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Appendix

Syntax.

We define two languages, L and Lnonm (the nonmodal fragment of L). Let At be a set of propositional
letters a1, a2... The members of At are well-formed sentences of L and Lnonm. If φ, ψ are well-formed
sentences of Lnonm, so too are ¬φ, (φ ∧ ψ), and (φ or ψ). If φ, ψ are well-formed sentences of L, so
too are ¬φ, (φ ∧ ψ), (φ or ψ), !φ, Oφ, and Mφ.

Semantics.

A model M is a triple ⟨W,R, I⟩ where W a nonempty set of possible worlds, R is a binary relation
on W , and I is a function from the elements of At to P(W ) (“the interpretation function”).

Given a model M and a set of worlds s ⊆ W , we define the standard intension of φ, V (φ), on
Lnonm as follows:

V (a) = I(a)

V (¬φ) = W \ V (φ)

V (φ ∧ ψ) = V (φ) ∩ V (ψ)

V (φ or ψ) = V (φ) ∪ V (ψ)

For arbitrary φ ∈ Lnonm and s, the standard intension of φ in s, Vs(φ), is (s ∩ V (φ)).

Given some M , a set s ⊆ W , a world w ∈ s, and a pair of sentences φ1 and φ2 in Lnonm, the
alternative set in s of w, φ1, and φ2 is

Alts(w,φ1,φ2) =

⎧
⎪⎨

⎪⎩

{φi} if w ∈ Vs(φi) and Vs(φi) ! Vs(φj).

{φi} if w ∈ Vs(φi) \ Vs(φj).

{φi,φj} otherwise.

for i, j ∈ {1, 2}.1

A point of evaluation in M is a triple ⟨s, x, y⟩ such that s is a serial subset of W (∀w ∈ s, ∃w′ ∈ s
such that wRw′), and a pair of worlds y, x ∈ s.

Truth at a Point of Evaluation. For any model M and point of evaluation ⟨s, y, x⟩ in M , proposi-
tional letter a, wffs φ,ψ:

s, y, x " a iff x ∈ Vs(a)
s, y, x " ¬φ iff s, y, x " φ
s, y, x " (φ ∧ ψ) iff s, y, x " φ and s, y, x " ψ
s, y, x " (φ or ψ) iff ∃α : α ∈ Alts(y,φ,ψ) and s, y, x " α
s, y, x " !φ iff ∃w ∈ s: s, w,w " φ
s, y, x " Oφ iff ∀x′ ∈ s: if xRx′, then s, y, x′ " φ
s, y, x " Mφ iff ∃v ∈ s such that (i) s, y, v " φ and (ii) ∃v′ : vRv′ and s, y, v′ " φ.

1Our gloss on the first case for Alts takes its inspiration from an entailment principle for truthmakers: if p entails
q, then any truthmaker for p is a truthmaker for q [Armstrong, 2004, pg. 10]. Here, we hold that in a world w where
both φi and φj are true, but φi strictly entails φj , φi is a sufficient lone truthmaker for the disjunction at w, since it is
sufficient to entail φj .
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Consequence.

There are four notions of consequence available in our system, corresponding to some choice of local
or global, and diagonal or 2-dimensional.

global local
diagonal "1 "2

2-dimensional "3 "4

For all sets of sentences Π,

• Π "1 ψ iff for any M , any s ⊆ W such that R is serial in s:
(if ∀w ∈ s : s, w,w " φ for all φ ∈ Π, then ∀w ∈ s : s, w,w " ψ)

• Π "2 ψ iff for any M , any s ⊆ W such that R is serial in s:
∀w ∈ s : (if s, w,w " φ for all φ ∈ Π, then s, w,w " ψ)

• Π "3 ψ iff for any M , any s ⊆ W such that R is serial in s:
(if ∀y, x ∈ s : s, y, x " φ for all φ ∈ Π, then ∀w ∈ s : s, y, x " ψ)

• Π "4 ψ iff for any M , any s ⊆ W such that R is serial in s:
∀y, x ∈ s: (if s, y, x " φ for all φ ∈ Π, then s, y, x " ψ)

We are interested primarily in the preservation of diagonal settled-truth, which corresponds to "1:
φ is settled-true at s iff ∀w ∈ s: s, w,w " φ.
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Lemma 1 (Nondisjunctive Stability). For any disjunction-free φ ∈ Lnonm, any s ⊆ W , and x, y, y′ ∈ s:
s, y, x " φ iff s, y′, x " φ iff x ∈ Vs(φ).

Proof. By induction on the complexity of φ. We recall that, by the definition of a well-formed point
of evaluation, y, x ∈ s. Hence for any s, x: x ∈ I(a) iff x ∈ (s ∩ I(a)) iff x ∈ Vs(a).

Atomic case. s, y, x " a iff x ∈ Vs(a) iff s, y′, x " a.

Conjunction. For the Inductive Hypothesis, assume

s, y, x " φ iff s, y′, x " φ iff x ∈ Vs(φ)

s, y, x " ψ iff s, y′, x " ψ iff x ∈ Vs(ψ)

Hence

s, y, x " φ ∧ ψ iff s, y, x " φ and s, y, x " ψ
iff s, y′, x " φ and s, y′, x " ψ
iff s, y′, x " φ ∧ ψ
iff s ∈ (Vs(φ) ∩ Vs(ψ))

iff s ∈ Vs(φ ∧ ψ)

Negation. For the Inductive Hypothesis, assume

s, y, x " φ iff s, y′, x " φ iff x ∈ Vs(φ)

Hence

s, y, x " ¬φ iff s, y, x " φ
iff s, y′, x " φ
iff s, y′, x " ¬φ.
iff x /∈ Vs(φ). Because x ∈ s:

iff x ∈ s \ Vs(φ).

iff x ∈ Vs(¬φ)

For the next two Theorems, the following definitions will be useful:

Definition φ diagonally entails ψ at s iff ∀w ∈ s, if s, w,w " φ, then s, w,w " ψ.

Definition φ,ψ are diagonally mutually contingent at s iff neither diagonally entails the other:
∃w,w′ ∈ s such that s, w,w " (φ ∧ ¬ψ) and s, w′, w′ " (ψ ∧ ¬φ).

Theorem 1 (Free Choice). For any disjunction-free φ,ψ ∈ Lnonm: M(φ or ψ),!φ,!ψ "1 Mφ ∧Mψ.

Proof. Suppose M(φ or ψ), !φ, and !ψ are settled-true at s. Thus, ∃w ∈ s such that s, w,w " φ and
∃w′ ∈ s such that s, w′, w′ " ψ. There are two relevant possibilities: either φ and ψ are diagonally
mutually contingent at s (Case 1), or one diagonally entails the other in s (Case 2).
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Case 1. φ and ψ are diagonally mutually contingent at s. That is, for some wφ, wψ ∈ s, we have
s, wφ, wφ " φ ∧ ¬ψ and s, wψ, wψ " ψ ∧ ¬φ. In this case, it suffices to show that Mφ is settled-true at
s, since the proof that Mψ is settled-true is symmetric.

Since M(φ or ψ) is settled-true at s, and since wφ ∈ s, it follows that s, wφ, wφ " M(φ or ψ), i.e., for
some v ∈ s:

s, wφ, v " (φ or ψ) (i)

∃v′ ∈ s : vRv′ and s, wφ, v
′ " (φ or ψ) (ii)

Because wφ ∈ Vs(φ) \ Vs(ψ), Alts(wφ,φ,ψ) = {φ}. Hence for any x ∈ s: s, wφ, x " (φ or ψ) just in case
s, wφ, x " φ. Hence for some v ∈ s:

s, wφ, v " φ (i′)

∃v′ ∈ s : vRv′ and s, wφ, v
′ " φ (ii′)

Thus, by Lemma 1, for arbitrary w ∈ s, ∃v ∈ s such that

s, w, v " φ (i′′)

∃v′ ∈ s : vRv′ and s, w, v′ " φ (ii′′)

By the semantic clause for M , it follows that Mφ is settled-true at s.

Case 2. Here, !φ, and !ψ are settled-true at s, and either φ diagonally entails ψ at s (that is,
Vs(φ) ⊆ Vs(ψ)) or vice-versa; without loss of generality, let it be the case that Vs(φ) ⊆ Vs(ψ). Because
!φ is settled-true at s, we know ∃wφ ∈ s : s, wφ, wφ " φ and hence that wφ ∈ Vs(φ).

Since M(φ or ψ) is settled-true at s, and since wφ ∈ s, it follows that s, wφ, wφ " M(φ or ψ), i.e., for
some v ∈ s:

s, wφ, v " (φ or ψ) (i)

∃v′ ∈ s : vRv′ and s, wφ, v
′ " (φ or ψ) (ii)

But since, for any w: s, wφ, w " (φ or ψ) iff ∃α ∈ Alts(wφ,φ,ψ) such that s, wφ, w " α, and since
Alts(wφ,φ,ψ) = {φ}, (i) and (ii) imply:

s, wφ, v " φ (i′)

∃v′ ∈ s : vRv′ and s, wφ, v
′ " φ (ii′)

Since φ is nondisjunctive, it follows from Lemma 1 that if s, wφ, v " φ then for arbitrary w ∈ s:
s, w, v " φ. Hence for any w ∈ s, ∃v ∈ s such that

s, v, w " φ (i′′)

∃v′ ∈ s : vRv′ and s, v′, w " φ (ii′′)

Hence Mφ is settled-true at s. Furthermore, since ψ is a (local) diagonal consequence of φ and φ, ψ
are non-disjunctive, it follows from Lemma 1 that ψ is a (local) consequence of φ even at non-diagonal
points. Hence from (i′′), (ii′′) we may conclude:

4



s, v, w " ψ (i′′′)

∃v′ ∈ s : vRv′ and s, v′, w " ψ (ii′′′)

Hence Mψ is settled-true at s. Hence Mφ ∧Mψ is settled-true at s.
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Theorem 2 (Ross+). For any disjunction-free φ,ψ ∈ Lnonm: O(φ or ψ),!φ,!ψ "1 Mφ ∧Mψ.

Note: because there are extensions of our system in which Oφ "1 Mφ, I present the proof of Theorem
2 independently from of the proof of Theorem 1. For discussion, see the Excursus below the proof of
Theorem 3.

Proof. Once again, there are two relevant possibilities: either φ and ψ are diagonally mutually contin-
gent at s (Case 1), or one diagonally entails the other in s (Case 2).

Case 1. If φ and ψ are diagonally mutually contingent at s, then ∃wφ ∈ s : s, wφ, wφ " φ and
s, wφ, wφ " ψ. Likewise, ∃wψ ∈ s : s, wψ, wψ " ψ and s, wψ, wψ " φ. In this case, it suffices to show
that Mφ is settled-true at s, since the proof that Mψ is settled-true is symmetric.

Since O(φ or ψ) is settled-true at s, and since wφ ∈ s, it follows that s, wφ, wφ " O(φ or ψ). Hence
∀w ∈ s, if wφRw, then s, wφ, w " (φ or ψ). But since s, wφ, w " (φ or ψ) iff ∃α : α ∈ Alts(wφ,φ,ψ)
and s, wφ, w " α, and since Alts(wφ,φ,ψ) = {φ}, this implies that ∀w ∈ s, if wφRw, then s, wφ, w " φ.
By assumption,

s, wφ, wφ " φ (i)

from the fact that s, wφ, wφ " O(φ or ψ) and the Seriality of R in s, we conclude

∃v′ ∈ s : wφRv′ and s, wφ, v
′ " φ (ii)

It follows from Lemma 1 that for arbitrary w ∈ s, there is some v ∈ s (viz, wφ) such that

s, w, v " φ (i′)

∃v′ ∈ s : vRv′ and s, w, v′ " φ (ii′)

Hence Mφ is settled-true at s. The proof of Mψ is the symmetric, with wψ/wφ. Putting both proofs
together, Mφ ∧Mψ is settled-true at s.

Case 2. Here, either φ diagonally entails ψ at s (that is, Vs(φ) ⊆ Vs(ψ)) or vice-versa; without
loss of generality, let it be the case that Vs(φ) ⊆ Vs(ψ). Because !φ is settled-true at s, we know
∃wφ ∈ s : s, wφ, wφ " φ, and so wφ ∈ Vs(φ). Note that although φ ∈ Vs(φ) and ψ ∈ Vs(ψ),
Alt(w,φ,ψ) = {φ}.

Our proof of Mφ is the same as above. For the proof of Mψ, consider wφ. Because Vs(φ) ⊆ Vs(ψ) and
φ, ψ are non-disjunctive, it follows that

s, wφ, wφ " ψ (i)

Since O(φ or ψ) is settled-true at s, it follows that s, wφ, wφ " O(φ or ψ). Hence ∀v′ such that wφRv′,
s, wφ, w " φ, and hence (by Lemma 1) that ∀v′ such that wφRv′, v′ ∈ Vs(φ). Since Vs(φ) ⊆ Vs(ψ), it
follows that ∀v′ such that wφRv′, v′ ∈ Vs(ψ). By seriality of R,

∃v′ ∈ s such that wφRv′ and s, wφ, v
′ " ψ. (ii)

Hence, ∃v ∈ s (viz., wφ) such that
s, wφ, v " ψ (i′)
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∃v′ ∈ s such that vRv′ and s, wφ, v
′ " ψ. (ii′)

Hence by Lemma 1, for arbitrary w ∈ s, ∃v ∈ s (viz., wφ) such that

s, w, v " ψ (i′′)

∃v′ ∈ s such that vRv′ and s, w, v′ " ψ. (ii′′)

Hence Mψ is settled-true at s. Putting both proofs together, Mφ ∧Mψ is settled-true at s.
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Theorem 3 (Diagonal Classicality). For any s ⊆ W,w ∈ s, and φ ∈ Lnonm: s, w,w " φ iff w ∈ Vs(φ).

Proof. By induction. The atomic, negation, and conjunction cases are straightforward.

• Atomic. s, w,w " p iff w ∈ Vs(p).

• Negation. Assume s, w,w " φ iff w ∈ Vs(φ). Now, s, w,w " ¬φ iff s, w,w " φ iff (since w ∈ s)
w /∈ Vs(φ) iff w ∈ (s \ Vs(φ)).

• Conjunction. Assume (i) s, w,w " φ iff w ∈ Vs(φ), and (ii) s, w,w " ψ iff w ∈ Vs(ψ). Now,
s, w,w " (φ ∧ ψ) iff s, w,w," φ and s, w,w " ψ iff (Ind Hyp) w ∈ Vs(φ) and w ∈ Vs(ψ) iff
w ∈ (Vs(φ) ∩ Vs(ψ)).

• Disjunction. We need to show: s, w,w " (φ or ψ) iff w ∈ (Vs(φ) ∪ Vs(ψ)). Assume for the
Inductive Hypothesis that (i) s, w,w " φ iff w ∈ Vs(φ), and (ii) s, w,w " ψ iff w ∈ Vs(ψ).

(⇒) If s, w,w " (φ or ψ), then w ∈ (Vs(φ) ∪ Vs(ψ)).

If s, w,w " (φ or ψ), then ∃α: α ∈ Alts(w,φ,ψ) and s, w,w " α. For any such s, w, and α:
α ∈ {φ,ψ}. Hence if s, w,w " α, then s, w,w " φ or s, w,w " ψ. Hence (by Inductive Hypothe-
sis) w ∈ Vs(φ) or w ∈ Vs(ψ). Hence w ∈ (Vs(φ) ∪ Vs(ψ)).

(⇐) If w ∈ (Vs(φ) ∪ Vs(ψ)), then s, w,w " (φ or ψ).

If w ∈ (Vs(φ) ∪ Vs(ψ)), then w ∈ Vs(φ) or w ∈ Vs(ψ). Without loss of generality, assume
w ∈ Vs(φ). Examining the Alt function, only two cases are relevant: either (Case 1) (i)
Vs(φ) # Vs(ψ) holds and (ii) w ∈ Vs(ψ) holds, or (Case 2) not both (i) and (ii).

Case 1. If (i) and (ii) both hold, then Alts(w,φ,ψ) = {ψ}. Hence s, w,w " (φ or ψ) iff s, w,w " ψ.
Since w ∈ Vs(ψ) in this case, the Inductive Hypothesis guarantees that s, w,w " (φ or ψ).

Case 2. If (i) and (ii) do not both hold, then Alts(w,φ,ψ) = {φ} or {φ,ψ}. In the former
case, s, w,w " (φ or ψ) iff s, w,w " φ, and in the latter case, s, w,w " (φ or ψ) iff (s, w,w " φ
or s, w,w " ψ). Since w ∈ Vs(φ), in either case the Inductive Hypothesis guarantees that
s, w,w " (φ or ψ).

Lemma 2 (Classicality). For any φ ∈ Lnonm,"1 φ iff φ is a theorem of classical logic.
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Excursus: The Inference from ‘Ought’ to ‘May’

In this semantics, Oφ "1 Mφ when we consider nontrivially two-dimensional φ. For example, in the
following “Nasty” case:

p̄

w1

p

w2

s " O(¬A), but s " M(¬A)
where s, y, x " A iff x = y

Atomic sentences are currently defined so that sentence-letters like A are not possible (since I is a
function from the elements of At to P(W ), rather than a function from At to W ×W .) The special
sentence-letter A simply dramatizes the problem and its solution; for a counterexample that is available
in our current semantics, consider φ = ¬(p or ¬p).

But ‘Ought’ entails ‘May’ if we assume that R is both serial and shift-reflexive: R is shift-reflexive
in a classic Kripke frame ⟨W,R, I⟩ iff ∀w, v ∈ W, (wRv → vRv) (shift-reflexivity is a constraint on
R that many deontic logicians have found independently plausible; see the discussion in [McNamara,
2010] of the move from SDL (‘standard deontic logic’) to SDL+.) Shift-reflexivity would rule out this
counterexample.

We show: our modal entries, plus the assumption of Shift Reflexivity at a local level, allow us to derive
‘May’ from ‘Ought’.

Proof. Suppose s " Oφ. Then ∀w ∈ s: s, w,w " Oφ. Hence (lexicon) ∀w ∈ s, ∀w′ such that wRw′:
s, w,w′ " φ. By seriality, ∀w ∈ s, ∃w′ such that wRw′ and s, w,w′ " φ. By Shift-Reflexivity, ∀w ∈ s,
∃w′ such that w′Rw′ and s, w,w′ " φ. For an arbitrary such w ∈ s, consider the corresponding w′ such
that w′Rw′ and s, w,w′ " φ. For any such w ∈ s, ∃v (viz., w′) such that:

(i) s, w, v " φ.
(ii) ∃v′ (viz., v itself) such that vRv′ and s, w, v′ " φ.

Hence ∀w ∈ s, there is some such v. Hence ∀w ∈ s: s, w,w " Mφ. Hence Oφ "1 Mφ.

Conceptual gloss: assuming shift reflexivity of R corresponds to making the assumption that if e.g. p
is permissible, then it remains permissible if you do it. This is one-half of the concept of ratifiability
at the local level. The other half is the converse: if p is permissible given that you do it (and doing it
is possible), then it is permissible tout court.

Given that R is serial in s, shift reflexivity also allows us a version of the von Wright-Kanger axiom.
The von Wright Kanger axiom formulates the thought that it is always possible to meet moral demands.
A typical formulation is

(von Wright-Kanger) ♦⊤

However, formulating this in our language suggests

(von Wright-Kanger 2) M⊤

collapses into a simpler, deontic selection function view.
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Shift-Reflexivity and Duality

Giving up the duality of the modals may seem like a sacrifice,2 but the principle is not sacrosanct. As
a statement about the relationship between the modals, it should be supported by intuitions about
the independent nature of each. Intuitively, obligation is restrictive; it speaks only about what is
inescapable. By contrast, permissibility is opportunistic: if there is some way of acting which will
make p admissible, then one may do p in that way. Moreover, the way in which we gave up duality is
principled: it fails because our notion of act-dependent permissibility is doubly existentially quantified,
while our act-dependent notion of obligation is doubly universally quantified. In the absence of act-
dependence, the first layer of quantification becomes trivial, and the principle is restored.

Indeed, the relationship between the modals can, and should, be considered from other direction. To
do this is to ask whether, from the perspective of ratifiability as our enshrined notion of permissibility,
our entry for ‘Ought’ still makes sense. To put it loosely: if we begin with the claim that ‘May’ is
not a diamond, does it still makes sense to say that ‘Ought’ is a box? It does. From the perspective
of ratifiability, Ought(p) is true at s when p’s ratifiability is immune to act-dependent revision: if, no
matter which future standpoint s′ ⊆ s you come to occupy, p is ratifiable from the point of view of s′

and ¬p is not, then p is surely obligatory from your present standpoint s. In some decision contexts
there may not be any such (nontrivial) p; all propositions may be deontically instable. But if there is
such a p, then you ought to do it.3
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