it must be the case that DM�s true choice

of information structures satis�es,

G(A; �A)�K(�A) � G(A; �A0)�K(�A0);

G(A0; �A0)�K(�A0) � G(A0; �A)�K(�A):

Hence,

G(A; �A)�G(A; �A0) � K(�A)�K(�A0) � G(A0; �A)�G(A0; �A0);

implying �nally that,

G(A; �A) +G(A0; �A0) � G(A; �A0) +G(A0; �A): (1)

We conclude that, for this data to be rationalizable, gross bene�t must be

maximized by the assignment of the chosen information structure to the cor-

responding decision problem. We translate this into a testable condition by

noting that the corresponding inequality remains valid when we replace the

true with the revealed information structure. To do so, we make use of Black-

well�s theorem (Blackwell [1953]), which establishes the equivalence of the sta-

tistical notion of su¢ ciency and the economic notion �more valuable than�.

If information structure � is su¢ cient for strategy �, then it yields (weakly)

higher gross payo¤s in any decision problem.

Remark 1 Given decision problem A 2 F and �; � 2 � with � su¢ cient for
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�,

G(A; �) � G(A; �):

Combined with observation that the true information structure must be

su¢ cient for the revealed information structure, this implies that G(i; �j) �
G(i; ��j) for i:j 2 fA;A0g. Furthermore, it is clear that G(i; �i) = G(i; ��i) for

i 2 fA;A0g since the resulting state dependent choices are identical. As a
result, we can replace equation 1 with a testable condition,

G(A; ��A) +G(A0; ��A0) � G(A; ��A0) +G(A0; ��A): (2)

In the above exampleG(A; ��A)+G(A; ��A0) = 816 , whileG(A; ��A0)+G(A
0; ��A) =

85
6
. Thus, there is no cost function that can be used to rationalize this data.

Our explanation so far has considered only bilateral reassignments of in-

formation structures. The NIAC condition ensures that gross utility cannot

be increased by reassigning information structures along any cycle of decision

problems. It is analogous to the cyclical monotonicity condition discussed in

Rockafellar [1970], and has been used in other recent work examining the re-

vealed preference implications of behavioral models (see for example Crawford

[2010]).

Condition D1 (No Improving Attention Cycles) Given � 2 � and u :
X ! R, (D;P ) satis�es NIAC if, for any set of decision problems

A1; A2; ::::; AJ 2 D with AJ = A1,

J�1X
j=1

G(Aj; ��j) �
J�1X
j=1

G(Aj; ��j+1);

where ��j = ��Aj .

In section 5 we demonstrate the application of the NIAC condition to the

simple case of two acts and two states.

16



3.3 No Improving Actions Switches

Our second condition is based on the fact that a DM�s choices must be optimal

given posterior beliefs. Thus when one identi�es in the data the revealed

posterior associated with any chosen action, that action must be optimal given

those beliefs. This implies that, for any A 2 D, a 2 Supp(PA), and b 2 AX
!2


�aA (!)u(a(!)) �
X
!2


�aA (!)u(b(!)): (3)

This statement follows directly from the optimality of choice if each action

is chosen in at most one state, and so the revealed posterior is equal to the

true posterior. It also holds true if the same action is chosen in many given

information states: the action must be optimal at each information state at

which it is chosen, and so also must be optimal at any convex combination

of those beliefs, including the revealed posterior. CM14 show that this condi-

tion characterizes Bayesian behavior regardless of the rationality of attentional

choice. The strategic analog is derived by Bergemann and Morris [2013b] in

characterizing Bayesian correlated equilibria.

Equation 3 can be rewritten directly in terms of state dependent stochastic

choice data:

Condition D2 (No Improving Action Switches) Given � 2 � and u :

X ! R, data set (D;P ) satis�es NIAS if, for every A 2 D, a 2
Supp(PA), and b 2 A,X

�(!)PA(aj!) (u(a(!))� u(b(!)) � 0:

Section 5 contains a simple application of NIAS to the two state, two action

case. CM14 contains many further illustrative examples.

3.4 Characterization

The above analysis shows that both NIAC and NIAS are necessary for the

existence of a costly information representation. Our central result is that they
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are also su¢ cient. We establish this by following the approach that Koopmans

and Beckmann [1957] developed to solve the problem of locating indivisible

factories across sites so as to maximize total pro�ts. They show that the

solution to this allocation problem can be found by solving a linear program

in which one imagines the factories to be divisible. Their key observation

is that there is an extreme point solution, which corresponds to placing each

factory in one and only one location. Associated with the solution to the linear

programming problem are shadow prices (either rents on locations or prices

of factories) that decentralize the allocation. By direct analogy, the NIAC

conditions states that the DM has allocated revealed information structures

to decision problems in such a manner as to maximize total gross expected

utility. The cost function K that we introduce is based directly on the shadow

prices that decentralize this optimal allocation (see also Rochet [1987]).

Theorem 1 Given � 2 � and u : X ! R, data set (D;P ) has a costly infor-
mation acquisition representation if and only if it satis�es NIAS and NIAC.

3.5 Unobservable Utility and Prior Beliefs

So far we have assumed that the DM�s expected utility function and prior

beliefs over states of the world are both known to the researcher - only infor-

mation structures, choice functions and costs are not directly observable. We

now outline two ways to adapt our approach to allow for an unknown utility

function and/or prior.

One approach is to enrich the data set to allow for the recovery of beliefs

and preferences from choices that are una¤ected by information costs. These

beliefs and preferences could then be used as a starting point for our represen-

tation. In order to recover utility, we could replace the �Savage style�actions

we use in this paper (which map deterministically from states of the world to

prizes) with �Anscombe-Aumann�acts that map states of the world to prob-

ability distributions over the prize space. Assuming the DM does maximize

expected utility, u could then be recovered by observing choices over degener-
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ate acts (i.e. acts whose payo¤s are state independent).13 If we further add

to our data set the choices of the DM over acts before the state of the world

is determined (or at least in a situation in which they cannot exert any e¤ort

to determine that state) then we can also recover the DM�s prior over objec-

tive states (again assuming expected utility maximization). This method is

pursued in de Oliveira et al. [2013].14

A second approach is to directly identify testable implications when utility,

prior beliefs, and information costs are all unobserved. In Caplin and Dean

[2014] we show that, in such cases, the model is consistent with the data if and

only if there exists a utility function and set of prior beliefs such that NIAC

and NIAS hold. This gives rise to a set of inequality constraints to which a

solution must exist if the data is to be rationalizable with a costly information

representation (such a result is similar in spirit to Crawford [2010]). In the case

in which the prior is known but the utility function is not, these constraints

are linear and easy to check (see CM14 for the implications of NIAS alone).

If the prior is also unknown, then the conditions are non-linear, but still non-

vacuous. CM14 provide an example of data that is incompatible with NIAS

for any utility function and prior. Caplin and Dean [2014] provide an example

of behavior that is commensurate with NIAS but is not commensurate with

NIAC for any non-degenerate utility function and prior.

4 The Information Cost Function

In this section we discuss what can be learned about information costs from

state dependent stochastic choice data, as well as the behavioral implications

of placing further restrictions on the information cost function.

13An applied variant of this approach involves seperately identifying a subject�s utility
function for money using, for example, a multiple price list approach - see for example
Caplin and Dean [2013].
14Ellis [2012] also uses this method to identify the DM�s utility function, but takes a

di¤erent approach to identifying prior beliefs.

19



4.1 Recoverability and Uniqueness

Theorem 1 tells us the conditions under which there exists an information

cost function that will rationalize the data. We now identify all such cost

functions, in the spirit of Varian [1984] and Cherchye et al. [2011]. We restrict

ourselves to cost functions in which more information is at least weakly more

costly, so that we can treat revealed information structures as optimal. The

key observation is that the choice of ��A in decision problem A puts an upper

bound on its cost relative to that of any other strategy � 2 �,

K(��A)�K(�) � G(A; ��A)�G(A; �): (4)

This directly implies an upper and lower bound on the relative costs of any

two revealed information structures ��A, ��B for A;B 2 D,

G(B; ��A)�G(B; ��B) � K(��A)�K(��B) � G(A; ��A)�G(A; ��B):

An obvious corollary of theorem 1 is that a weakly monotonic information

cost function can rationalize a data set if and only it satis�es this inequality

for every A,B 2 D, and the costs of unchosen information structures are high
enough to satisfy inequality 4.

This condition implies potentially tighter bounds on the relative cost of any

two revealed information structures. Consider the corresponding inequalities

in the sequence A1:::An 2 D with A1 = A and An = B,

K(��1)�K(��2) � G(A1; ��1)�G(A1; ��2);

K(��2)�K(��3) � G(A2; ��2)�G(A2; ��3);
...

K(��n�1)�K(��n) � G(An�1; ��n�1)�G(An�1; ��n):

Summing these inequalities yields a bound on K(��A) �K(��B): This relative
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cost must obey such bounds for all cycles,

K(��A)�K(��B) � min
fA1:::An2DjA1=A;An=Bg

n�1X
i=1

�
G(Ai; ��i)�G(Ai; ��i+1)

�
: (5)

Considering the reverse sequence A1; :::; An 2 D with A1 = B and An = A,

K(��A)�K(��B) � max
fA1:::An2DjA1=B;An=Ag

n�1X
i=1

�
G(Ai; ��i+1)�G(Ai; ��i)

�
: (6)

Note also that if one considers cost functions for which inattention is free

(as discussed below), the above inequalities can be used to place absolute

bounds on the level of costs. Moreover if one ever sees a switch in information

structure for decision problems that are �close together�, in that available

vectors of state dependent payo¤s always fall within � > 0, then one can bound

cost di¤erences to within �. Hence, with a rich enough data set, arbitrarily

tight bounds can be placed on costs in models in which the data is generated

by a �nite set of revealed information structures.

4.2 Unobservable Restrictions on Information Costs

We now introduce three natural restrictions on K: weak monotonicity with

respect to su¢ ciency, feasibility of mixed strategies, and costless inattention.

In principle these restrictions might tighten requirements for rationalizability

of stochastic choice data, since they constrain the costs of unchosen strategies.

Theorem 2 establishes that this is not the case: if state dependent stochastic

choice is rationalizable, then it is rationalizable by a cost function that satis�es

these three conditions.

A partial ranking of the informativeness of information structures is pro-

vided by the notion of statistical su¢ ciency (see de�nition 7). Our �rst, ap-

parently natural condition for an information cost function is that more infor-

mation is (weakly) more costly. This is implied, for example, by free disposal

of information.
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Condition K1 K 2 K satis�es weak monotonicity in information if, for
any �; � 2 � with � su¢ cient for �,

K(�) � K(�):

A second natural condition is that DMs can choose to mix information

structures and pay the corresponding expected costs. For example, they could

�ip a coin and choose strategy � if the coin comes down heads and strategy

� if it comes down tails. In expectation the cost of this strategy would be

half that of � and half that of �. Note that the resulting mixing is not of the

posteriors themselves, but of the odds of the given posteriors. To illustrate,

consider again a case with two equiprobable states. Let information structure

� be equally likely to produce posteriors (:3; :7) and (:7; :3), with � equally

likely to produce posteriors (:1; :9) and (:9; :1). Then the mixture strategy

0:5� � + 0:5 � � is equally likely to produce all four posteriors.

De�nition 8 Given information structures �; � 2 �, and � 2 [0; 1], the mix-
ture strategy � � � + (1� �) � � �  2 � is de�ned by

 (j!) = ��(j!) + (1� �)�(j!);

all ! 2 
 and  2 �(�) [ �(�).

Allowing mixtures between strategies �; � 2 � puts an upper bound on

� � �+ (1��) � � in terms of K(�) and K(�). However, it does not pin down
the cost precisely, since there may be a more e¢ cient way of constructing the

mixed information structure.

Condition K2 Mixture Feasibility: for any two strategies �; � 2 � and

� 2 (0; 1), the cost of the mixture strategy  = �� � + (1� �) � � 2 �
satis�es,

K ( ) � �K(�) + (1� �)K(�):

It is typical in the applied literature to allow inattention at no cost, and

otherwise to have costs be non-negative. This is our third condition.
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Condition K3 De�ne I 2 � as the strategy in which �(�j!) = 1 all ! 2 
.
Information cost function K 2 K satis�es normalization if it is non-
negative where real-valued, with K(I) = 0.

Theorem 2 states that, whenever a costly information representation ex-

ists, one also exists in which the cost function satis�es conditions K1 through

K3. Even if any of the above conditions is false, any data set that can be

rationalized can equally be rationalized by a cost function that satis�es them

all.

Theorem 2 Given � 2 � and u : X ! R, data set (D;P ) satis�es NIAS and
NIAC if and only if it has a costly information representation with conditions

K1 to K3 satis�ed.

Necessity is immediate from theorem 1. As detailed in the appendix, the

proof of su¢ ciency proceeds in three steps, starting with a costly information

acquisition representation (K; �;C) of the form produced in theorem 1, which

assigns in�nite information costs to all non-used information structures. The

�rst step is to expand the domain on which K is real-valued to be closed under

mixtures and garbling. The second step is to de�ne a candidate function �K

on this larger domain that satis�es conditions K1 through K3. The �nal step

is to con�rm that this function provides a costly information representation.

Theorem 2 has the �avor of the Afriat characterization of rationality of

choice from budget sets (Afriat [1967]), which states that choices can be ratio-

nalized by a non-satiated utility function if and only if they can be rationalized

by a non-satiated, continuous, monotone, and concave utility function. Not

all restrictions on the form of the cost function can be so readily absorbed.

For example, we cannot strengthen condition K1 to cover the case of strict

monotonicity with respect to su¢ ciency. We show in appendix 2 that there

are data sets satisfying NIAS and NIAC for which there exists no cost func-

tion that produces a costly information acquisition representation with a cost

function that is strictly monotonic with the informativeness of the information

structure.
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Theorem 2 has interesting implications for identi�cation. For example,

individuals may in reality be curious to learn in various contexts, meaning

that the �utility cost� of becoming better informed is negative. Theorem 2

implies that our data set is insu¢ ciently rich to identify such curiosity should

it exist: such a person would be indistinguishable from one whose costs were

weakly monotonic with respect to informativeness.

4.3 The Shannon Cost Function

The Shannon mutual information cost function for an information structure is

de�ned as,

KS(�) = �

24H(�)� X
2�(�)

 X
!2


�(j!)
!
H()

35 :
Here H(�) = �

P
!2
 �! ln�! is the Shannon entropy function

15 and � > 0

scales the cost of information. This highly parameterized special case of the

costly information model was introduced into the economics literature by Sims

[2003], and has been justi�ed on both information theoretic and axiomatic

grounds. As noted in the introduction, this model has been widely used in

applied work.

Matejka and McKay [2013] and Caplin and Dean [2013] characterize the

pattern of state dependent stochastic choice associated with the model as

satisfying

P (aj!) = P (a)z(a(!))P
b2A P (b)z(b(!))

; (7)

where z(a(!)) � exp(u(a(!))=�) and P (a) =
P

!2
 �(!)P (aj!) is the un-
conditional probability of choosing action a. The unconditional probabilities

themselves are pinned down by the complementary slackness conditions:

X
!2


�(!)

�
P (a)z(a(!))P
b2A P (b)z(b(!))

�
� 1 all a; (8)

15Extended to boundary points using the limit condition lim&0  ln  = 0.
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with equality if P (a) > 0.

Clearly equations 7 and 8 impose signi�cant behavioral restrictions in addi-

tion to NIAS and NIAC. One necessary condition pins down the rate at which

a DM�s choice accuracy responds to incentives for making the correct decision.

We test this condition using our experimental data in the next section. The

Shannon model also imposes cross-prior restrictions: once one identi�es the

revealed posteriors for one prior, these same posteriors will be used for any

prior in their convex hull. Restrictions of this form are entirely absent in the

general case, which requires only validity of NIAS and NIAC for each prior.

5 Applying NIAC and NIAS

5.1 NIAC and NIAS: the 2� 2 Case

We now provide a concrete application of the NIAC and NIAS conditions to

the simple case of two actions and two equally likely states which we will sub-

sequently apply to experimental data. Consider �rst a single decision problem

A = fa; bg with two equally likely states of the world, and with action a better
than action b in state !1, and vice versa in state 2: u(a(!1)) > u(b(!1)) and

u(b(!2)) > u(a(!2)) (this represents a generalization of the example from sec-

tion 2.1.1). To apply NIAS, note that posterior beliefs can be summarized by

(!1), the probability of state 1. The value of choosing action a is increasing

and the value of choosing action b is decreasing in this probability. There is

therefore a threshold on (!1) such that above the threshold it is optimal to

choose a and below it is optimal to choose action b. NIAS translates this ob-

servation into the following condition on the state dependent stochastic choice

data,

P (aj!1) � max f�P (aj!2); �P (aj!2) + �g ; (9)

where � = b2�a2
a1�b1 and � =

a1+a2�b1�b2
a1�b1 . Thus the relative cost of mistakes in

the two states puts a bound on the relative likelihood of choosing action a in

the two states

Given two analogous decision problems Ai = fai; big for i = 1; 2 with
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u(ai(!1)) > u(bi(!1)) and u(bi(!2)) > u(ai(!2)), the NIAC condition reduces

to,

�P (aj!1) (� (u(a(!1))� u(b(!1))))+�P (bj!2) (� (u(b(!2))� u(a(!2)))) � 0
(10)

where � indicates the change in the relevant variable between the two decision

problems. The �rst term is equal to the product of change in the probability of

making the correct choice in state !1, with the change in the value of making

the correct choice in that state. The second term is the same product for state

!2.

5.2 An Experimental Implementation

We now present an experiment which we use to illustrate the implementation

of our tests.16 As in the running example, subjects are presented with a screen

shot with 100 balls that may either red or blue. Prior to seeing the screen, sub-

jects are informed that there are two equally likely states of the world: !1 in

which there are 49 red balls on the screen, and !2 in which there are 51. Sub-

jects choose among actions whose payo¤s are state dependent. There is neither

an external limit (such as a time constraint) nor an extrinsic cost associated

with understanding the state of the world. Information constraints derive from

agents�unwillingness to trade time and cognitive e¤ort for monetary reward.

Table 1: Decision Problems

Payo¤s (US$)

DP u(a(!1)) u(a(!2)) u(b(!1)) u(b(!1))

1 2 0 0 2

2 10 0 0 10

3 20 0 0 20

4 30 0 0 30

16See Caplin and Dean [2014] for related experiments. Given the psychological precedents,
it is perhaps surprising that there has been so little experimental work on state dependent
stochastic choice data within economics. One related paper is Cheremukhin et al. [2011],
which estimates a rationally inattentive model of lottery choice.
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Subjects face four decision problems described in Table 1. Each problem

consists of two symmetric actions: a, which pays o¤ in state !1 and b which

pays o¤ in state !2. Decision problems vary only in the payo¤ for choosing

the correct action. A subject faces each decision problem 50 times.17 All

occurrences of the same problem are grouped, but the order of the problems is

block-randomized. 46 Subjects were recruited from the New York University

student population. Each subject answered 200 questions as well as 1 practice

question. At the end of each session, one question was selected at random for

payment, the result of which was added to the show up fee of $10. Subjects

took on average approximately 45 minutes to complete a session. Instructions

are included in the appendix 4.

5.2.1 Matching Data to Theory

The NIAC and NIAS conditions are stated with regard to the state dependent

stochastic choice function P . An experimentally generated data set will instead

report the frequency with which each action is chosen in each state of the

world in each decision problem. Under the assumption that each repetition

represents an independent draw from the relevant distribution in P , we can

use this data to provide an estimate of P : for example, the point estimate of

PA1(aj!1) is the proportion of times that action a was chosen in state !1 in
decision problem 1. We also know the distribution of this estimate given the

true choice probabilities and number of observations. This allows us to make

statistical statements about the likelihood that the axioms are satis�ed by the

underlying P , given the observed data. This is the approach we take below,

using a linear probability model to estimate the relevant choice probabilities.

In order to test the NIAS and NIAC conditions it is generally necessary to

observe the utility function of the subject. However, this is not the case given

the simple structure of our experiments: both conditions can be tested using

only the assumption of strict monotonicity - i.e. more money is preferred to

17To prevent subjects from learning to recognize patterns, we randomize the position of
the balls. The implicit assumption is that the perceptual cost of determining the state is
the same for all realized con�gurations of balls.
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less.

We assume that subjects�prior beliefs are equal to the true probabilities of

each state, as this information was presented to them before each repetition

of the decision problem.

5.2.2 Data Overview

Our experimental design produces choice data that is both stochastic and state

dependent. Subjects gather some information prior to choice, but this infor-

mation is incomplete. In the aggregate, subjects made �mistakes�, choosing

the inferior action on 32% of all trials. However, choice behavior is also sig-

ni�cantly di¤erent across states (Fisher�s exact test, p < 0:0001): averaging

across all 4 decision problems, a was chosen 75% of the time in state 1 and

38% of the time in state 2. These patterns hold true at the individual level: of

the 46 subjects, 15% made mistakes in less than 10% of questions, while 76%

had choice behavior that was signi�cantly di¤erent between the two states at

the 10% level.18 These results imply that our subjects are absorbing some in-

formation about the state of the world, but are not fully informed when they

make their choices.

5.2.3 Testing NIAS and NIAC

Applying equation 9 to the symmetric environment of our experiment shows

that NIAS requires only that Pj(aj!1) � Pj(aj!2) for each decision problem j.

Table 2 reports the point estimates for these values for each decision problem

18Statistical test carried out using OLS regression of the choice of act on a dummy asso-
ciated with the state.
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from the aggregate data

Table 2: NIAS Test

DP Pj(aj!1) Pj(aj!2) Prob

1 0.71 0.48 0.000

2 0.75 0.39 0.000

3 0.76 0.37 0.000

4 0.80 0.29 0.000

For all decision problems, the point estimates satisfy the relevant con-

dition. We can also test whether these estimated values allow us to reject

the hypothesis that NIAS is violated. To do so, we test the hypothesis that

Pj(aj!1) = Pj(aj!2) in each decision problem. If this is rejected, then we can
also reject any null hypothesis of the form Pj(aj!1) < Pj(aj!2) - i.e. any.
that implies violation of NIAS. Such a test can be performed for each decision

problem by regressing the choice of action in each trial on a dummy taking the

value 1 if the true state is !1 and 0 otherwise. We do so using OLS regressions,

with standard errors clustered at the individual level. The �nal column reports

the result of the test of the restriction that the coe¢ cient on the dummy is

equal to zero. In each case we are indeed able to reject this hypothesis at the

0.1% level. Note that this also indicates that our aggregate data has power

to di¤erentiate between subject behavior and a random choice benchmark (in

the style of Beatty and Crawford [2011]).

In order to understand the implications of NIAC for our data, we can

apply equation 10 noting in addition that the cost of making the incorrect

decision is the same in the two states. This implies that the NIAC condition is

satis�ed for our data if and only if the total probability of making the correct

decision is increasing with the reward of doing so. Figure 1 shows the aggregate

probability of making the correct choice in each decision problem, along with
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the associated standard errors.19

Figure 1

The point estimates are in line with the NIAC condition. Again, we can test

whether we can reject the hypothesis that the NIAC conditions are violated by

testing for equality in the probability of making the correct choice between any

pair of decision problems. We do so using the data from all decision problems

by regressing a dummy equal to one if the correct choice is made on a set of

dummies indicating the decision problem. We then perform tests of equality of

the resulting coe¢ cients for all pairs of dummies. All such hypotheses can be

rejected at the 1% level, apart from the comparison of decision problem 2 and

3 for which the coe¢ cient is not signi�cant (P = 0:44).20 The aggregate data

from our experiment is therefore in line with the model of costly information

acquisition.21

19Clustered at the individual level.
20Again using OLS regression with standard errors clustered at the individual level.
21Individual level data is signi�cantly more noisy than the aggregate data. The point

estimates of many (24%) subjects violate NIAS, and most (82%) show some violation of
NIAC. However, this is largely due to the relatively small number of observations at the
individual level, and the subsequent lack of precision in the point estimates. For only 2%
of subjects is there a decision problem in which the point estimates of their stochastic
choice function indicate a violation of NIAS such that we can reject the hypothesis that
the condition holds at equality at the 10% level. Similarly, for only 18% can we �nd a
�signi�cant�violation of NIAS. Moreover, as we show in appendix 2, even taking the point
estimates as equal to the true choice probabilities, individual level violations of NIAS and
NIAC are small in that they result in small �nancial losses.
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We can use table 2 to identify the point estimates of the revealed posteriors

and the revealed information structure in each decision problem. For example,

in decision problem 1, �a1 = (0:60; 0:40), �b1 = (0:36; 0:64), while �� (�a1j!1) =
0:71 and �� (�a1j!1) = 0:48: Using the techniques described in section 4.1 we can
also put bounds on the relative costs of the information structures revealed

in the di¤erent decision problems.22 Because the probability of being paid

for any given round is small, so is the expected utility of any information

structure used. This means that the estimated cost di¤erences are also small:

for example, our data implies that,

$0:003 � K (��2)�K (��1) � $0:013:

5.2.4 Discussion

Given that our aggregate data is consistent with a general model of costly

information acquisition, we can ask whether it is also consistent with speci�c

models within that class. We discuss two examples.23

First we consider a re�nement in which the information structure used by

the DM is invariant with the decision problem. While more typical in psy-

chology (for example signal detection theory (SDT) - Green and Swets [1966]),

�xed information models have attracted recent attention in the economics lit-

erature (e.g. Lu [2013]). Such models are clearly a special case of the costly

information acquisition model, and so imply both NIAC and NIAS. However

the same signal structure must rationalize behavior in all decision problems. If

information does not change as a function of incentives, neither should choice

behavior vary across the decision problems in this experiment, as the optimal

action in each posterior state is independent of the precise value of u(a(!1))

and u(b(!2)), as long as they are equal.24 This is contradicted by the fact that

22Treating these point estimates as true underlying information structures.
23Caplin and Dean [2014] discuss further experiments which also rule out the possibility

that a standard random utility model could explain our data.
24Assuming that the tie-breaking rule for the case of 1 = 0:5 also does not change as a

function of x.
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the proportion of correct choices signi�cantly increases with reward.25

Consider now the Shannon model described in section 4.3. While this

model does allow for an increase in accuracy with rewards, the rate at which

this occurs is tightly constrained by equations 7 and 8. Intuitively, a single de-

cision problem is enough to pin down the parameter �, which then determines

behavior in all subsequent decision problems. Caplin and Dean [2013] show

that the data from this experiment is not commensurate with this constraint:

choice accuracy responds too slowly with respect to reward. This holds true

even controlling for the risk aversion of subjects.

In response to the rejection of the Shannon model, Caplin and Dean [2013]

introduce a class of alternative cost functions that signi�cantly improve our

ability to match the data. This class generalizes the Shannon cost function to

the wider class,

KG(�) = �

24G(�)� X
2�(�)

 X
!2


�(j!)
!
G()

35 ;
with G itself belonging to a parametric class of strictly convex functions of

which the Shannon model is a special case. This class of cost function matches

the experimental data signi�cantly better than does the Shannon model. The

reason for this is that it allows for di¤erent elasticities of attentional e¤ort

with respect to incentives. Costs are also naturally formulated in terms of the

posterior beliefs associated with an information structure. As for production

functions and utility functions, one can anticipate future development of more

elaborate functional forms as the behavioral evidence demands.

6 Existing Literature

Many approaches have been taken to modelling information acquisition in eco-

nomic applications, including sequential search (e.g. McCall [1970]), selection

25The fact that choice accuracy does respond to incentives also rules out models in which
there is a hard constraint to the amount of information processing instead of a marginal
cost (e.g. Sims [2003]).
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of the variance of a normal signal (Verrecchia [1982]), the binary choice to

either be fully informed or not (Reis [2006]), and rational inattention with

information costs based on Shannon mutual information (Sims [2003]). Our

approach allows for all of the above costs functions. The costs of feasible atten-

tion strategies can be captured by K, while the cost of inadmissible strategies

can be set to in�nity. The NIAS and NIAC conditions therefore provide a test

of the entire class of costly information acquisition models currently in use.

The paper closest in spirit to ours is de Oliveira et al. [2013] (henceforth

DDMO), which also identi�es the behavioral implications of costly information

acquisition without making strong assumptions about the form of information

costs. Rather than state dependent stochastic choice, DDMO use preference

over menus as their evidentiary base. They show in this setting that a model

of optimal costly information acquisition is characterized by a preference for

�exibility and for early resolution of uncertainty. DDMO show also that a re-

sult similar to Theorem 2 holds in this setting, essentially for the same reasons.

For example, in both cases, if information structure � is more informative than

�, the latter will (weakly) never be chosen at any cost K(�) � K(�) and so it

is without loss of generality to assume for all such cases that the relationship

holds at equality.

We see the two approaches as complementary. The main di¤erence between

our work and DDMO involves the underlying data set. We consider only data

on patterns of �nal choice from available actions, without considering how the

set of available actions themselves may have been chosen at an earlier stage.

In contrast, they consider only preference over menus without considering the

resulting patterns of �nal choice. Our approach therefore focuses directly on

patterns of observed mistakes rather than how anticipation of such mistakes

impacts choice of menu. An analogy can be drawn with the random utility lit-

erature, in which Kreps [1979] and Dekel et al. [2001] consider the implications

for menu preferences, and Gul and Pesendorfer [2006] for stochastic choice.26

26The task analogous to that of Ahn and Sarver [2013] - i.e. to understand when both
stochastic choice and menu preference can be modelled as coming from the same underlying
optimization problem, is an interesting avenue for future work.
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Another distinction lies in our focus on conditions which are necessary and

su¢ cient for �nite data sets, and theirs on a data set large enough to uniquely

identify utilities and prior beliefs as well as costs (though see section 3.5).

Other recent literature has considered the behavioral implications of spe-

ci�c models of information acquisition. Matejka and McKay [2013] and Caplin

and Dean [2013] analyze the rami�cations of rational inattention with Shan-

non mutual information costs for state dependent stochastic choice data. Ellis

[2012] works with state dependent deterministic choice data to characterize

choice among available information partitions. Caplin and Dean [2011] and

Caplin et al. [2011] consider the case of optimal sequential information search,

using an extended data set to derive behavioral restrictions. Again our work

nests all these models as special cases.

Our work forms part of a broader e¤ort to characterize choice behavior

when the internal information state of the agent is not directly observable.

Caplin and Martin [2014] introduce the NIAS condition to characterize sub-

jective rationality in a single decision problem. Manzini and Mariotti [2012]

consider a model in which the decision maker has a stochastic consideration

set, and makes choices to optimize preferences given what they have paid at-

tention to. Masatlioglu et al. [2012] characterize �revealed attention�, using

the identifying assumption that removing an unattended item from the choice

set does not a¤ect attention. Lu [2013] models the stochastic choice of a DM

who has some unobserved (but �xed) information structure. Dillenberger et

al. [2012] consider a dynamic problem in which the DM receives information

in each period which is externally unobservable, characterizing the resulting

preference over menus. In a strategic setting, Bergemann and Morris [2013b]

and Bergemann and Morris [2013a] consider the related problem of identify-

ing all patterns of play that are consistent with some underlying information

structure for all players.

In approach, our work is related to the recent resurgence in use of revealed

preference methods to understand the observable implications of models of

behavior - examples include sequential application of criteria (Manzini and

Mariotti [2007]), habit formation (Crawford [2010]), and collective consump-

34



tion behavior (Cherchye et al. [2011]). See also de Clippel and Rozen [2012]

for the explicit application of some of these techniques to �nite data.
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Revealed Preference, Rational Inattention, and Costly
Information Acquisition

Andrew Caplin and Mark Dean

Online Appendix: Not for Publication

1 Appendix 1: Proofs

1.1 Lemma 1

Lemma 1 If � 2 � is consistent with PA 2 P; 1 then it is su¢ cient for ��A:

Proof. Let � 2 � be an information structure that is consistent with PA 2 P . First, we list
in order all distinct posteriors �i 2 �(�) for 1 � i � I = j�(�)j. Given that � is consistent
with PA, there exists a corresponding optimal choice strategy CA : f1; :::; Ig ! �(A), with
CA(aji) denoting the probability of choosing action a 2 A following posterior �i, such that
the information structure and choice functions match the data,

PA(aj!) =
IX
i=1

�(�ij!)CA(aji):

We also list in order all possible posteriors associated with the corresponding revealed in-
formation structure, j 2 �� � �(��A), 1 � j � j��j, and identify all chosen actions that are
associated with posterior j as �F j ,

�F j � fa 2 Aj�aA = jg:

The garbling matrix bij sets the probability of j 2 �� given �i 2 �(�) as the probability of
all choices associated with actions a 2 �F j .

bij =
X
a2 �F j

CA(aji):

Note that this is indeed a j�(�)j � j��j stochastic matrix B � 0 with
PJ
j=1 b

ij = 1 all i. Given

1 i.e. there exists a C : �(�)! �(A) such that, for each  2 �(�),

C(aj) > 0 =)
X
!2


!u(a(!)) �
X
!2


!u(b(!)) all b 2 A,

and for each ! 2 
 and a 2 A,
PA(aj!) =

X
2�(�)

�(j!)C(aj):

1



j 2 �(�) and ! 2 
, note that,

IX
i=1

bij�(�ij!) =
IX
i=1

�(�ij!)
X
a2 �F j

CA(aji) =
X
a2 �F j

PA(aj!);

by the data matching property. It is de�nitional that ��A(j j!) is precisely equal to this, as
the observed probability of all actions associated with posterior j 2 ��. Hence,

��A(
j j!) =

IX
i=1

bij�(�ij!);

as required for su¢ ciency.

1.2 Theorem 1 and 2

Theorem 1 Given � 2 � and u : X ! R, data set (D;P ) has a costly information representation
if and only if it satis�es NIAS and NIAC.

Proof of Necessity. Necessity of NIAS follows much as in CM14. Fix A 2 D, �A 2 � and
CA : �(�A) ! �(A) in a costly information representation, and a 2 Supp(P ). By de�nition of a
costly information representation,

X
2�(�A)

CA(aj)
"X
!2


 (!)u(a(!))

#
�

X
2�(�A)

CA(aj)
"X
!

(!)u(b(!))

#
all b 2 A:

Substituting,

 (!) =
�(!)�A(j!)X
�

�(�)�A(j�)
;

cancelling the common denominator
X
�

�(�)�A(j�) in the inequality and substituting PA(aj!) =X
2�(�A)

�A(j!)CA(aj), we derive,

X
!

�(!)PA(aj!)u(a(!)) =
X

2�(�A)
CA(aj)

"X
!2


 (!)u(a(!))

#
�

X
2�(�A)

CA(aj)
"X
!2


 (!)u(b(!))

#
=

X
!

�(!)PA(aj!)u(b(!))

establishing necessity of NIAS.
To con�rm necessity of NIAC consider any sequence A1; A2; :::::AJ 2 D with AJ = A1 and

corresponding information structure �j for 1 � j � J . By optimality,

G(Aj ; �j)�K(�j) � G(Aj ; �j+1)�K(�j+1):8 j 2 f1; ::; Jg;

2



so that,
J�1X
j=1

G(Aj ; �j)�K(�j) �
J�1X
j=1

G(Aj ; �j+1)�K(�j+1):

Given that K(�1) = K(�J), note that,

J�1X
j=1

G(Aj ; �j)�G(Aj ; �j+1) �
J�1X
j=1

K(�j)�K(�j+1) = 0;

so that,
J�1X
j=1

G(Aj ; �j) �
J�1X
j=1

G(Aj ; �j+1):

To establish that this is inherited by the revealed information structures ��j for 1 � j � J , note
from lemma 1 that with �j su¢ cient for ��j , G(B; �j) � G(B; ��j) for all B 2 F . For B = Aj this
is an equality since both information structures give rise to the same state dependent stochastic
demand,

G(Aj ; �j) = G(Aj ; ��j) =
X
a2Aj

X
!

�(!)PAj (aj!)u(a(!)):

Hence,
J�1X
j=1

G(Aj ; ��j) =
J�1X
j=1

G(Aj ; �j) �
J�1X
j=1

G(Aj ; �j+1) �
J�1X
j=1

G(Aj ; ��j+1);

establishing NIAC.
Proof of Su¢ ciency. There are three steps in the proof that the NIAS and NIAC conditions
are su¢ cient for (D;P ) to have a costly information representation. The �rst step is to establish
that the NIAC conditions ensures that there is no global reassignment of the revealed information
structures observed in the data to decision problems A 2 D that raises total gross surplus. The
second step is use this observation to de�ne a candidate cost function on information structures,
�K : � ! R [ 1. The key is to note that, as the solution to the classical allocation problem of
Koopmans and Beckmann [1957], this assignment is supported by �prices�set in expected utility
units. It is these prices that de�ne the proposed cost function. The �nal step is to apply the NIAS
conditions to show that

�
�K; ��

�
represents a costly information representation of (D;P ), where ��

comprises revealed information structures.
Enumerate decision problems in D as Aj for 1 � j � J . De�ne the corresponding revealed

information structures ��j for 1 � j � J as revealed in the corresponding data and let �� � [Jj=1��j
be the set of all such structures across decision problems, with a slight enrichment to ensure that
there are precisely as many structures as there are decision problems. If all revealed information
structures are di¤erent, the set as just de�ned will have cardinality J . If there is repetition, then
retain the decision problem index with which identical revealed information structures are associated
so as to make them distinct. This ensures that the resulting set � has precisely J elements. Index
elements ��j 2 �� in order of the decision problem Aj with which they are associated.

We now allow for arbitrary matchings of information structures to decision problems. First, let
bjl denote the gross utility of decision problem j combined with revealed information structure l,

bjl = G(Aj ; ��l);

3



with B the corresponding matrix. De�neM to be the set of all matching functions � : f1; ::; Jg !
f1; ::; Jg that are 1-1 and onto and identify the corresponding sum of gross payo¤s,

S(�) =
JX
j=1

bj�(j):

It is simple to see that the NIAC condition implies that the identify map �I(j) = j maximizes the
sum over all matching functions � 2M. Suppose to the contrary that there exists some alternative
matching function that achieves a strictly higher sum, and denote this match �� 2M. In this case
construct a �rst sub-cycle as follows: start with the lowest index j1 such that ��(j1) 6= j1. De�ne
��(j1) = j2 and now �nd �(j2), noting by construction that �(j2) 6= j2. Given that the domain is
�nite, this process will terminate after some K � J steps with ��(jK) = j1. If it is the case that
��(j) = j outside of the set [Kk=1 jk, then we know the increase in the value of the sum is associated
only with this cycle, hence,

K�1X
k=1

bjkjk <
K�1X
j=1

bjkjk+1 ;

directly in contradiction to NIAC. If this inequality does not hold strictly, then we know that there
exists some j0 outside of the set [Kk=1 jk such that �

�(j0) 6= j0. We can therefore iterate the process,
knowing that the above strict inequality must be true for at least one such cycle to explain the
strict increase in overall gross utility. Hence the identity map �I(j) = j indeed maximizes S(�)
amongst all matching functions � 2M.

With this, we have established that the identity map solves an allocation problem of precisely
the form analyzed by Koopmans and Beckmann [1957]. They characterize those matching functions
� : f1; ::Jg ! f1; ::Jg that maximize the sum of payo¤s de�ned by a square payo¤ matrix such
as B that identi�es the reward to matching objects of one set (decision problems in our case) to
a corresponding number of objects in a second set (revealed information structures in our case).
They show that the solution is the same as that of the linear program obtained by ignoring integer
constraints,

max
xjl�0

X
j;l

bjlxjl s.t.
JX
j=1

xjl =
JX
l=1

xjl = 1:

Standard duality theory implies that the optimal assignment �I(j) = j is associated with a system
of prices on revealed information structures such that the increment in net payo¤ from any move
of any decision problem is not more than the increment in the cost of the information structure.

De�ning these prices as �Kj , their result implies that,

bjl � bjj = G(Aj ; ��l)�G(Aj ; ��j) � �Kl � �Kj ;

or,
G(Aj ; ��j)� �Kj � G(Aj ; ��l)� �Kl:

The result of Koopmans and Beckmann therefore implies existence of a function �K : � �! R
that decentralizes the problem from the viewpoint of the owner of the decision problems, seeking
to identify surplus maximizing information structures to match to their particular problems. Note
that if there are two distinct decision problems with the same revealed posterior, the result directly
implies that they must have the same cost, so that one can in fact ignore the reference to the
decision problem and retain only the posterior in the domain. Set K(�) =1 if � 6= ��A. We have

4



now completed construction of a qualifying cost function �K : � ! R [1 that satis�es �K(�) 2 R
for some � 2 �. The entire construction was aimed at ensuring that the observed information
structure choices were always maximal, ��A 2 �̂(K;A) for all A 2 D. It remains to prove that ��A
is consistent with PA for all A 2 D. This requires us to show that, for all A 2 D, the choice rule
that associates with each  2 �(��A) the certainty of choosing the associated action a 2 F (A) as
observed in the data is both optimal and matches the data. That it is optimal is the precise content
of the NIAS constraint, X

!

aA (!)u(a(!)) �
X
!

aA (!)u(b(!));

for all b 2 A. That this choice rule and the corresponding revealed information structure match
the data holds by construction.

1.3 Theorem 2

Theorem 2 Given � 2 � and u : X ! R, data set (D;P ) satis�es NIAS and NIAC if and only if
it has a costly information representation with conditions K1 to K3 satis�ed.

Proof. The proof of necessity is immediate from theorem 1. The proof of su¢ ciency proceeds in
four steps, starting with a costly information representation

�
�K; ��

�
of (D;P ) of the form produced

in theorem 1 based on satisfaction of the NIAS and NIAC conditions. A key feature of this function
is that the function �K is real-valued only on the revealed information structures �� � f��AjA 2 Dg
associated with all corresponding decision problems, otherwise being in�nite. The �rst step is the
proof is to construct a larger domain �� � �� to satisfy three additional properties: to include the
inattentive strategy, I 2 ��; to be closed under mixtures so that �; � 2 �� and � 2 (0; 1) implies
� � � + (1 � �) � � 2 ��; and to be �closed under garbling,� so that if � 2 �� is su¢ cient for
information structure � 2 �, then � 2 ��. The second step is to de�ne a new function �K that
preserves the essential elements of �K while being real-valued on the larger domain �� � ��, and
thereby to construct the full candidate cost function �K : �! R [1. The third step is to con�rm
that �K 2 K and that �K satis�es the required conditions K1 through K3. The �nal step is to

con�rm that
�
�K; ��

�
forms a costly information representation of (D;P ).

We construct the domain �� in two stages. First, we de�ne all information structures for which
some revealed information structure �� 2 � is su¢ cient;

��S = f� 2 �j9� 2 �� su¢ cient for �g:

Note that this is a superset of �� and that it contains I. The second step is to identify �� as the
smallest mixture set containing ��S : this is itself a mixture set since the arbitrary intersection of
mixture sets is itself a mixture set.

By construction, �� has three of the four desired properties: it is closed under mixing; it contains
��, and it contains the inattentive strategy. The only condition that needs to be checked is that it
retains the property of being closed under garbling:

� 2 �� su¢ cient for � 2 � =) � 2 �� .

To establish this, it is useful �rst to establish certain properties of ��S and of ��. The �rst is that
��S is closed under garbling:

� 2 ��S su¢ cient for � 2 � =) � 2 ��S .
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Intuitively, this is because the garbling of a garbling is a garbling. In technical terms, the product
of the corresponding garbling matrices is itself a garbling matrix. The second is that one can
explicitly express �� as the set of all �nite mixtures of elements of ��S ,

�� =

8<:� =
JX
j=1

�j � �j jJ 2 N; (�1; ::�J) 2 SJ�1; �j 2 ��S

9=; ;

where SJ�1 is the unit simplex in RJ: To make this identi�cation, note that the set as de�ned on
the RHS certainly contains ��S and is a mixture set, hence is a superset of ��. Note moreover that
all elements in the RHS set are necessarily contained in any mixture set containing ��S by a process
of iteration, making is also a subset of ��, hence �nally one and the same set.

We now establish that if � 2 � is a garbling of some � 2 ��, then indeed � 2 ��. The �rst step is
to express � 2 �� as an appropriate convex combination of elements of ��S as we now know we can,

� =

JX
j=1

�j � �j :

with all weights strictly positive, �j > 0 all j. Lemma 2 below establishes that in this case there
exist garblings �j of �j 2 ��S such that,

� =

JX
j=1

�j � �j ;

establishing that indeed � 2 �� since, with ��S closed under garbling, �j 2 ��S and �j a garbling of
�j implies �j 2 ��S .

We de�ne the function �K on �� in three stages. First we de�ne the function �KS on the domain
��S by identifying for any � 2 ��S the corresponding set of revealed information structures �� 2 ��
of which � is a garbling, and assigning to it the lowest such cost. Formally, given � 2 ��S ,

�KS(�) � min
f�2��j� su¢ cient for �g

�K(�):

Note that �KS(�) = �K(�) all � 2 ��. To see this, consider A;A0 2 D with ��A0 su¢ cient for ��A.
By the Blackwell property, expected utility is at least as high using ��A0 as using ��A for which it is
su¢ cient,

G(A; ��A0) � G(A; ��A):

At the same time, since
�
�K; ��

�
is a costly information representation of (D;P ), we know that

��A 2 �̂(K;A), so that,
G(A; ��A)�K(��A) � G(A; ��A0)�K(��A0):

Together these imply that K(��A) � K(��A0), which in turn implies that �KS(�) = �K(�) all � 2 ��.
Note that �KS(�) also satis�es weak monotonicity on this domain, since if we are given �; � 2 ��S

with � su¢ cient for �, then we know that any information structure � 2 �� that is su¢ cient for
� is also su¢ cient for �, so that the minimum de�ning �KS(�) can be no lower than that de�ning
�KS(�).
The second stage in the construction is extend the domain of the cost function from ��S to ��.
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As noted above, this set comprises all �nite mixtures of elements of ��S ,

�� =

8<:� =
JX
j=1

�j � �j jJ 2 N; (�1; ::�J) 2 SJ�1; and �j 2 ��S

9=; :

Given � 2 ��, we take the set of all such mixtures that generate it and de�ne �K(�) to be the
corresponding in�mum,

�K(�) = inf8><>:J2N;�2SJ�1;f�jgJj=12��S j�=
JX
j=1

�j��j

9>=>;

JX
j=1

�j �KS(�j):

Note that this function is well de�ned since �KS is bounded below by the cost of inattentive structures
and the feasible set is non-empty by de�nition of ��. We establish in Lemma 3 that the in�mum
is achieved. Hence, given � 2 ��, there exists J 2 N; � 2 SJ�1; and elements �j 2 ��S with

� =

JX
j=1

�j � �j such that,

�K(�) =
JX
j=1

�j �KS(�j):

We show now that �K satis�es K2, mixture feasibility. Consider distinct structures � 6= � 2 ��.
We know by Lemma 3 that we can �nd J�;� 2 N; corresponding probability weights ��;� 2 S�;�

and elements �j ; �j 2 ��S with � =
J�X
j=1

�j � �j , � =
J�X
j=1

�j � �j , and such that,

�K(�) =
J�X
j=1

��j
�KS(�j);

�K(�) =

J�X
j=1

��j
�KS(�j):

Given � 2 (0; 1), consider now the mixture strategy de�ned by taking each strategy �j with
probability ���j and each strategy �j with probability (1 � �)��j . By construction, this mixture
strategy generates  = [� � � + (1� �) � �] 2 � and hence we know by the in�mum feature of
�K( ) that,

�K( ) �
J�X
j=1

���j �KS(�j) +

J�X
j=1

(1� �)��j �KS(�j) = ��K(�) + (1� �)�K(�);

con�rming mixture feasibility.
We show also that �K satis�es K1, weak monotonicity in information. Consider �; � 2 �� with

� su¢ cient for �. We know by Lemma 3 that we can �nd J 2 N; � 2 SJ�1; and corresponding

7



elements f�jgJj=1 2 ��S such that � =
JX
j=1

�j � �j and such that,

�K(�) =
JX
j=1

�j �KS(�j):

We know also from Lemma 2 that we can construct
�
�j
	J
j=1

2 ��S such that � =
JX
j=1

�j � �j and

such that each �j is a garbling of the corresponding �j . Given that �KS satis�es weak monotonicity
on its domain ��S , we conclude that,

�KS(�j) � �KS(�j):

By the in�mum feature of �K(�) we therefore know that,

�K(�) �
JX
j=1

�j �KS(�j) �
JX
j=1

�j �KS(�j) = �K(�);

con�rming weak monotonicity.
We show now that we have retained the properties that made

�
�K; ��

�
a costly information

representation of (D;P ). Given A 2 D, it is immediate that �� and the choice function that
involves picking action a 2 Supp(PA) for sure in revealed posterior �aA is consistent with the data,
since this was part of the initial de�nition. What needs to be con�rmed is only that the revealed
revealed information structures are optimal. Suppose to the contrary that there exists A 2 D such
that,

G(A; �)� �K(�) > G(A; ��A)� �K(��A);

for some � 2 ��. By Lemma 3 we can �nd J 2 N; a strictly positive vector � 2 SJ�1; and

corresponding elements f�jgJj=1 2 ��S , such that � =
JX
j=1

�j � �j and such that,

�K(�) =
JX
j=1

�j �KS(�j):

By the fact that � =
JX
j=1

�j � �j and by construction of the mixture strategy,

G(A; �) =

JX
j=1

�jG(A; �j);

so that,
JX
j=1

�j
�
G(A; �j)� �KS(�j)

�
> G(A; ��A)� �K(��A):
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We conclude that there exists j such that,

G(A; �j)� �KS(�j) > G(A; ��A)� �K(��A):

Note that each �j 2 ��S inherits its cost �KS(�j) from an element ��j 2 �� that is the lowest cost
revealed information structure according to �K on set �� that is su¢ cient for �j ,

�KS(�j) = �K(��j);

where the last equality stems from the fact (established above) that �KS(�) = �K(�) on �� 2 ��.
Note by the Blackwell property that each strategy ��j 2 �� o¤ers at least as high gross value as the
strategy �j 2 ��S for which it is su¢ cient, so that overall,

G(A; ��j)� �K(��j) � G(A; �j)� �KS(�j) > G(A; ��A)� �K(��A):

To complete the proof it is su¢ cient to show that,

�K(�) = �K(�);

on � 2 ��: With this we derive the contradiction that,

G(A; ��j)� �K(��j) > G(A; ��A)� �K(��A);

in contradiction to the assumption that
�
�K; ��

�
formed a costly information representation of (D;P ).

To establish that �K(�) = �K(�) on � 2 ��, note that we know already that �KS(�) = �K(�) on
�� 2 ��. If this did not extend to �K(�), then we would be able to identify a mixture strategy  2 ��
su¢ cient for ��A with strictly lower expected costs, �K( ) < �K(�). To see that this is not possible,
note �rst from Lemma 1 that all structures that are consistent with A and PA are su¢ cient for ��A.
Weak monotonicity of �K on �� then implies that the cost �K( ) of any mixture strategy su¢ cient
for ��A satis�es �K( ) � �K(�), as required.

The �nal and most trivial stage of the proof is to ensure that normalization (K3) holds. Note
that I 2 ��S , so that �KS(I) 2 R according to the rule immediately above. If we renormalize this
function by subtracting �K(I) from the cost function for all information structures then we impact
on no margin of choice and do not interfere with mixture feasibility, weak monotonicity, or whether
or not we have a costly information representation. Hence we can avoid pointless complication by
assuming that �K(I) = 0 from the outset so that this normalization is vacuous. In full, we de�ne
the candidate cost function �K : ��! R [1 by,

�K(�) =

�
�K(�) if � 2 ��
1 if � =2 ��:

Note that weak monotonicity implies that the function is non-negative on its entire domain.
It is immediate that �K 2 K, since �K(�) = 1 for � =2 �� and the domain contains the corre-

sponding inattentive strategy I on which �K(�) is real-valued. It is also immediate that �K satis�es
K3, since �K(I) = 0 by construction. It also satis�es K1 and K2, and represents a costly information
representation, completing the proof.

Lemma 2 If � =
JX
1

�j � �j with J 2 N; � 2 SJ�1 with �j > 0 all j, and f�jgJj=1 2 �, then for
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any garbling � of �, there exist garblings �j of �j 2 � such that,

� =

JX
j=1

�j � �j ;

Proof. By assumption, there exists a j�(�)j� j�(�)j matrix B with
P
k b
ik = 1 all i and such that,

for all k 2 �(�),
�(kj!) =

X
�i2�(�)

bik�(�ij!):

Since � =
JX
1

�j ��j , we know that �(�j) � �(�). Now de�ne compressed matrix Bj as the unique

submatrix of B obtained by �rst deleting all rows corresponding to posteriors �i 2 �(�)n�(�j),
and then deleting all columns corresponding to posteriors k such that bik = 0 all �i 2 �(�)n�(�j).
De�ne �j 2 � to be the strategy that has as its support the set of all posteriors that are possible
given the garbling �j of �j ,

�(�j) = fk 2 �(�)jbik > 0 some �i 2 �(�j)g;

and in which state dependent probabilities of all posteriors are generated by the compressed matrix
Bj ,

�j!(
k) =

X
�i2�(�j)

bik�i(�
ij!);

for all k 2 �(�j).
Note by construction that each information structure �j is a garbling of the corresponding

�j 2 �, since each Bj is itself a garbing matrix for which
P
k b
ik = 1 for all �i 2 �(�j). It remains

only to verify that � =
JX
j=1

�j � �j . This follows since,

�(kj!) =
X

�i2�(�)

bik�(�ij!) =
X

�i2�(�)

bik
JX
j=1

�j�j(�
ij!) =

JX
j=1

�j
X

�i2�(�j)

bik�j(�
ij!) =

JX
j=1

�j�j(
kj!):

Lemma 3 Given � 2 ��, there exists J 2 N; � 2 SJ�1, and elements �j 2 ��S with � =
JX
j=1

�j � �j

such that,

�K(�) =

JX
j=1

�j �KS(�j):

Proof. By de�nition �K(�) is the in�mum of
JX
j=1

�j �KS(�j) over all lists f�jgJj=1 2 ��S such that

� =

JX
j=1

�j � �j . We now consider a sequence of such lists, indicating the order in this sequence
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in parentheses, f�j(n)gJ(n)j=1 , such that in all cases there are corresponding weights �(n) 2 SJ(n)�1

with � =
J(n)X
j=1

�j(n) � �j(n) and that achieve a value that is heading in the limit to the in�mum,

lim
n�!1

J(n)X
j=1

�j(n) �KS(�j(n)) = �K(�).

A �rst issue that we wish to avoid is limitless growth in the cardinality J(n). The �rst key
observation is that, by Charateodory�s theorem, we can reduce the number of strictly positive

weights in a convex combination � =
J�(n)X
j=1

��j (n) � �j(n) to have cardinality J�(n) � M + 1. We

con�rm now that we can do this without raising the corresponding costs,
J�(n)X
j=1

��j (n) �KS(�j(n)).

Suppose that there is some integer n such that the original set of information structures has
strictly higher cardinality J(n) > M + 1. Suppose further that the �rst selection of J1(n) �
M + 1 such posteriors for which there exists a strictly positive probability weights �1j (n) such

that � =
J1(n)X
j=1

�1j (n) � �j(n) has higher such costs (note WLOG that we are treating these as the

�rst J1(n) information structures in the original list). It is convenient to de�ne �1j (n) = 0 for
J1(n) + 1 � j � J(n) so that we can express this inequality in the simplest terms,

J(n)X
j=1

�1j (n)
�KS(�j(n)) >

J(n)X
j=1

�j(n) �KS(�j(n)):

This inequality sets up an iteration. We �rst take the smallest scalar �1 2 (0; 1) such that,

�1�1j (n) = �j(n):

That such a scalar exists follows from the fact that
J1(n)X
j=1

�1j (n) =

J(n)X
j=1

�j(n) = 1, with all components

in both sums strictly positive and with J(n) > J1(n). We now de�ne a second set of probability
weights �2j (n),

�2j (n) =
�j(n)� �1�1j (n)

1� �1 ;

for 1 � j � J(n). Note that these weights have the property that � =
J(n)X
j=1

�2j (n) � �j(n) and that,

J(n)X
j=1

�2j (n) �KS(�j(n)) =

J(n)X
j=1

"
�j(n)� �1�1j (n)

1� �1

#
�KS(�j(n)) <

J(n)X
j=1

�j(n) �KS(�k(n)):

By construction, note that we have reduced the number of strictly positive weights �2j (n) by at
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least one to J(n) � 1 or less. Iterating the process establishes that indeed there exists a set of no
more than M + 1 posteriors such that a mixture produces that �rst strategy � and in which this
mixture has no higher weighted average costs than the original strategy. Given this, there is no
loss of generality in assuming that J(n) �M + 1 in our original sequence.

With this bound on cardinality, we know that we can �nd a subsequence of information struc-
tures �j(n) which all have precisely the same cardinality J(n) = J � M + 1 all n. Going further,
we can impose properties on all of the J corresponding sequences f�j(n)g1n=1. First, we can se-
lect subsequences in which the ranges of all corresponding information structures have the same
cardinality independent of n,

j�(�j(n))j = Kj ;

for 1 � j � J . Note we can do this because, for all j and n, the number of posteriors in the
information structure �j(n) is bounded above by the number of posteriors in the strategy �, which
is �nite.

With this, we can index the possible posteriors jk(n) 2 �(�j(n)) in order, 1 � k � Kj and
then select further subsequences in which these posteriors themselves converge to limit posteriors,

jk(L) = lim
n!1

jk(n) 2 �:

which is possible posteriors lie in a compact set, and so have a convergent subsequence.
We ensure also that both the associated state dependent probabilities themselves and the weights

�j(n) in the expression � =
J(n)X
j=1

�j(n) � �j(n) converge,

lim
n!1

�
�
jk(n)j!

�
= �jk(Lj!);

lim
n!1

�j(n) = �j(L):

Again, this is possible because the state dependent probabilities and weights lie in compact sets.
The �nal selection of a subsequence ensures that, given 1 � j � J , each �j(n) 2 ��S has its value

de�ned by precisely the same revealed information structure ��j 2 �� as the least expensive among
those that were su¢ cient for it and hence whose cost it was assigned in function �KS . Technically,
for each 1 � j � J ,

�KS(�j(n)) = �K(��j);

for 1 � n � 1: this is possible because the data set and hence the number of revealed information
structures is �nite.

We �rst use these limit properties to construct a list of limit information structures �j(L) 2 ��S

with � =
JX
j=1

�j � �j for 1 � j � J . Strategy �j(L) has range,

�(�j(L)) = [K
j

k=1
jk(L);

with state dependent probabilities,

[�j(L)]!

�
jk(L)

�
= �ik(Lj!):
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Note that the construction ensures that � =
JX
j=1

�j(L) � �j(L). To complete the proof we must

establish only that,

�K(�) =
JX
j=1

�j(L) �KS(�j(L)):

We know from the construction that, for each n;

JX
j=1

�j(n) �KS(�j(n)) =

JX
j=1

�j(n) �K(��j):

Hence the result is established provided only,

�KS(�j(L)) � �K(��j);

which is true provided ��j being su¢ cient for all �j(n) implies that ��j is su¢ cient for the corre-
sponding limit vector �j(L). That this is so follows by de�ning Bj(L) = [bik(L)]j to be the limit of
any subsequence of the j�(��j)j �Kj stochastic matrices Bj(n) = [bik(n)]j which have the de�ning
property of su¢ ciency,

[�j(n)]! (
jk(n)) =

X
�i2�(��j)

[bik(n)]j � ��(�ij!);

for all jk(n) 2 �(�j(n)) and ! 2 
. It is immediate that the equality holds up in the limit,
establishing that indeed ��j is su¢ cient for each corresponding limit vector �j(L), con�rming �nally
that �KS(�j(L)) � �K(��j) and with it establishing the Lemma.

2 Appendix 2: No Strong Blackwell

A simple example with data on one decision problem with two equally likely states illustrates that
one cannot further strengthen the result in this dimension. Suppose that there are three available
actions A = fa; b; cg with corresponding utilities,

(u(a(!1)); u(a(!2))) = (10; 0) ; (u(b(!1)); u(b(!2))) = (0; 10) ; (u(c(!1)); u(c(!2))) = (7:5; 7:5) :

Consider the following state dependent stochastic choice data in which the only two chosen actions
are a and b,

P (aj!1) = P (bj!2) =
3

4
= 1� P (bj!1) = 1� P (aj!1):

Note that this data satis�es NIAS; given posterior beliefs when a is chosen, a is superior to b
and indi¤erent to c, and when b is chosen it is superior to a and indi¤erent to c. It trivially satis�es
NIAC since there is only one decision problem observed. We know from theorem 2 that is has a
costly information representation with the cost of the revealed information structure K (��) � 0 and
that of the inattentive strategy being zero, K(I) = 0. Note that �� is su¢ cient for I but not vice
versa, hence any strictly monotone cost function would have to satisfy K (��) > 0. In fact it is not
possible to �nd a representation with this property. To see this, note that both structures have the
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same gross utility,

G(A; �) =
1

2
� 3
4
� 10 + 1

2
� 3
4
� 10 = 1 � 7:5 = G(A; I);

where we use the fact that the inattentive strategy involves picking action c for sure. In order to
rationalize selection of the inattentive strategy, it must therefore be that �� is no more expensive
than I, contradicting strict monotonicity.

3 Appendix 3: Further Details of NIAS and NIAC Tests

Figures s1 and s2 show the subject level distribution of losses due to NIAC and NIAS violations
in dollar terms, compared to a benchmark simulated distribution of random choice. Losses due
to NIAC are calculated assuming that the point estimate of posterior beliefs upon the the choice
of each act are the subject�s true posterior beliefs, and then comparing the expected value of the
chosen act to that of the optimal act at each posterior. Losses below are summed across all chosen
acts in all decision problems. NIAS losses are calculated by treating each subject�s estimated choice
probabilites in each decision problem as their true choice probabilities, and calculating the maximal
surplus that could be obtained by correctly assigning information structures to decision problems.
This is compared to the surplus obtained from the subject�s actual assignment, assuming NIAS to
be satis�ed.

In both cases, the distributions of actual and simulated subjects are signi�cantly di¤erent at
the 0.001% level (Kolmogorov-Smirnov test).

Figure S1: NIAS Losses Figure S2: NIAC losses

14



References

Tjalling C. Koopmans and Martin Beckmann. Assignment problems and the location of economic
activities. Econometrica, 25(1):pp. 53�76, 1957.

15



 

 

 

 

Appendix 4: Example Instructions 



1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=1 1/1

← Home Next →

Individual Decision-Making Experiment

Instructions

This experiment is designed to study decision making, and consists of 4 sections. Each section will

consist of 50 questions. At the end of the experiment, one question will be selected at random from

those you answered. The amount of money that you get at the end of the experiment will depend

on your answer to this question. Anything you earn from this part of this experiment will be added

to your show-up fee of $10.

Please turn off cellular phones now.

The entire session will take place through your computer terminal. Please do not talk or in any way

communicate with other participants during the session.

Please do NOT use the forward and back buttons in your browser to navigate. Only use the

links at the bottom of each page to move forward or back.

We will start with a brief instruction period. During this instruction period, you will be given a

description of the main features of the session and will be shown how to use the program. If you

have any questions during this period, please raise your hand.

After you have completed the experiment, please remain quietly seated until everyone has

completed the experiment.

http://samuel-brown.com/infoexp12/login-home.php
http://samuel-brown.com/infoexp12/instructions.php?p=2
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http://samuel-brown.com/infoexp12/instructions.php?p=2 1/1

← Previous Next →

Individual Decision-Making Experiment

Instructions

For each question you will be shown 100 dots on a screen. Some of these dots will be red, while

some will be blue. Here is an example of such a screen:

The number of red dots will be determined at random. You will be told how likely each number of

red dots is. So, for example you might be told that there is a 75% chance of there being 49 red

dots and a 25% chance of there being 51 red dots. In this case there is a 3/4 chance that there will

be 49 red dots on the screen, and a 1/4 chance that there will be 51 red dots. There will never be

any other number of red dots on the screen. The number of red dots in each question is

determined independently of the number of red dots that have appeared in previous questions.

http://samuel-brown.com/infoexp12/instructions.php?p=1
http://samuel-brown.com/infoexp12/instructions.php?p=3
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http://samuel-brown.com/infoexp12/instructions.php?p=3 1/1

← Previous Next →

Individual Decision-Making Experiment

Instructions

You will be asked to make a choice between two or more options. Each of these options will pay

out different amounts of money, depending on how many red dots are on the screen.

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 10 0

B 0 10

C 5 5

In this case, if you chose option A (and this question was the one selected for payment) then you

would get $10 if there were 49 red dots on the screen and $0 if there were 51 red dots. If you

chose option B you would get $10 if there were 51 red dots on the screen and $0 if there were 49

red dots. If you chose option C you would receive $5 regardless of the number of red dots on the

screen.

You will now have the chance to try an example question. You will not be paid depending on your

answer to this question - it is just for practice.

http://samuel-brown.com/infoexp12/instructions.php?p=2
http://samuel-brown.com/infoexp12/instructions.php?p=4
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http://samuel-brown.com/infoexp12/instructions.php?p=4 1/1

← Previous Next →

Individual Decision-Making Experiment

Instructions

Example Question

You are about to see a screen with 100 dots on it. These dots will be either red or blue. The

likelihood of the number of red dots is as follows:

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will then be asked to choose between a number of alternatives. These alternatives will pay

money depending on the number of dots on the screen.

http://samuel-brown.com/infoexp12/instructions.php?p=3
http://samuel-brown.com/infoexp12/instructions.php?p=5
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http://samuel-brown.com/infoexp12/instructions.php?p=5 1/1

← Previous Next →

Individual Decision-Making Experiment

Instructions

Example Question

Remember:

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

Please select from the following options:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 10 0

B 0 10

C 5 5

http://samuel-brown.com/infoexp12/instructions.php?p=4
javascript:submitform()
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http://samuel-brown.com/infoexp12/instructions.php?p=6 1/1

← Previous Next →

Individual Decision-Making Experiment

Instructions

Payment

For this question, you chose the following option:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 10 0

There were 49 red dots on the screen.

If this were the question that had been selected for payment, you would have received $10 in

addition to your show up fee.

http://samuel-brown.com/infoexp12/instructions.php?p=5
http://samuel-brown.com/infoexp12/instructions.php?p=7
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Individual Decision-Making Experiment

Instructions

Here is a description of the questions that you will face in each of the 4 sections of the experiment.

Block 1

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will be asked to choose between the following options:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 23 23

B 21 25

C 40 0

Block 2

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will be asked to choose between the following options:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 23 23

B 21 25

Block 3

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will be asked to choose between the following options:
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Option Pay if there are 49 red dots Pay if there are 51 red dots

A 23 23

B 21 25

C 35 5

Block 4

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will be asked to choose between the following options:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 23 23

B 21 25

C 30 10

REMEMBER: Each section consists of 50 questions, each with the same probabilities and

available options. You will be reminded in each question what the probabilities and

available options are for that question.

Again, please do NOT use the forward and back buttons in your browser to navigate. Only

use the links at the bottom of each page to move forward or back.

If you have any questions, please raise your hand now, otherwise click to the lower right to return

to the Home Page and begin the experiment.

http://samuel-brown.com/infoexp12/instructions.php?p=6
http://samuel-brown.com/infoexp12/login-home.php
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