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Abstract

In “The Logic of Partial Supposition”, Ben Eva and Stephan Hartmann in-
vestigate partial imaging, a credence-revision method which combines the partial-
ity familiar from Jeffrey Conditioning (Jeffrey, 1983) with the formal notion of
imaging familiar from Lewis (1981). They argue that because partial imaging is
non-monotonic, it “fail[s] to provide a plausible account of the norms of partial
subjunctive suppositions” (1).

In this note, I present a notion of partial imaging that does satisfy monotonicity,
and discuss some of the applications and ramifications. The account frames condi-
tioning as a form of imaging, and rejects Gärdenfors (1982)’s principle of linearity.

1 Introduction

In “The Logic of Partial Supposition” (2021), Ben Eva and Stephan Hartmann inves-

tigate the notion of partial imaging, a credence-revision method which combines the

partiality familiar from Jeffrey Conditioning (Jeffrey, 1983) with the formal notion

of imaging familiar from Lewis (1981) and Gärdenfors (1982). As Eva and Hartmann

(henceforth E&H) note, partial imaging occupies a natural “fourth quadrant” in a space

of possible credence-revision methods (Table 1, highlighted):

conditioning imaging
total PX(·) PX(·)

partial P{X}(·) P {X}(·)

Table 1: Four ways of updating a prior P (·).

Whereas X is a proposition—an element of the algebra taken to be learned or

supposed with certainty—{X} is a partition of W , which provides new input probabilities

for its members.1 These new input probabilities may lie strictly between 0 and 1. The
∗To appear. I am grateful to David Boylan, Simon Huttegger, Ginger Schultheis, Snow Zhang, and

an anonymous Analysis referee for generous commentary and discussion.
1Everything I will talk about will be finite.



task of partial update—of either the “indicative” (conditionalising) or “counterfactual”

(imaging) kind—is to redistribute credence over the space of possible worlds in accord

with the input provided by {X}.

E&H argue for a pessimistic moral concerning partial imaging. “[T]he most obvious

formal generalisations” of imaging to the partial case, they write, “fail to provide a

plausible account of the norms of partial subjunctive suppositions” (1). In particular,

E&H are interested in a monotonicity condition, according to which (directly) increasing

one’s credence in a proposition p should never decrease the probability of any of p’s

logical consequences. Montonicity is violated by the accounts of partial imaging E&H

investigate.

The purpose of this note is twofold. The first is to present a notion of partial

imaging that does satisfy monotonicity. The second is to evaluate its straightforwardness

and intuitive appeal. The account I advocate for rejects Gärdenfors (1982)’s principle

of linearity. In wrapping up, I note some helpful connections with recent work in

philosophy of language.

2 Background

Table 1 follows Joyce (1999) in using subscripting for conditioning and superscripting

for imaging. Standard conditioning is thus defined by the Ratio Formula. For any

w ∈ W and X s.t. P (X) > 0:

PX(w) :=
P (w ∧X)

P (X)
(1)

Partial, or Jeffrey, Conditioning for the simple partition {X,¬X} is:

P{X,¬X}(w) = (PX(w) · x) + (P¬X(w) · (1− x)) (2)

where x and (1− x) are new input probabilities for X and ¬X, respectively.

Imaging comes in two flavours: sharp and blurred (or general). Both require a



selection function σ, which takes a world and a proposition as arguments.

When imaging is sharp, σ(w′, X) is the unique world w to which w′ wills its mass

when P is imaged on the proposition X.

PX(w) :=


0 if w ∈ X

P (w) +
∑

w′∈X|w=σ(w′,X) P (w′) if w ∈ X

(3)

A common way of understanding the selection function σ is that σ(w′, X) is the

closest or most similar world to w where X is true.2

Similarity, however, admits of ties, as Gärdenfors (1982, §1) notes. He thus defines

σ(w,X) more generally as a set of worlds Y ⊆ W . The definition of general imaging

additionally has recourse to a transfer function Tw,X : {v ∈ σ(w,X)} → [0, 1]. For

example, when Tu,X(v) = .25, then u sends exactly 25% of its probability mass to v

when the probability space is imaged on X. PX(w) is defined with the aid of σ(·) and

T(·), as follows:

PX(w) :=


0 if w ∈ X

P (w) +
∑

w′∈X|w∈σ(w′,X) P (w′) · Tw′,X(w) if w ∈ X

(4)

For any world w′ and proposition X, we assume:

• Success: σ(w′, X) ⊆ X

• Strong Centring: if w′ ∈ X, then σ(w′, X) = {w′}

On either the sharp (equation (3)) or general (equation (4)) version, imaging thus

taps genuine extra-Bayesian structure. When a world w “dies” under imaging, σ(·) and

T(·) record how it bequeaths its probability mass to its survivors. w may dole out this

mass unequally; the only requirement is that “it all goes somewhere”:
∑

w′∈σ(w,X) Tw,X(w′) =

1. For this reason, Lewis influentially described imaging as a process according to which
2My notation here closely follows that of Eva and Hartmann, though I adjust slightly in order not

to beg questions about the relata of the semantic relation ⊨. For readability, I toggle freely between X
and ¬X throughout.



probability “is moved around” though it is “neither created nor destroyed” (1976, pg.

310); the presumptive contrast is that when a world “dies” under conditionalisation,

probability mass is destroyed. (As we will see below, however, this framing is optional.)

Against this background, E&H approach partial imaging on the two-member parti-

tion {X,¬X} via the equation (EH):

P {X,¬X}(w) = (PX(w) · x) + (P¬X(w) · (1− x)) (EH)

where x is the new input probability of X. As the reader can verify, (EH) presents

partial imaging as a simple linear combination of PX(A) and P¬X(A) (for arbitrary A),

in the same way Jeffrey conditionalisation states the posterior as a linear combination

of PX(A) and P¬X(A).

2.1 Monotonicity

(EH) does seem natural. But as advertised, Eva & Hartmann find it unsatisfactory. To

see why, we need a definition:

A belief-revision method that changes {P (p), P (¬p)} to {P ′(p), P ′(¬p)}
(where P ′(p) > P (p)) is monotonic iff p ⊢ q entails P ′(q) ≥ P (q).

E&H endorse a Monotonicity principle (MC), according to which any belief revision

method—a fortiori, partial imaging—should be monotonic.

The basic intuition behind MC is simple. If q is a logical consequence of p,
then p constitutes a perfect guarantee of q’s truth. So whenever I temporarily
treat p as certain knowledge (as in full supposition) or increase my credence
in p (as in partial supposition), this should not lead me to decrease my
credence in q. Otherwise, I would have increased my credence in a perfect
guarantee of q’s truth whilst decreasing my credence in q itself. (Eva and
Hartmann, §1)

Jeffrey conditionalisation is monotonic in the following sense: if one Jeffrey condi-

tions in a way which raises the probability of p, and {p,¬p} is the input partition, then



for any logical consequence q of p, the probability of q is also increased. (Without the

italicized restriction, Jeffrey Conditionalisation is not monotonic. Example: begin with

a uniform distribution on {pq, pq̄, p̄q, p̄q̄} (as in Figure 1, below) and Jeffrey Condition

to reduce P (pq) from .25 to .1. This operation raises P (pq̄) from .25 to .3 but reduces

P (p) from .5 to .4, where p is a logical consequence of pq̄.3)

Why, intuitively, does the partial imaging method described in (EH) violate (MC)?

According to (EH), partial imaging in a way that increases the probability of X linearly

(but unequally) combines two revision methods: fully imaging P (·) on X—call this

the major component—and fully imaging P (·) on ¬X—call this the minor component.

Hence even if a world in X gains probability mass overall, it will wind up transferring

some of its probability mass away according to the minor component of the partial

imaging operation. When this happens—assuming the X-world images unequally—it

benefits some of X’s logical consequences at the expense of others.

The following simple example (a more concrete version of the counterexample to

(MC) discussed in E&H’s appendix) provides a demonstration. Suppose we have a

uniform probability measure P (·) over four worlds comprising two independent proposi-

tions p and q (top of Figure 1), and that we wish to partial-image in a way that increases

the probability of (p∧ q)—viz., {w1}—from .25 to .3. According to (EH), the way to do

this is to average P (p∧q)(·), weighted to degree 0.3, with P (¬(p∧q))(·), weighted to degree

0.7. Even though the probability of w1 strictly grows during the overall process, it will

matter for posterior probabilities overall what σ(w1, (¬(p∧ q))) is—that is, which world

w1 sees as the closest not-(p ∧ q) world.
3Thanks to Michael Nielsen for this simple example.
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Figure 1: In a prior probability space P (·) (top), blue arrows show how
¬(p ∧ q)-worlds image on (p ∧ q); red arrows show how (p ∧ q)-world(s)
image on ¬(p ∧ q). When P ′(p ∧ q) = .3, (EH) calculates the posterior
as a weighted linear combination (.3, .7) of P (p∧q)(·) (bottom left) and
P¬(p∧q)(·) (bottom right).

Suppose that σ(w1,¬(p∧q)) = {w2}.4 What results is a transformation on which q =

{w1, w3} loses probability; world w3 loses more mass than w1 gains. w3 loses probability

in the major component of the linear combination, of course, because w3 /∈ (p ∧ q); but

w3 also loses probability in the minor component of the linear combination—imaging on

¬(p ∧ q)—because w3 /∈ σ(w1,¬(p ∧ q)). q, however, is obviously a logical consequence

of (p ∧ q). P ′(q) = .3 + .7(.25) < .5, and so (MC) is violated.
4I use general imaging here, so σ(w1,¬(p ∧ q)) is a set (albeit a singleton set, {w2}). In the case

of sharp imaging, we can simply say instead that σ(w1,¬(p ∧ q)) = w2. It follows that when imaging
is sharp and partial imaging is calculated using (EH), violations of (MC) are not merely possible but
guaranteed.



3 A Different Rule

Suppose we accept E&H’s argument: Monotonicity governs all forms of (total and

partial) update. We would then want a new monotonic rule for partial imaging to

replace (EH). The rule I introduce below, (6), is also a way of creating a graded notion

of imaging on {X} from the model-theoretic tools already introduced. However, unlike

(EH), it avoids incorporating imaging on ¬X. Intuitively, the new rule ensures that no

world which grows in probability overall (like w1) will transfer away any of its mass.

Suppose, as before, that we want to partially update the space from Figure 1 on

{(p ∧ q),¬(p ∧ q)} from prior P (p ∧ q) = .25 to posterior P ′(p ∧ q) = .3. Since w1

is the unique pq-image of each of {w2, w3, w4}, this can be accomplished by importing

.05/3 = .016̄ units of probability mass from each. This means each world in the ¬(p∧q)-

region retains (.25− .016̄)/.25 = 14/15 of its mass.

w1 w2

w3 w4

.016̄

.016̄
.016̄

q q̄

p

p̄

Figure 2: simple example of partial sharp imaging

That’s it; we don’t need to image the space on ¬(p∧ q) at all to satisfy the desider-

atum set by the new input prior.

In the general case, assume P ′(X) > P (X). Let Z =
(
P ′(¬X)
P (¬X)

)
(this was the role

played by 14/15 in the foregoing example). In the sharp case, we can write a partial

version of (3) as follows:

P ′(w) =


Z · P (w) if w ∈ X

P (w) +
∑

w′∈X|w=σ(w′,X) (1− Z) · P (w′) if w ∈ X

(5)



This example showcases partial imaging on the input partition {X,¬X}, in a model

where imaging is sharp.

Our final step is to upgrade this operation to the case of general, rather than sharp,

imaging. Things do not change much: we make recourse to Tv,X(·), the function which

further specifies what proportion of v’s lost mass goes to which worlds. Once again, let

Z =
(
P ′(¬X)
P (¬X)

)
.

P ′(w) =


Z · P (w) if w ∈ X

P (w) +
∑

v∈X|w∈σ(v,X) (1− Z) · P (v) · Tv,X(w) if w ∈ X

(6)

Figure 3 shows such a case, where probability mass transfer is split between w0 and

w1:

w0

w1 w2

w3 w4

q q̄

p

p̄

Figure 3: a simple example of general (or blurred) imaging, where P ′(p ∧ q) = .3.

The T(·) apparatus doesn’t make any difference to the calculation in the example

above, though of course it will to any further proposition r which partitions w0 from

w1.



3.1 An n-ary Partition

The general version of imaging on a partition involves an input of the form {X1, . . . , Xn},

rather than the binary {X, X̄}. Our new input probabilities are P ′(X1), . . . , P
′(Xn).5

Two natural questions arise: first, how can (6) be extended to such n-ary input parti-

tions? Second, how should Monotonicity be formulated in such cases?

To extend (6) to the n-ary case, we identify which Xn are s.t. P ′(Xn) ≤ P (Xn).

Let us arrange them thus: {L1, . . . Lk, G1, . . . Gm} are such that P ′(Li) < P (Li) (“L”

for “losers”) and P ′(Gj) ≥ P (Gj) (“G” for “gainers”). I will use L for
∪

i Li and G for∪
j Gj .

We want probability mass transfer to be determined by the “smaller” posteriors

P ′(Li) and the probability mass transfer information σ(x,G) for x ∈ L, as we did in

the simple example above. Each Li in the shrinking part of the partition shrinks by

a different amount (determined by the input probabilities); each Gj gains a certain

proportion of the mass drawn from L, in the simplest way necessary for each cell to

reach the posteriors enumerated in the input probabilities. So we write (6) in a way

which is indexed to the partition-cell Li (or Gi) of which w is a member.

P ′(w) =


P ′(Li)
P (Li)

· P (w) if w ∈ Li

P (w) + λi

[∑
v∈L|w∈σ(v,Gi)

(
1− P ′(L)

P (L)

)
· P (v) · Tv,Gi(w)

]
if w ∈ Gi

(6′)

where, for arbitrary w ∈ Gi, λi is the proportion of the transferred mass that achieves

the target posterior. Routine algebra gives the following value for λi:

λi :=
P ′(Gi)− P (Gi)

P (L)− P ′(L)

The analogue of monotonicity for this n-ary case is that any logical consequence of

G gains mass:
5Here it is worth noting the n-ary form of Jeffrey Conditioning. Where P ′(X) is the new input

probability for X ∈ {X}: P ′(w) =
∑

X∈{X} P (w | X)P ′(X).



A belief-revision method that changes {P (L1), . . . P (Lk), P (G1), . . . P (Gm)}
to {P ′(L1), . . . P

′(Lk), P
′(G1), . . . P

′(Gm)} is n-ary monotonic iff: G ⊢ q
entails P ′(q) ≥ P (q).

Note that no stronger conclusion can be drawn for arbitrary Gi ⊊ G. To see why,

suppose that P (·) is an indifferent prior over {p1, p2, p3} and that P ′(p1) = .65, P ′(p2) =

.34, and P ′(p3) = .01. Hence G = p1 ∪ p2 and L = p3. Note that Gi ⊢ q does not entail

P ′(q) ≥ P (q): Gi = p2 and q = (p2 ∨ p3) is a counterexample. Here we see that what

matters about E&H’s original statement of monotonicity is not (only) that proposition

p gains mass, but that it is the union of all propositions in the input partition that

gain mass (viz., p = G). As noted in §2.1, this is also the only sense in which partial

conditioning is monotonic. So (6′) is as true to E&H’s intuitive defense of Monotonicity

as it can be, subject to the requirement that conditioning itself also satisfies their

desideratum.

3.2 Proving Monotonicity

Recall that (partially) imaging {p, p̄} to {P ′(p), P ′(p̄)} (where P ′(p) > P (p)) is mono-

tonic iff p ⊢ q entails P ′(q) ≥ P (q). It’s now easy to show:

Observation 1 (Monotonicity). Binary Partial Imaging, as defined by (6), is mono-

tonic.

Proof. Suppose p ⊢ q. Then q = p ∪ r for some (possibly empty) r ⊆ p̄. P ′(q) =

P ′(p) + P ′(r). It is clear that P ′(p) ≥ P (p), since for any w ∈ p, P ′(w) = P (w) + α,

where α is a positive number.6 If r is empty, then p = q, and we are done.

If r is nonempty: let v be an arbitrary world in r. By (6), P ′(v) = Z · P (v), where

Z ∈ [0, 1]. The remainder of v’s probability mass is distributed across worlds u ∈ p.

Hence it remains in the union of r and p. Hence it remains in q.

Observation 2 (n-ary Monotonicity). n-ary Partial Imaging, as defined by (6′), is

n-ary monotonic.
6To wit, α is:

∑
v∈X|w∈σ(v,X) (1− Z) · P (v) · Tv,X(w), by (6).



Proof. Similar to (binary) monotonicity. Suppose G ⊢ q. Then q = G ∪ r for some

(possibly empty) r ⊆ L. P ′(q) = P ′(p) + P ′(r). By stipulation, P ′(G) ≥ P (G). If r is

empty, then G = q, and we are done.

If r is nonempty: let v be an arbitrary world in r and let Li be the cell of L such that

v ∈ Li. By (6′), P ′(v) = Z · P (v), where Z ∈ [0, 1]. The remainder of v’s probability

mass is distributed across worlds u ∈ G. Hence it remains in the union of r and G.

Hence it remains in q.

3.3 The naturalness of this generalisation

For the remainder of this paper I return to discussing the case of imaging on a binary

partition, since this is more directly in dialogue with E&H. We rejected (EH) (repeated

below) as a form of partial imaging:

P {X,¬X}(w) = (PX(w) · x) + (P¬X(w) · (1− x))

in favor of (6) (repeated):

P {X,¬X}(w) =


Z · P (w) if w ∈ X

P (w) +
∑

v∈X|w∈σ(v,X) (1− Z) · P (v) · Tv,X(w) if w ∈ X

Is (6) uglier and less natural than (EH)?

I think it is not, if one looks at things “imaging-first”. To see this, let us invert

precedent and write (1) total and (2) partial (Jeffrey) conditioning as imaging. We’ll

do these in order.

We begin with total conditioning. We want to preserve the probability ratios be-

tween worlds in p when we “image” on p. We proceed by taking it in general that for

any proposition X, and world v ∈ X, when P (·) is condition-imaged on X, then



σ(v,X) = {u ∈ X : P (u) > 0} (i)

Next, we set values Tv,X(w) for v ∈ X, w ∈ X as functions of P (w) and P (X), but

not v. In particular,

Tv,X(w) =
P (w)

P (X)
(ii)

According to (i), when a ¬X-world v loses probability under partial imaging to raise

P (X), it sees every live X-world as equally “similar” or “close”. According to (ii), how

much of v’s lost mass gets transferred to an individual X-world w is determined simply

by how much of w already contributes to the probability of X in the prior.

Officially, then, we should relativise the selection function σ(·) and the transfer

function T(·) to a further parameter (the prior, P (·)). For any proposition X, and world

v ∈ X,

σP (v,X) = {u ∈ X : P (u) > 0} (i′)

TP
v,X(w) =

P (w)

P (X)
(ii′)

(i) and (ii) make it possible to write (non-partial) conditioning as follows:

P ′(w) = P ′
X(w) =


0 if w ∈ X

P (w) +
∑

v∈X P (v) · P (w)
P (X) if w ∈ X

(7)

So, combining (6) and (7), we can write Jeffrey Conditioning (to directly increase

P (X)) as:

P ′(w) =


Z · P (w) if w ∈ X

P (w) +
∑

v∈X (1− Z) · P (v) · P (w)
P (X) if w ∈ X

(8)



…where, once again, Z =
(
P ′(¬X)
P (¬X)

)
. I submit that (6) is not unnatural at all, when it’s

seen in comparison to (8). In sum:

conditioning imaging
total (7) (4)

partial (8) (6)

Table 2: Four quandrants of belief revision.

Or, in full glory:7

test test test conditioning test test test test test imaging
total 0 0

(on X) P (w) +
∑

v∈X|w∈σP (v,X) ·P (v) · P (w)
P (X)

P (w) +
∑

v∈X|w∈σP (v,X) P (v) · TP
v,X(w)

partial Z · P (w) Z · P (w)

(on {X,¬X}) P (w) +
∑

v∈X|w∈σP (v,X) (1− Z) · P (v) · P (w)
P (X)

P (w) +
∑

v∈X|w∈σP (v,X) (1− Z) · P (v) · TP
v,X(w)

Table 3: Posteriors P ′(w) where Z := P ′(¬X)
P (¬X)

(top line: for w ∈ X; bottom line: for w ∈ X)

3.4 Application to cases

Imaging is rarely defended as a general method of belief revision. But imaging is often

taken to reflect how causal beliefs factor into particular instances of rational decision-

making. Perhaps the best-known examples are Medical Newcomb problems (Briggs,

2010; Ahmed, 2014, ch. 4), such as Coffee Lesion, below.

Coffee Lesion. Otto has a choice between drinking coffee (coffee) or refrain-
ing (no coffee). He believes that coffee consumption is positively correlated
with cancer, but only because there is a common cause—a brain lesion (le-
sion) that tends to cause both. Otto enjoys coffee more than no coffee.

7Here I skate over sharp imaging to present only the blurred (more general) case. With sharp
imaging, we would have this: imaging

����
HHHH

sharp
�� HH

total

(3)

partial

7

blurred
�� HH

total

(4)

partial

(6)



w1 w2

w3 w4

coffee no coffee

¬lesion

lesion

Figure 4: Red arrows image no coffee to coffee worlds; blue arrows image
coffee to no coffee worlds.

In a decision problem like this, it is routine to use imaging to calculate the Causal

Expected Utility (CEU) of the available pure options coffee and no coffee. The de-

pendency hypotheses lesion and ¬lesion provide a partition of the sample space within

which, as Lewis noted, worlds “image alike” (diagram arrows). Causal Decision Theory

thus contrasts with (naïve) Evidential Decision Theory (EDT), which uses conditional,

rather than imaged, probabilities to calculate expected utility.8,9

CEU(A) =
∑
S

PA(S) · U(A ∧ S) (9)

Familiarly, in this case, CEU(coffee) > CEU(no coffee), reflecting the popular

(“causalist”) intuition that Otto should go ahead and drink his coffee. We can also

use (9) to estimate the (causal) expected utility of the status quo, ⊤:

CEU(⊤) =
∑
A

P (A) · CEU(A) =
∑
A

P (A)
∑
S

PA(S) · U(A ∧ S) (10)

In a case like this, CEU(⊤) will be sensitive to Otto’s act-probabilities P (A) : A ∈

{coffee, no coffee}. These act-probabilities may lie strictly between 0 and 1: for example,

Otto might consider drinking coffee to be the rational choice, but be too lazy to procure
8In particular, the EDTer uses the following formula for Evidential Expected Utility (EEU):

EEU(A) =
∑

S PA(S) · U(A ∧ S). The difference with equation (9) is in the substitution of PA(S)
for PA(S).

9I say naïve evidential decision theory because some evidential decision theorists have argued that
PA(S) = PA(S) when all a reflective agent’s available evidence is taken into account. For this move,
see e.g. Eells (1982)’s “Tickle Defense”.



any.

It is here that we can bring partial imaging onstage. Suppose we are in a case where

partial supposition alters Otto’s probabilities in coffee and no coffee without taking him

all the way to certainty in either. We should be able to apply (6) to calculate the CEU

of the new status quo. If partial imaging gives us a new posterior P ′(·) = P {A}(·), it is

routine to extend (10) as follows:

CEU(⊤) =
∑
A

P ′(A) · CEU(A) =
∑
A

P (A)
∑
S

P ′(S) · U(A ∧ S) (11)

If, for example, Otto uses partial imaging to move from indifference over {no coffee,

coffee} to {.2, .8}, he will see CEU(⊤) increase.10 From a CDT point of view, this

seems like the right result.

To see how the the monotonicity of (6)—reasoning through E&H’s “perfect guarantee”—

works in a Medical Newcomb context, though, it will be helpful add a third option.

Soda Lesion. Serafina is debating whether to drink water, to drink Mountain
Dew, or to drink coconut LaCroix. Serafina presently prefers Mountain Dew
to LaCroix to water.

¬lesion lesion
LaCroix +9 (w1) -11 (w2)

Mountain Dew +10 (w3) -10 (w4)
no soda 0 (w5) -20 (w6)

Serafina believes that Mountain Dew consumption causally contributes to
lesion formation, and hence to cancer. She believes LaCroix consumption,
on the other hand, is merely an unfortunate sign of an underlying tendency
to develop the lesion.

10Suppose we use the following payoff table:

¬lesion lesion
no coffee 0 -20

coffee +10 -10

and that initially, P (coffee) = P (no coffee) = P (lesion) = P (¬lesion) = 0.5, and let the posterior P ′(·)
partially imaged on {no coffee, coffee} be P ′(no coffee) = .2 and P ′(coffee) = .8, as described. A
(trivial) application of (6) gives us posteriors P ′(¬lesion) = P ′(lesion) = .5. Hence while CEU(⊤) =
.5[.5(0) + .5(−20)] + .5[.5(10) + .5(−10)] = −5 by Equation (11), the posterior CEU(⊤) is .2[.5(0) +
.5(−20)] + .8[.5(10) + .5(−10)] = −2 by Equation (11).



An agent committed to naive EDT will avoid LaCroix in Soda Lesion, via a line of

reasoning similar to a dominance argument: LaCroix brings just as much bad news as

Mountain Dew, but less pleasure! A CDTer rejects this line of reasoning, because her

subjective outlook distinguishes between bad news and bad causal effects.11 More to

the point, from the CDTer’s perspective, LaCroix has a lot going for it: it brings almost

as much pleasure as Mountain Dew, with none of the bad causal consequences. The

case for LaCroix is much like the case for coffee in Coffee Lesion.

w1 w2 w3

w4 w5

w6

LaCroix Mountain Dew ¬soda

¬lesion

lesion

Figure 5: Red arrows image LaCroix worlds to ¬LaCroix worlds.

In terms of imaging, what is important here can be illustrated in a model where (i)

σ(w1, Mountain Dew) ∋ w5, and (ii) σ(w3, LaCroix) ̸∋ w4. (i) reflects the fact that, in

a world where Serafina drinks coconut LaCroix and is lesion-free, she might have gotten

the lesion if she had not had LaCroix: for if she had not had LaCroix, she might have

had Mountain Dew, and that might have been enough to cause a lesion. The selection
11Indeed, a non-akratic CDTer will have soda of some kind, for LaCroix dominates no soda relative

to a partition of dependency hypotheses (Lewis, 1981):

¬lesion lesion (lesion �� Mountain Dew)
LaCroix +9 -11 +9

Mountain Dew +10 -10 -10
no soda 0 -20 0

The dependency hypotheses in these columns capture the same information stated by the selection
function in Figures 5-6.



w1 w2 w3

w4 w5

w6

LaCroix Mountain Dew ¬soda

¬lesion

lesion

Figure 6: Blue arrows image ¬LaCroix worlds to LaCroix worlds.

function on (w1, Mountain Dew) thus “crosses the border” between ¬lesion and lesion

(viz., into the colored region from the white region.) (ii) (in Figure 6) reflects the

fact that, in a world where Serafina drinks no soda and is lesion-free, it’s not possible

that she might have gotten the lesion if she had switched to coconut LaCroix. For by

hypothesis, LaCroix does not causally contribute to lesions.

Here, soda (= {LaCroix, Mountain Dew}) is a logical consequence of LaCroix. So

Monotonicity entails that partially imaging on {LaCroix, ¬(LaCroix)}—in a way that

increases the former—should (weakly) increase the probability of soda. A rational agent

who “simply” becomes more confident in LaCroix via a process of partial imaging thus

becomes more confident in soda.

This seems correct. For example, in light of the “a lot going for it” argument in

the latter case, Serafina might increase her confidence that she will drink LaCroix (say,

from indifference)—but not all the way to certainty. (Like Otto, she could be too lazy

to go to the store). As we saw, Monotonicity thus entails that Serafina’s confidence that

she will have soda (weakly) increases. (6) also entails that the causal expected utility

of the status quo also will weakly increase, via a dynamic like the one we saw in Coffee

Lesion.

As we would expect, this contrasts with the (naive) Evidential Decision Theorist’s



point of view. For the EDTer, partial update {.8, .2} on {LaCroix, ¬(LaCroix)} will

induce a drop in expected utility. After all, for the EDTer, a direct increase in the

probability of LaCroix is (via the Montonicity of Jeffrey conditioning) a strict increase

in the probability of bad news.

4 Conclusion

I am not the first person to consider whether imaging is a form of conditioning, or

vice-versa.

Thinking of imaging as a form of conditioning is attractive because we might want to

reduce, or ground, the ontological commitments of the extra-Bayesian structure in σ and

T . The reverse point of view—thinking of conditioning as a special case of imaging—is

attractive for the obverse reason: whereas imaging requires extra structure, a probability

space alone fixes conditioning kinematics.

The suggestion to frame conditioning as a degenerate case of extra imaging structure

has surfaced multiple times in the literature, usually in the context of unifications of

different forms of causal decision theory (Pearl, 2000, pg. 73; Joyce op. cit., pg. 149;

Gärdenfors (1982) credits Isaac Levi with a similar suggestion, discussed below.) To

this consideration, we can now add the one advanced in the present paper: by looking at

conditioning as a special case of imaging, we arrive at a better general characterization of

the relationship between total and partial supposition—a distinction which crosscuts the

imaging-conditioning divide. I have tried (briefly) to make the case that the (monotonic)

notion of partial imaging this makes available (in (6)) is useful and appropriate in natural

extensions of familiar decision problems.

It is notable that, in order to frame conditioning as imaging, we had to relativise

both imaging’s characteristic functions σ(·) and T(·), as well as the weighting coefficient

Z in partial cases, to the prior P (·)—to relativise it, roughly speaking, to the agent’s

evidence. From a formal perspective, this is an obvious move—at least, it appears to

have been obvious to Levi, Pearl, and Joyce. In closing, though, I want to flag two



reasons that such relativisation has been rejected as a mistaken.

The first worry is that relativising the apparatus of imaging to one’s evidence con-

flates objective and subjective components that are, for decision-theoretic applications,

best kept separate.12 The apparatus of imaging, the thought goes, should track the ob-

jective closeness of possible worlds—worlds which e.g. share our laws of nature, or our

fixed past (Lewis, 1979). Objective closeness is independent of subjective information

gain. My information might, for example, rule out some nearby possibility in which I

am $1,000 poorer than I actually am. This should not change my opinion that in the

objectively closest possible world where some counterfactual antecedent A is true, I am

$1,000 poorer than I actually am. This fact is essential to explaining the rationality of

my choice in Newcomb’s problem—at least, from a CDTer’s point of view.

I think this is broadly correct. But it is worth noting that this tidy dichotomy is

under threat anyway—for example, from a number of deterministic counterexamples to

CDT (Ahmed, 2013; Ahmed, 2014, Ch. 5). Recent CDT-oriented responses to these

counterexamples push back on the neat conceptual divide between the objective and

the subjective (Solomon, 2019; Williamson & Sandgren, forthcoming, §5). This includes

treating worlds as “ruled out” by information in two ways—one which is consistent with

such worlds remaining “live” to the selection function, and one which is not. This is to

say that, at least on one interpretation, modal closeness is subjective.

The second objection to relativising imaging to evidence appears to be more tech-

nical. According to Gärdenfors (1982)’s influential discussion, imaging is characterised

by a property called Linearity, while conditionalisation is characterised by a property

called Conservativity. A belief-revision method is linear iff, if ∃P1, P2 in the model s.t.

P (B) = αP1(B) + (1− α)P2(B),

then [where P+A is P belief-revised on A]:

P+A(B) = αP+A
1 (B) + (1− α)P+A

2 (B).
12See Bacon (2022). Such a sentiment is also articulated in unpublished work by Rush Stewart and

Michael Nielsen.



A belief-revision method is conservative iff, for all sentences A and B, if P (A) > 0

and P (B) = 1, then P+A(B) = 1 Gärdenfors (1982, pgs. 753, 754). Gärdenfors

proves that linearity and conservativity impose incompatible constraints on all reason-

ably rich belief-change models. However, Gärdenfors also briefly discusses—with credit

to Isaac Levi—what he calls conservative imaging, which is essentially the relativisation

of σ(w,X) to the support of P (·) I advocated above (pg. 756). Conservative imag-

ing sacrifices linearity, so Gärdenfors pronounces it “not a form of imaging” (pg. 757,

emphasis in original).

Gärdenfors’s terminological precedent aside, why must imaging be linear? The chief

attraction of linearity is to facilitate a smooth (some would say naïve) semantics for an

object-language conditional ‘�’, as follows:

P (A� B) = PA(B) (12)

Seen in this light, Gärdenfors’s proof of the incompatibility of Linearity and Conserva-

tivity pairs naturally with Lewis (1976)’s Triviality result, which established the nonex-

istence of a (linear) object-language conditional for (conservative) conditionalisation.13

Both results point to the same forced choice between Gärdenfors’s two properties (Table

4):

Revision method Naive bridge principle to Conservative Linear Triviality Result?
object-language conditional

conditioning (PA(·)) PA(B) = P (A → B) 3 7 Lewis (1976)
imaging (PA(·)) PA(B) = P (A� B) 7 3 Schultheis (forthcoming)

Table 4: Bridge principles and the
incompatibility of Conservativity and Linearity.

In this paper I have not, of course, considered object-language conditionals at any

length. But in implicitly advocating for the rejection of linearity in the characteri-
13In particular, the assumption is that P (A� B) = PA(B) and that the semantic value of ⌜A� B⌝

is a proposition, which depends for its semantic value only on w. If this is right, then P ′(A� B) =
P ′A(B) for any probability function P ′ in the model, not just for the prior. This assumption, in the
indicative mode (viz., with → for � and PA for PA), is the basis for Lewis (1976)’s Triviality Proof.



zation of (partial) imaging, I have also implicitly advocated foreclosing on the naive

semantic bridge principle in (12). My position is hence of a piece with two trends in

“post-Triviality” work on the semantics of indicative conditionals. The first exploits

attractive bridge principles between imaging and conditional chances, due to Skyrms

(1981), to derive triviality results for the counterfactual conditional (Schultheis, forth-

coming; see also Williams, 2012 and Moss, 2013). The upshot is that the Skyrmsian

link to conditional chance restores conservativity—at the cost of linearity. The sec-

ond trend concerns the probabilities of indicative conditionals and how best to respond

to Triviality (Bacon, 2015; Goldstein, 2020; Goldstein & Santorio, 2021). These writ-

ers block Lewis’s proof by relativising the semantics of the indicative conditional to

an information-state-like parameter, a move which both sacrifices conservativity and

prefigures the relativisation advocated for here.
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