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Abstract

In this paper, we axiomatize the deontic logic in Fusco 2015, which uses
a Stalnaker-inspired account of diagonal acceptance and a two-dimensional
account of disjunction to treat Ross’s Paradox and the Puzzle of Free Choice
Permission. On this account, disjunction-involving validities are a priori
rather than necessary. We show how to axiomatize two-dimensional disjunc-
tion so that the introduction/elimination rules for boolean disjunciton can
be viewed as one-dimensional projections of more general two-dimensional
rules. These completeness results help make explicit the restrictions Fusco’s
account must place on free-choice inferences. They are also of independent
interest, as they raise difficult questions about how to ‘lift’ a Kripke frame for
a one-dimensional modal logic into two dimensions.

1 Introduction
The validity of or -introduction seems to be a basic rule of natural language
disjunction: from 𝜙, one may infer 𝜙 or 𝜓.1

Or-Intro. 𝜙 ( (𝜙 or 𝜓)
Yet the rule apparently fails in the scope of deontic modals. For example, the
nonentailment known as Ross’s Puzzle illustrates the failure of Or-Intro in the
scope of ‘ought’ (henceforth 𝑂) (Ross, 1941):

Ross’s Puzzle. 𝑂𝜙 * 𝑂(𝜙 or 𝜓)
As an illustration, observe that (1-a), famously, does not seem to entail (1-b):

1Throughout, we use ‘(’ for the intuitive entailment. Subscripted turnstiles will denote entail-
ment relative to a specific semantics.
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(1) a. You ought to post the letter.
b. You ought to post the letter or burn it.

Similarly, Or-Intro does not seem valid in the scope of ‘may’ (henceforth 𝑀). For
instance, (2-a) does not seem to entail (2-b):

(2) a. You may post the letter.
b. You may post the letter or burn it.

An attractive explanation for this is that (2-b) seems to entail that both disjuncts
are permissible—an observation known as Free Choice Permission (Kamp, 1973):

FC. 𝑀(𝜙 or 𝜓) ( 𝑀𝜙 ^ 𝑀𝜓

For example, the inference from (3-a) to (3-b) and (3-c) seems valid:

(3) a. You may have an apple or a pear.
b. You may have an apple.
c. You may have a pear.

This would explain why (2-a) doesn’t entail (2-b): if it did, then (2-a) would entail
you may burn the letter, which is not the case!

Two caveats about FC. First, while (3-a) seems to entail (3-b) and (3-c), it re-
soundingly fails to entail (4):

(4) You may have an apple and a pear.

This additional datum is sometimes called ‘exclusivity’.2

EX. 𝑀(𝜙 or 𝜓) * 𝑀(𝜙 ^ 𝜓)
Second, the FC inference is licensed for both disjuncts only when it’s possible for
the agent to make each disjunct true without the other. For instance, suppose you
are told you may take an apple or a pear, but it turns out (say, for practical reasons)
that you can only take the pear if you also take the apple. In that case, it seems
as though you are not, in general, permitted to take the pear. In light of this, the
form of free choice we will be interested in makes explicit that it’s possible for each
disjunct to be true without the other:3

2See, inter alia, Simons (2005), Fox (2007), and Barker (2010).
3Empirical data suggests these two caveats are connected, especially in the case where

there are more than two disjuncts. In the simplest case, suppose that for the disjunction
⌜𝑝1 or 𝑝2 or . . . or 𝑝𝑛⌝ it holds that ◻(𝑝𝑖 Ą 𝑝𝑖+1). Then it is impossible to make 𝑝1 true with-
out making ∧

𝑖 𝑝𝑖 true. In this case, FC, but not FCP, would hold that 𝑀(𝑝1 or . . . or 𝑝𝑛) entails
𝑀(∧𝑖 𝑝𝑖), contrary to EX. Recent experimental work suggests this entailment is not licensed in
these cases (Fusco, ms).
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FCP. 𝑀(𝜙 or 𝜓),◇(𝜙 ^ ¬𝜓),◇(𝜓 ^ ¬𝜙) ( 𝑀𝜙 ^ 𝑀𝜓

It is well-known that Ross’s Puzzle and FCP cause trouble for standard deontic
logic, which interprets 𝑂 and 𝑀 as normal modal operators. Normal operators
are monotonic: if△ is a normal modal operator and 𝜙 entails 𝜓, then△𝜙 entails
△𝜓. This means that standard deontic logic predicts that (i) 𝑂𝜙 entails 𝑂(𝜙 or 𝜓)
and 𝑀𝜙 entails 𝑀(𝜙 or 𝜓), and (ii) if FCP holds, then 𝑀𝜙 entails 𝑀𝜓 for any 𝜙
and 𝜓. These predictions reveal a deep problem at the foundations of standard
deontic logic.

Ross’s Puzzle is problematic for standard deontic logic because of two key
principles it validates:

Necessitation. If ( 𝜙, then ( 𝑂𝜙

K Axiom. ( 𝑂(𝜙 Ñ 𝜓) Ñ (𝑂𝜙 Ñ 𝑂𝜓)
From these principles, we can derive 𝑂𝜙 Ñ 𝑂(𝜙 or 𝜓). Here is the proof:

1. 𝜙 Ñ (𝜙 or 𝜓) tautology
2. 𝑂(𝜙 Ñ (𝜙 or 𝜓)) Necessitation, 1
3. 𝑂(𝜙 Ñ (𝜙 or 𝜓)) Ñ (𝑂𝜙 Ñ 𝑂(𝜙 or 𝜓)) K Axiom
4. 𝑂𝜙 Ñ 𝑂(𝜙 or 𝜓) modus ponens, 2, 3

Thus, if one wishes to capture Ross’s Puzzle in a deontic logic, one seems com-
mitted either to rejecting Necessitation or rejecting the K Axiom. But which is the
culprit, and why?

Fusco (2015) suggests that the culprit is Necessitation. To see why, let’s consider
why the inference from (1-a) to (1-b) seems bad. One reason it seems bad to say
you ought to post the letter or burn it is that this seems to imply that both disjuncts
are permissible. The following inference pattern—Free Choice Obligation—seems
intuitively valid:

FCO. 𝑂(𝜙 or 𝜓) ( 𝑀𝜙 ^ 𝑀𝜓

Thus, to illustrate, (5-a) seems to entail (5-b) and (5-c):

(5) a. You ought to either do the dishes or take out the trash.
b. You may do the dishes.
c. You may take out the trash.

Moreover, FCO follows from FCP together with a relatively plausible principle
relating ‘ought’ and ‘may’:

Ought Implies May. 𝑂𝜙 ( 𝑀𝜙
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But if FCO holds, then already Necessitation is enough to wreak havoc: Ne-
cessitation plus FCO entail that everything is permissible:4

1. (𝜙 or ¬𝜙) tautology
2. 𝑂(𝜙 or ¬𝜙) Necessitation, 1
3. 𝑀𝜙 ^ 𝑀¬𝜙 FCO, 2

This provides one motivation for thinking that the way forward for deontic logic
is to reject Necessitation.

Two-dimensional semantics offers an elegant way of developing Necessitation-
free modal logics: while (6-a) below is “necessary” in the sense of being knowable
a priori, it is not metaphysically necessary, in that things could have been dif-
ferent from how they actually are (Crossley and Humberstone, 1977; Davies and
Humberstone, 1980; Kaplan, 1989).

(6) a. Everything is as it actually is.
b. Necessarily, everything is as it actually is.

Perhaps, then, the key to solving these puzzles is to move to a two-dimensional
framework. This is the strategy pursued by Fusco (2015).

The main idea behind Fusco’s semantics is to introduce a two-dimensional entry
for ‘ or ’ on which it behaves classically in unembedded contexts but nonclassically
under the scope of deontic modals. However, while this semantics captures Ross’s
Puzzle and FCP, there still remains a further question regarding what the complete
logic of her semantics is.

In this paper, we answer this question. We show how to axiomatize the
logic of two-dimensional disjunction so that the introduction/elimination rules
for boolean disjunction can be viewed as one-dimensional projections of more
general rules. In addition, we prove several soundness and completeness results
for two-dimensional deontic logics, which help make explicit the background
assumptions and scope of Fusco’s account.

We take these completeness results to be of independent interest, as they raise
interesting questions about how to “lift” a Kripke frame for a one-dimensional
modal logic into two dimensions. These issues arise especially in the context of the
picture of communication from Stalnaker 1978, where diagonalization plays a key
role. In particular, two-dimensionalizing deontic logic in a Stalnakerian framework
seems to require an interesting and substantive metaphysical assumption about
the nature of deontic accessibility, viz., that which worlds are deontically accessible
does not vary from world-to-world.5

4Note it does not help here to restrict FCO to 𝜙 and 𝜓 that are possible; that still would imply
that for any contingent 𝜙 is permissible.

5This bears resemblance to a point made by Hawthorne and Magidor (2009) about epistemic
accessibility.
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Here is a brief outline. In § 2, we review the philosophical motivations, formal
semantics, and logic of standard two-dimensionalism. In § 3, we present Fusco’s
two-dimensional semantics for disjunction and articulate different ways to axiom-
atize the logic of disjunction prior to adding deontic modals. In § 4, we extend
two-dimensionalism with deontic modals and show how doing so can capture
both Ross’s Puzzle and FCP. The details of the completeness proofs are given in
the technical appendices.

2 A Crash Course in Two-Dimensionalism

2.1 Two Notions of Necessity and Two Notions of Consequence
In two-dimensional semantics, the truth of a well-formed formula 𝜙 in a model
ℳ is relativized to two parameters. The first, the world-as-actual, plays a role in
determining the propositional content expressed by 𝜙.6 The second, the world of
evaluation, plays the role of the world in which that proposition’s truth-value is
interrogated; it is also the only parameter shifted by the standard modal operators
◻ and ◇. Two basic two-dimensional operators, @ (usually glossed as ‘actually’)
and :, can be added alongside ◻ and ◇:7

(◻) 𝑦, 𝑥 , ◻𝜙 iff for all 𝑥1: 𝑦, 𝑥1 , 𝜙

(@) 𝑦, 𝑥 , @𝜙 iff 𝑦, 𝑦 , 𝜙

(:) 𝑦, 𝑥 , :𝜙 iff 𝑥, 𝑥 , 𝜙

One motivation for moving to a two-dimensional framework is the fact that
we can regiment several philosophically important distinctions in a unified way
(Davies and Humberstone, 1980). To illustrate, recall (6-a) and (6-b) from § 1:

(6) a. Everything is as it actually is.
b. Necessarily, everything is as it actually is.

We observed that while (6-a) seems to be a logical truth, it does not seem to be
necessarily true, i.e., (6-b) seems false. The problem is that we cannot accept
(6-a) as a logical truth in a normal modal logic while denying (6-b). Let ’ stand

6We follow the literature here in defining a proposition to be a function from worlds to truth-
values.

7Technically, the satisfaction relation , should always be relativized to a model ℳ. In our
informal exposition, however, we will often drop mention of the model for readability.
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for ⌜Everything is as it actually is⌝.8 In the two-dimensional framework, we can
analyze this sentence as follows:9

(’) 𝑦, 𝑥 ,’ iff 𝑦 = 𝑥

Then we have the following argument for (6-b):

1. ’ is a logical truth

2. Necessitation holds, i.e., if 𝜙 is a logical truth, then so is ◻𝜙.

3. ◻ ’ is a logical truth.

If we want to deny the conclusion, we need to reject one of the premises. But
which?

Two-dimensionalism provides us with an elegant answer: which premise you
should give up depends on your notion of consequence. First, let us say an
argument is strictly valid just in case it preserves truth over all points of evaluation,
i.e., all pairs of worlds ⟨𝑦, 𝑥⟩. Strict validity captures the thought that a valid
argument is meant to preserve truth in every possible scenario. On this notion
of logical consequence, Necessitation still holds: if 𝜙 is true at every point of
evaluation ⟨𝑦, 𝑥⟩, then so is ◻𝜙. However, the first premise of the argument for
(6-b) is false, since there are non-diagonal points where the 𝑥- and 𝑦-coordinates
do not agree on what is the case—that is, whatever world is actual, it still could
have been that things were different from how they actually are. Since ’ only
holds on diagonal points, it is not a strict logical truth.

However, ’ does hold on all diagonal points. An argument is diagonally valid
just in case it preserves truth over all diagonal points, i.e., all pairs of the form
⟨𝑧, 𝑧⟩. This captures the thought that a valid argument is meant to preserve truth
no matter which world is actual. On this notion of logical consequence, the first
premise of the argument for (6-b) is true, but the second premise is false—e.g., ’

is diagonally valid, but ◻ ’ is not. In general, whenever something is diagonally
but not strictly valid, we’ll have a counterexample to Necessitation.

Quantification over diagonal points also allows one to represent the difference
between metaphysical necessity and a priority in a two-dimensional framework. This
is just the difference between 𝜙’s holding everywhere along the 𝑥-axis and 𝜙’s
being diagonally valid.10 That is, fixing 𝑦 as the actual world, 𝜙 is metaphysically

8For similar sentential constants, compare (for “floating” actuality) ‘I’ from Humberstone (2004,
pg. 54), and (for “anchored” actuality) the constant ‘𝑛’ in Meredith and Prior (1965). In a language
with propositional quantifiers and @, we could express ’ as ∀𝑝(@𝑝 Ñ 𝑝).

9These truth conditions ignore complications that arise when 𝑥 and 𝑦 are qualitative duplicate
worlds. We set this complication aside.

10See Davies and Humberstone 1980; Kaplan 1989. For classic examples where metaphysical
necessity comes apart from a priority, see Kripke 1980; Kaplan 1989.

6



necessary iff it holds at ⟨𝑦, 𝑥⟩ for all 𝑥, whereas 𝜙 is a priori iff it holds at ⟨𝑧, 𝑧⟩ for
all 𝑧.11 The latter notion can be represented by introducing a new defined operator
for a priori truth: 𝐴𝜙 B ◻:𝜙. It is easy to check that 𝐴 has the following truth
conditions:

(𝐴) 𝑦, 𝑥 , 𝐴𝜙 iff for all 𝑧: 𝑧, 𝑧 , 𝜙.

While ’ (‘everything is as it actually is’) is not metaphysically necessary, it is a
priori: that is, 𝐴 ’ is a strict logical truth. In fact, even though Necessitation does
not hold for diagonal validity, the following variant of Necessitation does:

A Priorization. If ( 𝜙, then ( 𝐴𝜙.

That is: if 𝜙 is a diagonal logical truth, then so is 𝐴𝜙. Strict validity is a formaliza-
tion of necessary entailment, while diagonal validity is a formalization of a priori
entailment.

2.2 Stalnaker’s Two Dimensionalism
Another classic application of two-dimensionalism, which will provide us with a
metalanguage (rather than object language) gloss on 𝐴, comes from Stalnaker 1978.
There, Stalnaker uses two-dimensionalism to model conversations in which speak-
ers informatively assert sentences whose propositional content is under threat from
indeterminacy. To clarify the problem, he introduces the notion of a context set: a
set of possibile worlds left open by what is accepted in common by the interlocutors
of a conversation. Conversational update on an assertion of 𝜙 is a quasi-Bayesian
procedure which aims to eliminate from the context set any worlds which are
incompatible with 𝜙’s content.

Suppose, however, that it is unknown—or perhaps, in the case of the open
future, even metaphysically indeterminate—which world is actual. Then there will
be cases in which it is unknown or indeterminate what the content of an assertion of
𝜙 is, and thus unclear which worlds should be “thrown out” of the context set if the
assertion is to be accepted. Stalnaker’s flagship example involves the word ‘you’ in
the asserted sentence ⌜You are a fool⌝ (pg. 81). If it is unknown, or indeterminate,
who the addressee of the context is, it will be unknown, or indeterminate, which
person is being claimed to be a fool, and so it will be unknown or indeterminate
which update is being proposed.

Following Stalnaker, we can visualize the situation using two-dimensional ma-
trices. In these matrices, the rows represent the world-as-actual (𝑦-coordinate)—a
role which contributes to determining the proposition expressed by a sentence

11This idea can be found, inter alia, in van Fraassen (1977) and Lewis (1973, §2.8), who in turn
cites Kamp (1971) and Vlach (1973). See also Chalmers (2004).
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(e.g., determining the referent of ‘you’)—while the columns represent the world
of evaluation (𝑥-coordinate), where the content, once determined, is assessed. If
the content of a sentence depends on which world is actual, then the rows of the
matrix will not be identical.

So to use Stalnaker’s example, suppose the speaker is addressing O’Leary in
worlds 𝑖 and 𝑗 and to Daniels in world 𝑘, and moreover O’Leary is a fool in worlds
𝑖 and 𝑘 but not in world 𝑗, whereas Daniels is a fool only in 𝑗. In that case, we can
represent the distribution of truth values of ⌜You are a fool⌝ as in Figure 1. For
instance, the cell on row 𝑖 and column 𝑗 contains the truth value of ⌜You are a fool⌝
at the point ⟨𝑖 , 𝑗⟩, which is true iff the person that the speaker is addressing in world
𝑖 is a fool in world 𝑗. Since at world 𝑖, the speaker is addressing O’Leary, and since
O’Leary is not a fool at world 𝑗, ⌜You are a fool⌝ is false at ⟨𝑖 , 𝑗⟩.

𝑖 𝑗 𝑘
𝑖 T F T
𝑗 T F T
𝑘 F T F

⌜You are a fool⌝

Figure 1: A two-dimensional matrix for ⌜You are a fool⌝ (Stalnaker, 1978, pg. 81).

Which worlds need to be thrown out of the context set upon accepting an assertion
of ⌜You are a fool⌝ depends on which world is actual: if 𝑖 or 𝑗 is actual, we throw
out 𝑗; if 𝑘 is actual, we throw out 𝑖 and 𝑘. But—to reiterate the problem Stalnaker is
raising—which world is actual is exactly what is either unknown or indeterminate
in context (op. cit., pg. 90).

In such a predicament, Stalnaker proposes that a sentence 𝜙 can be rationally
(re)interpreted as :𝜙. As Stalnaker puts it, this move, called diagonalization,
interprets 𝜙 as something like “what 𝜙 says is true”, where “what 𝜙 says” is the
proposition expressed by 𝜙 given a world as actual (pg. 82).12 This is visualized in
Figure 2. Diagonalization restores a uniformity condition to matrices: the same
proposition is expressed relative to each candidate for actuality.13 In a scenario
illustrated by Figure 1, updating the context set with the diagonalized assertion
amounts to eliminating worlds 𝑗 and 𝑘 from the context set.

12For a suggestion that diagonalization can also occur in the scope of attitude verbs like ‘believes’,
see Stalnaker (1981).

13In the literature, Hawthorne and Magidor (2009) object that diagonalization does not restore
uniformity unless certain tendentious conditions on knowledge are met: namely, that the same
worlds horizontally accessible on each row. We bracket this concern here, particularly because our
discussion is applicable to nonepistemic as well as epistemic indeterminacy.
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𝑖 𝑗 𝑘
𝑖 T F T
𝑗 T F T
𝑘 F T F

⌜You are a fool⌝

𝑖 𝑗 𝑘
𝑖 T F F
𝑗 T F F
𝑘 T F F

⌜:You are a fool⌝

Figure 2: Visualizing diagonalization using matrices.

Stalnaker’s theory of assertion reveals a further distinction in the notion of
logical consequence worth highlighting. In § 2.1, we introduced a classical notion
of consequence, which defines validity in terms of preservation of truth: an argu-
ment is valid in this sense if the conclusion is true at any point of evaluation where
the premises are true. But there is also an informational notion of consequence,
which defines validity in terms of preservation of acceptance. An argument is valid
in this sense if the conclusion is accepted at any context set where the premises
are accepted.14 In a static one-dimensional framework, acceptance can be mod-
eled as global truth, i.e., truth relative to every world in a context set. Thus, Γ
informationally entails 𝜙 whenever ◻Γ B {◻𝛾 | 𝛾 P Γ} classically entails ◻𝜙.15

Γ classically entails 𝜙 B ∀𝑥 : (𝑥 , Γ ñ 𝑥 , 𝜙)
Γ informationally entails 𝜙 B (∀𝑥 : 𝑥 , Γ) ñ (∀𝑥 : 𝑥 , 𝜙)

But what about diagonalization? In Stalnaker’s two-dimensional framework,
diagonalization may occur before acceptance into the common ground.16 Hence
there is a strict-diagonal distinction to be had at the level of informational conse-
quence as well as classical consequence. Informational strict consequence can be
glossed like this: no matter which world is actual, if the content of the premises
were accepted, so would the content of the conclusion. Stated in terms of classi-
cal strict entailment: Γ informationally strictly entails 𝜙 whenever ◻Γ classically
strictly entails ◻𝜙. Informational diagonal consequence, by contrast, can be
glossed like this: if the diagonalized content of the premises are accepted, then

14For more on this notion, see Stalnaker 1975’s notion of reasonable inference, as well as, inter
alia, Veltman 1996; Yalcin 2007; Bledin 2015.

15The difference between classical and informational consequence mirrors the distinction be-
tween local and global consequence that one finds in the literature on modal logic (Blackburn et al.,
2002). For unarticulated ‘boxlike’ modalities in natural language, it is worth noting Kratzer’s
influential proposal that bare indicative conditionals contain a covert necessity operator in the
consequent Kratzer (1981, 1986).

16Indeed, Heim (2004, §9) suggests always diagonalizing, noting that diagonalization is super-
fluous if uniformity is already satisfied.
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so is the diagonalized content of the conclusion. Stated in terms of classical strict
entailment: Γ informationally diagonally entails 𝜙 whenever ◻:Γ B {◻:𝛾 | 𝛾 P Γ}
classically strictly entails ◻:𝜙.

Because 𝐴 B ◻: can be seen as a priority of the relevant, contextually-situated
kind, we will also call informational diagonal consequence a priori consequence,
which we will write as ‘▷’. This notion of consequence matches more closely with
the preservation of acceptance in Stalnaker’s framework. Moreover, it is a priori
consequence which will be key to both validating FCP and blocking Ross’s Puzzle
on Fusco’s semantics: it is a notion of consequence that is just weak enough to
validate the former but not the latter.

Thus, we have four notions of consequence—varying along two dimensions,
strict vs. diagonal and classical vs. informational—illustrated in Figure 3.17 A
priori consequence occupies the lower right-hand side of the relevant space of
possibilities.

classical informational
strict Γ ( 𝜙 ◻Γ ( ◻𝜙

diagonal :Γ ( :𝜙 ◻:Γ ( ◻:𝜙

Γ ▷ 𝜙

Figure 3: Different notions of consequence summarized.

2.3 Axiomatization of Two-Dimensional Semantics
One of our primary goals in this paper is to give an axiomatization of Fusco’s two-
dimensional extension of deontic logic. So we should first review axiomatizations
for ordinary two-dimensional logic before extending them with deontic modals.
We give axiomatizations of classical strict consequence, as the other notions of
consequence can be defined in terms of classical strict consequence using : and ◻
(as in Figure 3).

17Note that in the two-dimensional setting, informational strict consequence does not align neatly
with global strict consequence. Global consequence is usually defined in terms of points of evalu-
ation: an argument is globally valid if its conclusion holds at every point of evaluation whenever
its premises hold at every point of evaluation. Stated in terms of classical (i.e., local) strict en-
tailment: Γ globally strictly entails 𝜙 whenever ◻:◻Γ B {◻:◻𝛾 | 𝛾 P Γ} classically strictly entails
◻:◻𝜙. This is not the same as informational strict consequence, since the world-as-actual is held
fixed from premises to conclusion. Thus, informational strict consequence is stronger than global
strict consequence. On the other hand, informational diagonal consequence and global diagonal
consequence do coincide.
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Definition 1. Given a set Prop = {𝑝1, 𝑝2, 𝑝3, . . . } of proposition letters, the basic
two-dimensional language ℒ2D is defined recursively in Backus-Naur form as
follows:

𝜙 F Prop | ¬𝜙 | (𝜙 ^ 𝜙) | ◻𝜙 | @𝜙 | :𝜙.

◇, _, Ñ and Ø defined as usual; in particular, note that (𝜙 _ 𝜓) B ¬(¬𝜙 ^ ¬𝜓).
We also define 𝐴𝜙 (it is a priori that 𝜙) as ◻:𝜙.
Definition 2. A basic matrix frame is a Kripke frame ⟨𝑊 ˆ𝑊, 𝑅◻, 𝑅@, 𝑅:⟩, where
𝑊 ≠ ∅ and:

• ⟨𝑦, 𝑥⟩𝑅◻⟨𝑦1, 𝑥1⟩ iff 𝑦 = 𝑦1

• ⟨𝑦, 𝑥⟩𝑅@⟨𝑦1, 𝑥1⟩ iff 𝑦1 = 𝑥1 = 𝑦.

• ⟨𝑦, 𝑥⟩𝑅:⟨𝑦1, 𝑥1⟩ iff 𝑦1 = 𝑥1 = 𝑥.
Let M be the class of basic matrix frames. A basic matrix model is a pair of a basic
matrix frame ⟨𝑊 ˆ𝑊, 𝑅◻, 𝑅@, 𝑅:⟩ and a valuation function 𝑉 : Prop Ñ ℘(𝑊 ˆ𝑊).

We define the satisfaction relation , between a pointed matrix model ℳ , 𝑦, 𝑥
and a ℒ2D-formula 𝜙 in the usual manner for the Kripke semantics. Where Γ is
a set of formulas, we’ll write ℳ , 𝑦, 𝑥 , Γ to mean that ℳ , 𝑦, 𝑥 , 𝛾 for all 𝛾 P Γ.
Finally, we define classical strict consequence: where Γ is a set of ℒ2D-formulas
and 𝜙 is a ℒ2D-formula, Γ (2D 𝜙 iff for all pointed basic matrix models ℳ , 𝑦, 𝑥, if
ℳ , 𝑦, 𝑥 , Γ, then ℳ , 𝑦, 𝑥 , 𝜙.
Definition 3. Let 2D be the Hilbert-style proof system consisting of the following
axioms and rules: (i) all propositional tautologies as axioms; (ii) the rules of Modus
Ponens and Uniform Substitution; (iii) the K Axiom and Necessitation for each
primitive modal operator; and (iv) the following axioms:

(𝑇◻) ◻𝑝 Ñ 𝑝

(5◻) ◇𝑝 Ñ ◻◇𝑝

(@5◇) ◇@𝑝 Ñ @𝑝

(𝐺) ◻𝑝 Ñ @𝑝

(𝑅@) @𝑝 Ø ¬@¬𝑝

(𝑅:) :𝑝 Ø ¬:¬𝑝
(𝑋Ñ) :(𝑝 Ñ @𝑝)
(𝑌Ñ) @(𝑝 Ñ :𝑝)
(4𝐴) ◻:𝑝 Ñ ◻:◻:𝑝

(5𝐴) ◇:𝑝 Ñ ◻:◇:𝑝

We write Γ $2D 𝜙 if for some 𝛾1, . . . , 𝛾𝑛 P Γ, the formula (𝛾1 ^ ¨ ¨ ¨ ^ 𝛾𝑛) Ñ 𝜙 is
derivable in 2D.

The following is proven in Fusco forthcoming.
Theorem 1. 2D is sound and complete for classical strict consequence over M.
A priori consequence can then just be defined in terms of classical strict conse-
quence: Γ ▷2D 𝜙 iff for some 𝛾1, . . . , 𝛾𝑛 P Γ: $2D (𝐴𝛾1 ^ ¨ ¨ ¨ ^ 𝐴𝛾𝑛) Ñ 𝐴𝜙.
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2.4 Åqvist logic
The matrix semantics given above is more general than the usual presentation of
two-dimensionalism in at least one respect: we allow atomics to represent arbitrary
matrices like the one provided for ⌜You are a fool⌝, whose content varies with the
world-as-actual.

By contrast, according to one common strand of two-dimensionalism, valuation
functions interpret atomics as sets of worlds, not sets of pairs of worlds. This means
the truth of atomics never depends on the world-as-actual parameter. These
“standard” truth conditions build in the requirement that the atomics are reserved
for sentences that satisfy the Stalnakerian uniformity condition introduced in § 2.2,
i.e., that ⟨𝑦, 𝑥⟩ P 𝑉(𝑝) iff ⟨𝑦1, 𝑥⟩ P 𝑉(𝑝) for any 𝑥, 𝑦, 𝑦1. For these sentences,
necessity and a priority coincide.18

It is natural to ask how imposing this restriction on the valuations of atomics
affects the logic given in § 2.3. We call such logics Åqvist logics (Åqvist, 1973;
Segerberg, 1973). It turns out that their distinguishing axiom is (Å):

(Å) 𝛼 Ø :𝛼 for any atomic 𝛼 (Segerberg, 1973, pg. 95)

In terms of matrices, (Å) says that rows of the matrix of an atomic must be dupli-
cates, i.e., each column must either be a column of Ts or a column of Fs.

Definition 4. A matrix model ⟨𝑊 ˆ𝑊, 𝑅◻, 𝑅@, 𝑅:, 𝑉⟩ is Åqvist iff for all 𝑥, 𝑦, 𝑦1 P

𝑊 :

⟨𝑦, 𝑥⟩ P 𝑉(𝑝) ô ⟨𝑦1, 𝑥⟩ P 𝑉(𝑝).
Let MÅ be the class of Åqvist matrix models.

Note that we can define an “Åqvist operator” Å which applies to a formula 𝜙
iff 𝜙’s truth is insensitive to the world-as-actual parameter, i.e., iff it is interpreted
the same way on every row:

Å𝜙 B ◻:◻(𝜙 Ø :𝜙)
Then we could reformulate (Å) as the axiom schema Å𝛼 for any atomic 𝛼. The Å
operator turns out to be important for Fusco’s explanation of FCP, as the inference
only holds in her semantics for 𝜙 and 𝜓 that have this “uniformity” feature.

As Segerberg is at pains to emphasize, an Åqvist logic is not, in general, closed
under uniform substitution.19 Rather, it is closed only under substitution within

18One can compare here the PQTI sentences of Chalmers (2012).
19For discussion, see, inter alia, Smiley 1982; Holliday et al. 2013.
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the 1D fragment of the language.20 Thus, in order to axiomatize Åqvist logics, we
need to formulate proof systems that are not closed under Uniform Substitution,
but still allow Uniform Substitution when no appeal to (Å) has been made. This is
achieved as follows:

Definition 5. Let 2DÅ be the Hilbert-style proof system consisting of Modus Po-
nens, Necessitation for each primitive modal operator, (Å), and the axiom schema:

(2𝐷) 𝜙, where 𝜙 is a theorem of 2D.

In 2DÅ, we can appeal to Uniform substitution in deriving an ordinary theorem
of 2D. But once we start reasoning with the consequences of (Å), we are no longer
allowed to appeal to Uniform Substitution and must instead rely on the other rules
and axioms. The following is proven in Fusco forthcoming:

Theorem 2. 2DÅ is sound and complete for strict classical consequence over MÅ.

3 Two-Dimensional Disjunction

3.1 An Actuality-sensitive Semantics for Disjunction
We now return to Fusco’s strategy for solving the deontic puzzles sketched in § 1.
According to this two-dimensional strategy, what we need for Ross’s Puzzle and
FCP is a semantics for disjunction where Or-Intro is a priori, but not necessary. In
this section, we review Fusco’s proposal and explain how an axiomatization for the
basic two-dimensional language can be extended to include her two-dimensional
disjunction.

This semantics is motivated by Groenendĳk and Stokhof (1982) and Lewis
(1982)’s two-dimensional approach to “whether 𝑝 or 𝑞” attitude ascriptions, as in

(7) Bob knows [whether [𝑝 or 𝑞]].
(8) Bob doesn’t know [whether [𝑝 or 𝑞]].

The insight here is that (7) and (8) credit Bob with knowledge and ignorance,
respectively, of the actually true answer to the question ⌜𝑝, or 𝑞?⌝. According to

20This limitation on closure under substitution follows the spirit of, e.g., Williamson (2013),
who remarks that “the obvious rationale for insisting on . . . closure. . . under uniform substitution
in a propositional system is a reading of non-logical sentence letters as propositional variables”
(Williamson, 2013, pg. 76, emphasis added; see also Burgess, 1999, pg. 176). Similarly, in a 2D
framework Gregory (2001) remarks that “Good modal [arguments]—at least one variety—are ones
which are informally sound...[meaning that] for any interpretation of ℒ, the propositions assigned to
[the premises] entail the proposition assigned to [the conclusion] (op. cit., pg. 58, emphasis added).
This restriction on closure will exclude arbitrary dipropositions, like ’ and the (undiagonalized)
⌜You are a fool⌝, from the relevant standard of good argument.

13



Groenendĳk & Stokhof and Lewis, ⌜whether 𝑝 or 𝑞⌝ is a two-dimensional propo-
sitional concept, which expresses the proposition that 𝑝, if 𝑝 rather than 𝑞 is true
in the world-as-actual, and 𝑞, if 𝑞 rather than 𝑝 is true in the world-as-actual.
Thus a speaker of (7) or (8) can credit Bob with knowledge (or ignorance) of this
proposition, even if he himself does not know it.

Building off this, Fusco (2015) proposes we interpret bare disjunction along
similar lines: if 𝑝 but not 𝑞 is actually true, then 𝑝 or 𝑞 expresses the proposition
that 𝑝; and if 𝑞 but not 𝑝 is actually true, then 𝑝 or 𝑞 expresses the proposition that
𝑞. The key difference between the semantic entries for ⌜whether 𝑝 or 𝑞⌝ above and
Fusco’s semantics for 𝑝 or 𝑞 concerns the cases where either both disjuncts true
or neither is: in that case, for Fusco, 𝑝 or 𝑞 just expresses the ordinary boolean
disjunction 𝑝 _ 𝑞.21

We can state this semantics for or in terms of a simplified answerhood operator
(Dayal, 1996, 2016). This operator takes and world 𝑤 and disjuncts 𝜙 and 𝜓 as
arguments and outputs the true-in-𝑤 answers to the question of whether 𝜙 or 𝜓,
if there are any. Otherwise, it outputs both answers:

𝐴𝑛𝑠(𝑤, 𝜙𝑖 , 𝜙 𝑗) =
{
{𝜙𝑖} if 𝑤, 𝑤,, 𝜙𝑖 and 𝑤, 𝑤,. 𝜙 𝑗

{𝜙𝑖 , 𝜙 𝑗} otherwise.

The truth conditions for disjunction can then be given as follows:

( or ) 𝑦, 𝑥 ( (𝜙 or 𝜓) iff ∃𝛼 P 𝐴𝑛𝑠(𝑦, 𝜙,𝜓) : 𝑦, 𝑥 , 𝛼.

Figure 4 illustrates these truth conditions in matrix form. Notice that or
is, as Humberstone (2020, §4.7) puts it, a kind of two-dimensional isotope of
boolean _—that is, or and _ are equivalent along the diagonal. Thus, for diagonal
consequence, all the standard rules governing boolean disjunction hold of or . But
off the diagonal, or and _ come apart. For example, in Figure 4, 𝑤2, 𝑤3 . 𝑝 or 𝑞
even though 𝑤2, 𝑤3 , 𝑝.

On this picture of disjunction, 𝑝 or ¬𝑝 is like ’, in that it is an a priori truth that
cannot be necessitated. (Indeed, if there are only finitely many atomics 𝑝1, . . . , 𝑝𝑛
and all the rows of the truth table are represented by a unique world, then

21Groenendĳk & Stokhof’s entry presupposes that exactly one of {𝑝, 𝑞} is true in the actual world
(op. cit. pg. 184), leaving the proposition expressed by the disjunction undefined along the bottom
row of the matrix in Figure 4. Lewis’s entry (op. cit., pg. 52) would result in a matrix with F-F-F-F
along the same row. But—to preview how the semantics will work under deontic operators like
ought (𝑂)—this will give the wrong intuitive results for the sentences in Ross’s Puzzle and FCP.
For example, Lewis’s entry under 𝑂 would entail that (5-a) is equivalent to ⌜𝑂̂K⌝ in cases where a
lazy agent neither (actually) takes out the trash nor (actually) washes the dishes.

It is also worth noting the great deal of post-Groenendĳk and Stokhof 1982 work (not in a two-
dimensional tradition) on the general category of concealed questions into which (7) and (8) falls.
For developments in treating this class in inquisitive semantics, see, e.g., Roelofsen 2019.
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∧
𝑖(𝑝𝑖 or ¬𝑝𝑖) generates the same matrix as ’.) The feature of disjunction will

be responsible for nonclassical behavior in the scope of deontic modals (§ 4).

𝑤1 𝑤2 𝑤3 𝑤4

𝑤1 T T T F
𝑤2 T T F F
𝑤3 T F T F
𝑤4 T T T F

𝑝 or 𝑞

𝑤1 𝑤2 𝑤3 𝑤4

𝑤1 T T T F
𝑤2 T T T F
𝑤3 T T T F
𝑤4 T T T F

𝑝 _ 𝑞

Figure 4: Matrix for 𝑝 or 𝑞, compared with that of 𝑝 _ 𝑞, where 𝑤1 is an arbitrary
(𝑝 ^ 𝑞)-world, 𝑤2 is a (𝑝 ^¬𝑞)-world, 𝑤3 is a (¬𝑝 ^ 𝑞)-world, and 𝑤4 is a (¬𝑝 ^¬𝑞)-
world.

Note also that (𝜙 or 𝜓) will generally not be Åqvist, even if both 𝜙 and 𝜓 are.
Figure 5 shows how two-dimensional disjunction, like the @ operator itself, can
build non-Åqvist matrices out of the matrices for Åqvist atomics. The diagonals of
these matrices for disjunction reflect the classical profile of _: the more disjuncts
a classical disjunction has, the more states in a classical (viz., one-dimensional)
truth table it is true in.

3.2 Axiomatics
What is the logic of two-dimensional or like? While some classical inference
patterns governing _ (e.g., Or-Intro) are not strictly valid for or , some are. For
instance, the following principles are still classically strictly valid even with Fusco’s
two-dimensional or :

Idempotence. 𝜙 ( (𝜙 or 𝜙)
Commutativity. 𝜙 or 𝜓 ( 𝜓 or 𝜙

Associativity. 𝜙 or (𝜓 or 𝜒) ( (𝜙 or 𝜓) or 𝜒

Or-Elim. 𝜙 or 𝜓,¬𝜙 ( 𝜓

Thus, the logic for or is not entirely divorced from the logic of _ off the diagonal.
But it does raise the question of which principles, exactly, are the result of projecting
from the two-dimensional or into a one-dimensional framework. Thus we turn
to the question of how to axiomatize our basic two-dimensional language ℒ2D

when extended with or .
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𝑝 𝑞 𝑟

𝑝 or 𝑞 𝑞 or 𝑟 𝑝 or 𝑞 or 𝑟

Figure 5: Matrices with 8 worlds per axis. Shading indicates ‘true’; white ‘false’.

In a sense, this task is trivial; as Humberstone (2020) notes, 𝜙 or 𝜓 on Fusco’s
semantics can be expressed using @:22

(@(𝜙 ^ ¬𝜓) Ñ 𝜙) ^ (@(¬𝜙 ^ 𝜓) Ñ 𝜓) ^ (@(𝜙 Ø 𝜓) Ñ (𝜙 _ 𝜓))
Thus, we could simply view or as a defined connective. However, this definition
is long-winded; it would be nice to know whether there are more illuminating
axioms governing or directly.

Indeed, there are. Let ℒ2D( or ) be the result of extending ℒ2D with a primitive
or . Then, as noted above, we could axiomatize 2D extended with or using the
following defining axiom:

( or df) (𝑝 or 𝑞) Ø [(@(𝑝 ^ ¬𝑞) Ñ 𝑝) ^ (@(¬𝑝 ^ 𝑞) Ñ 𝑞) ^ (@(𝑝 Ø 𝑞) Ñ (𝑝 _ 𝑞))]
Alternatively, we could replace ( or df) with the following six axioms, which more
closely mirror the standard introduction and elimination rules for disjunction:

22In fact, the opposite is true, too: @𝜙 can be expressed as (𝜙 or ¬𝜙) Ø 𝜙.
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( or 𝐼1) (@𝑝 ^ 𝑝) Ñ (𝑝 or 𝑞)
( or 𝐼2) (@𝑞 ^ 𝑞) Ñ (𝑝 or 𝑞)
( or 𝐼3) (@¬(𝑝 _ 𝑞) ^ (𝑝 _ 𝑞)) Ñ (𝑝 or 𝑞)
( or 𝐸1) (𝑝 or 𝑞) Ñ (𝑝 _ 𝑞)
( or 𝐸2) ((𝑝 or 𝑞) ^ @¬𝑝) Ñ (@¬𝑞 _ 𝑞)
( or 𝐸3) ((𝑝 or 𝑞) ^ @¬𝑞) Ñ (@¬𝑝 _ 𝑝)
It is straightforward to show that 2D + ( or df) is equivalent to 2D + ( or 𝐼1)–( or 𝐸3).
The latter, however, more clearly manifest the way in which the rules governing _

can be seen as one-dimensional projections from more general two-dimensional
rules governing or . Since @𝜙 is diagonally equivalent to 𝜙, ( or 𝐼1) and ( or 𝐼2)
reduce to the standard disjunction introduction rule; ( or 𝐼3) diagonally follows
from explosion; ( or 𝐸1) is already an articulation of the disjunction elimination
rule in terms of disjunctive syllogism; and ( or 𝐸2) and ( or 𝐸3) diagonally follow
from the fact that everything implies a tautology.

Using these axioms, we can directly derive the collapse of or and _ along the
diagonal. To facilitate the reasoning, observe that the following rule is admissible
in 2D for any primitive modal operator△:
RK. If 𝜙1, . . . , 𝜙𝑛 ( 𝜓, then△𝜙1, . . . ,△𝜙𝑛 (△𝜙.
Here, then, is an axiomatic proof of◻:((𝜙 or 𝜓)Ø(𝜙_𝜓))—the a priori equivalence
of or and _ (with instances of Uniform Substitution suppressed):

1. (𝜙 or 𝜓) Ñ (𝜙 _ 𝜓) ( or 𝐸1)
2. :((𝜙 or 𝜓) Ñ (𝜙 _ 𝜓)) Necessitation, 1
3. :(𝜙 Ñ @𝜙) (𝑋Ñ)
4. :(𝜓 Ñ @𝜓) (𝑋Ñ)
5. (@𝜙 ^ 𝜙) Ñ (𝜙 or 𝜓) ( or 𝐼1)
6. (@𝜓 ^ 𝜓) Ñ (𝜙 or 𝜓) ( or 𝐼2)
7. :((@𝜙 ^ 𝜙) Ñ (𝜙 or 𝜓)) Necessitation, 5
8. :((@𝜓 ^ 𝜓) Ñ (𝜙 or 𝜓)) Necessitation, 6
9. :(𝜙 Ñ (𝜙 or 𝜓)) RK, 3, 7

10. :(𝜓 Ñ (𝜙 or 𝜓)) RK, 4, 8
11. :((𝜙 or 𝜓) Ø (𝜙 _ 𝜓)) RK, 2, 9, 10
12. ◻:((𝜙 or 𝜓) Ø (𝜙 _ 𝜓)) Necessitation, 11

This offers an axiomatic illustration of how the two-dimensional entry for or is
an isotope of the standard boolean _.
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4 Deontic Modality

4.1 Two-Dimensional Deontic Logic
Here is an interim summary of where we are. In §§ 2.1–2.2, we presented several
motivations for the two-dimensional framework as well as four notions of conse-
quence that can be distinguished within it. The axiomatization of this framework
was given in § 2.3. In § 2.4, we motivated exploring Åqvist logics with their (Å)-
compliant atomics. Finally, in § 3, we sketched a two-dimensional semantics of
disjunction and presented an axiomatization for it.

With this setup, we are ready to enrich the language with the deontic operators
𝑂 and 𝑀. We do this by enriching the modal domain of our matrices with a deontic
accessibility relation 𝑅𝑂 . The goal of this section is to articulate the logic that
results from lifting standard one-dimensional deontic logic into two-dimensions.
We then show how doing so can solve the deontic puzzles with which we began.

First, however, we face a choice point regarding the deontic accessibility rela-
tion, similar to the choice point faced by the fully general vs. Åqvist approach to
atomics sketched in § 2.4, viz., should the deontic accessibility relation be uniform
across each row of the matrix? A ‘yes’ answer suggests that at its foundations,
deontic accessibility cannot depend on facts which are (metaphysically or epistem-
ically) indeterminate relative to the context set. A ‘no’ answer, on the other hand,
suggests that it can.

A number of complications arise when one tries to adopt the latter non-uniform
approach. For instance, recall that in § 2.2 we saw one motivation for going two-
dimensional was to adopt a Stalnakerian theory of assertion that could accom-
modate sentences whose propositional content was not uniform. To do this, we
require that assertions be diagonalized prior to update. But it is not clear how
to “diagonalize” deontic claims if the accessibility relation is not uniform. What
settles whether 𝑣 is deontically accessible from 𝑤 in a context set (a set of worlds)
if whether 𝑣 is deontically accessible from 𝑤 varies with the world-as-actual, row-
by-row? Thus, though we will present completeness results for both paths from
this choice point, we will keep to the spirit of uniformity in that we will pursue
only a uniform approach as route to explaining Ross’s Puzzle and FCP.

Second, there is another choice point concerning the properties of the deontic
accessibility relation. In standard one-dimensional deontic logic, it is assumed
that the deontic accessibility relation is at the very least a serial and shift-reflexive
subrelation of 𝑅◻.

May Implies Can. ∀𝑤, 𝑣 : 𝑤𝑅𝑂𝑣 ñ 𝑤𝑅◻𝑣

Seriality. ∀𝑤∃𝑣 : 𝑤𝑅𝑂𝑣

Shift-Reflexivity. ∀𝑤, 𝑣 : 𝑤𝑅𝑂𝑣 ñ 𝑣𝑅𝑂𝑣
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These constraints correspond respectively to the following axioms (where 𝑂̂ is
defined to be the dual of 𝑂; we separate 𝑂̂ from 𝑀 conceptually for reasons that
will be made clear in § 4.3):

(𝑀𝐶) 𝑂̂𝑝 Ñ ◇𝑝

(𝐷𝑂) 𝑂𝑝 Ñ 𝑂̂𝑝

(𝑂𝑇𝑂) 𝑂(𝑂𝑝 Ñ 𝑝)
Adding (𝐷𝑂) and (𝑂𝑇𝑂) to the minimal normal modal logic results in the modal
logic KDU, i.e., “standard deontic logic+” in the terminology of McNamara 2010.

Stronger constraints could be imposed on𝑅𝑂 , though. In particular, it is natural
to assume that 𝑅𝑂 is rigid, meaning which worlds are “deontically ideal” does not
vary from world to world:

Deontic Rigidity. ∀𝑤, 𝑣, 𝑢 : 𝑤𝑅◻𝑣 & 𝑤𝑅𝑂𝑢 ñ 𝑣𝑅𝑂𝑢

This corresponds to the following axiom:

(𝐷𝑅) 𝑂̂𝑝 Ñ ◻𝑂̂𝑝

On this analysis, 𝑅𝑂 effectively partitions 𝑊 into the classes of deontically ideal
and nonideal worlds.23 This allows us to reduce deontic logic to alethic logic
via the standard Anderson-Kanger reduction using ◻ and a privileged atomic 𝑑
standing for ⌜The deontic ideals are met⌝ (Anderson, 1958; Kanger, 1971):

𝑂𝜙 B ◻(𝑑 Ñ 𝜙)
𝑀𝜙 B ◇(𝑑 ^ 𝜙)

Again, for the sake of neutrality, we present completeness results for both
options. It turns out that this option affects what we say about FCP. Because Fusco
only adopts the weaker framework, without Deontic Rigidity, she needs to revise
the relationship between 𝑂 and 𝑀 in order to explain FCP. Assuming Deontic
Rigidity, however, this revision is not required.

Let us now turn to the question of how to axiomatize each combination of
choices.

Definition 6. The two-dimensional deontic language ℒD2D is defined recursively
as follows:

𝜙 F Prop | ¬𝜙 | (𝜙 ^ 𝜙) | ◻𝜙 | @𝜙 | :𝜙 | 𝑂𝜙.

In addition to the other abbreviations, we define 𝑂̂𝜙 B ¬𝑂¬𝜙.
23This is similar to the way the deontic selection function of MacFarlane and Kolodny (2010)

works. See also Kratzer 1977, 1981’s ordering-source approach.
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Definition 7. A deontic matrix frame is a tuple ℱ = ⟨𝑊 ˆ 𝑊, 𝑅◻, 𝑅@, 𝑅:, 𝑅𝑂⟩,
where ⟨𝑊, 𝑅◻, 𝑅@, 𝑅:⟩ is a basic matrix frame and 𝑅𝑂 is a serial, shift-reflexive
subrelation of 𝑅◻. A deontic matrix model is a pair of a deontic matrix frame
with a valuation function 𝑉 : Prop Ñ ℘(𝑊 ˆ 𝑊). A deontic matrix frame (model)
is rigid if in addition 𝑅𝑂 satisfies Deontic Rigidity. Let DM be the class of deontic
matrix models and DMR the class of rigid deontic matrix models.

Definition 8. Let D2D be the logic that results from adding (𝑀𝐶)–(𝑂𝑇𝑂) as axioms
to 2D, and let D2DR be the result of adding (𝐷𝑅) as well.

The following is proved in § A.

Theorem 3.

(a) D2D is sound and complete for DM.

(b) D2DR is sound and complete for DMR.

Now for adding the other options.

Definition 9. Let ℳ = ⟨𝑊 ˆ𝑊, 𝑅◻, 𝑅@, 𝑅:, 𝑅𝑂 , 𝑉⟩ be a deontic matrix model. Say
𝑅𝑂 is uniform if the following condition is met for all 𝑥, 𝑦, 𝑤, 𝑣 P 𝑊 :

⟨⟨𝑥, 𝑤⟩, ⟨𝑥, 𝑣⟩⟩ P 𝑅𝑂 ô ⟨⟨𝑦, 𝑤⟩, ⟨𝑦, 𝑣⟩⟩ P 𝑅𝑂 .

We’ll say ℳ is uniform if 𝑅𝑂 is. The definition of Åqvist matrix models from
Definition 4 carries over to deontic matrix models. Let DMÅU be the class of
Åqvist uniform deontic matrix models and DMÅUR the class of Åqvist, uniform,
and rigid deontic matrix models.

To state the proof system, we first need a definition.

Definition 10. A ℒD2D-formula is explicitly 1D if it is @-free and :-free.

Definition 11. Let F B D2DÅU be the proof system axiomatized by Modus Po-
nens, Necessitation for each primitive modal operator, (Å), and the following axiom
schemas:

(𝐷2𝐷) 𝜙, where 𝜙 is a theorem of D2D.

(𝑈) 𝑂𝜙 Ø :𝑂𝜙 where 𝜙 is an explicitly 1D-formula.

Let FR B D2DÅUR be defined similarly except we replace (𝐷2𝐷) with:

(𝐷2𝐷𝑅) 𝜙, where 𝜙 is a theorem of D2DR.

F is the proof system that axiomatizes Fusco (2015)’s semantics, while FR is the
same proof system extended with (𝐷𝑅). The following is proved in § B.
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Theorem 4.

(a) F is sound and complete for DMÅU.

(b) FR is sound and complete for DMÅUR.

F and FR give us a pair of one-dimensional deontic logics “lifted” into two
dimensions—that is, into the space of matrices—in a way that preserves the origi-
nal, one-dimensional interpretation of atoms.24

4.2 Ross in the context of Deontic Matrix Models
Now that we’ve seen various ways of lifting deontic logic into two dimensions,
what happens when we adopt Fusco’s two-dimensional semantics for or ? As it
turns out, both Ross’s Puzzle and FCP can be accounted for (though, as we’ll see,
the latter may require a bit extra work to obtain).

Start with Ross’s Puzzle. Even in FR, the Ross inference is not a priori valid:
𝑂𝑝 ̸▷DMÅUR 𝑂(𝑝 or 𝑞). A counterexample is given in Figure 6. Let us say a model
ℳ a priori satisfies 𝜙, written ℳ ▷ 𝜙, if ℳ , 𝑧, 𝑧 , 𝜙 for all 𝑧 P 𝑊 . (Thus,
Γ ▷C 𝜙 iff for every ℳ P C, if ℳ ▷ Γ, then ℳ ▷ 𝜙.) The deontic matrix model
in Figure 6 a priori satisfies the premise 𝑂𝑝. But it fails to a priori satisfy the
conclusion 𝑂(𝑝 or 𝑞). The witness for this failure is ⟨𝑤𝑞 , 𝑤𝑞⟩: at ⟨𝑤𝑞 , 𝑤𝑞⟩, the
disjunction 𝑝 or 𝑞 expresses the proposition that 𝑞. But 𝑞 is not obligatory (or
even permissible) at ⟨𝑤𝑞 , 𝑤𝑞⟩.

𝑤𝑝 𝑤𝑞

𝑤𝑝

𝑤𝑞

Figure 6: ℳ ▷ 𝑂𝑝

To get a better sense of why failures of the Ross inference arise, it helps to
contrast this counterexample with a model where 𝑂(𝑝 or 𝑞) is a priori satisfied,

24These logics hence preserve the one-dimensional notion of “good arguments” from Gregory
2001 and Williamson 2013 (glossed in footnote 20).
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such as in Figure 7. We can see that 𝑞—the actually true answer to ⌜𝑝, or 𝑞?⌝ in
𝑤𝑞—is obligatory from the point of view of ⟨𝑤𝑞 , 𝑤𝑞⟩.25 We can also see that 𝑝—the
actually true answer to ⌜𝑝, or 𝑞?⌝ in 𝑤𝑝—is obligatory from the point of view of
⟨𝑤𝑝 , 𝑤𝑝⟩, the other diagonal, or ‘a priori’, point in the model. If it is 𝑞 which the
agent actually does—settling that she is at the diagonal point on the second row
of the matrix—then it is 𝑞 she ought to do. But the reverse is true if it is 𝑝 which
she actually does. Since the choice of actuality is up to her, what is deontically
ideal is also up to her: she has a deontically free choice in Figure 7 which she lacks
in Figure 6.26

𝑤𝑝 𝑤𝑞

𝑤𝑝

𝑤𝑞

Figure 7: ℳ ▷ 𝑂(𝑝 or 𝑞)

4.3 Permissibility and Free Choice Permission
Let’s turn now to FCP. We’ll start with deontically rigid models, since the expla-
nation of FCP over this class is simpler. Three ingredients are required. First,
𝑀 is the dual of 𝑂, i.e., 𝑀 B 𝑂̂. Second, the deontic accessibility relation is
uniform. And third, the formulas involved in the inference are Åqvist, i.e., their
propositional content does not vary with the world-as-actual. Thus, where the Å
operator is defined as in § 2.4, we have the following free choice theorem:27

Theorem 5. 𝑀(𝜙 or 𝜓),◇(𝜙 ^ ¬𝜓),Å𝜙,Å𝜓 ▷DMÅUR 𝑀𝜙.
25To simplify the visuals, 𝑝 and 𝑞 are represented in Figures 6–7 as mutually exclusive and jointly

exhaustive.
26It is worth noting that a proposal for understanding FCP which is similar in spirit but quite

different in implementation to the present approach, is independently developed in the linguistics
literature by Kaufmann (2016). Unfortunately, we lack the space to compare the similarities and
differences of the views at length here.

27In fact, Theorem 5 holds even for the class of uniform and rigid deontic matrix models—that
is, we don’t have to require valuations to be Åqvist. But the completeness proof of F(R) requires
the deontic matrix models be Åqvist, so we’ve stated the theorem in terms of Åqvist models.
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Proof. Let ℳ be a Åqvist, uniform, and rigid deontic matrix model such that:

(i) ℳ ▷ 𝑀(𝜙 or 𝜓)
(ii) ℳ ▷ ◇(𝜙 ^ ¬𝜓)

(iii) ℳ ▷ Å𝜙 ^ Å𝜓

Let 𝑤 P 𝑊 ; we will show thatℳ , 𝑤, 𝑤 , 𝑀𝜙. By (ii), there exists a 𝑣 P 𝑊 such that
ℳ , 𝑤, 𝑣 , 𝜙^¬𝜓. By (iii), ℳ , 𝑤, 𝑣 , 𝜙^¬𝜓 iff ℳ , 𝑤, 𝑣 , :𝜙^¬:𝜓, which holds
iff ℳ , 𝑣, 𝑣 , 𝜙 ^ ¬𝜓. Hence, 𝐴𝑛𝑠(𝑣, 𝜙,𝜓) = {𝜙}. By (i), ℳ , 𝑣, 𝑣 , 𝑀(𝜙 or 𝜓).
So there exists a 𝑢 P 𝑊 such that ⟨𝑣, 𝑣⟩𝑅𝑂 ⟨𝑣, 𝑢⟩ and ℳ , 𝑣, 𝑢 , 𝜙 or 𝜓. Since
𝐴𝑛𝑠(𝑣, 𝜙,𝜓) = {𝜙}, that meansℳ , 𝑣, 𝑢 , 𝜙. By (iii),ℳ , 𝑤, 𝑢 , 𝜙. But because𝑅𝑂
is uniform, ⟨𝑤, 𝑣⟩𝑅𝑂 ⟨𝑤, 𝑢⟩. And because 𝑅𝑂 is rigid, that means ⟨𝑤, 𝑤⟩𝑅𝑂 ⟨𝑤, 𝑢⟩.
Hence, ℳ , 𝑤, 𝑤 , 𝑀𝜙. □

We can illustrate this using by contrasting Figure 8 and Figure 6. In Figure 8,
𝑀(𝑝 or 𝑞) is a priori satisfied because no matter which world is actual, the actual
answer to ⌜𝑝, or 𝑞?⌝ is permissible. By contrast, in Figure 6, 𝑞 is not permissible,
and so 𝑀(𝑝 or 𝑞) is not a priori satisfied—specifically, it’s not satisfied at ⟨𝑤𝑞 , 𝑤𝑞⟩.

𝑤𝑝 𝑤𝑞

𝑤𝑝

𝑤𝑞

Figure 8: ℳ ▷ 𝑀(𝑝 or 𝑞)

The addition of premises Å𝜙 and Å𝜓 is new relative to Fusco 2015. There,
Fusco states the free choice inference (using our notation) as:

𝑀(𝜙 or 𝜓),◇(𝜙 ^ ¬𝜓),◇(¬𝜙 ^ 𝜓) ▷ 𝑀𝜙 ^ 𝑀𝜓

where 𝜙 and𝜓 are both disjunction-free and non-modal. In that framework, Fusco
implicitly assumes that all atomics are Åqvist, which entails that any such formulas
are Åqvist. Thus, our theorem is a generalization of Fusco’s result: her free choice
inference can be extended to any 𝜙 and 𝜓 so long as their content does not vary
from row-to-row.
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There are cases involving non-Åqvist disjuncts, however, where free choice
does not hold in this semantics. Here is a counterexample. Our matrix model ℳ
will consist of four worlds 𝑤𝑝𝑞 , 𝑤𝑝̄𝑞 , 𝑤𝑝𝑞̄ , 𝑤𝑝̄ 𝑞̄ . Our (Åqvist) valuation will be the
obvious one:

⟨𝑤𝛼𝛽 , 𝑤𝛾𝛿⟩ P 𝑉(𝑝) ô 𝛾 = 𝑝
⟨𝑤𝛼𝛽 , 𝑤𝛾𝛿⟩ P 𝑉(𝑞) ô 𝛿 = 𝑞.

The deontic accessibility relation will say all and only 𝑝̄-worlds are deontically
ideal:

⟨𝑤𝛼𝛽 , 𝑤𝛾𝛿⟩𝑅𝑂 ⟨𝑤𝛼𝛽 , 𝑤𝛾1𝛿1⟩ ô 𝛾1 = 𝑝̄

Note, 𝑅𝑂 is both uniform and rigid. This model is summarized in Figure 9.

𝑤𝑝𝑞 𝑤𝑝𝑞̄ 𝑤𝑝̄𝑞 𝑤𝑝̄ 𝑞̄

𝑤𝑝𝑞

𝑤𝑝𝑞̄

𝑤𝑝̄𝑞

𝑤𝑝̄ 𝑞̄

𝑝𝑞 𝑝𝑞̄

𝑝̄𝑞 𝑝̄ 𝑞̄

Figure 9: Counterexample to free choice with non-Åqvist disjuncts. The diagram
on the right is a visualization of the accessibility relations on each row.
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Then letting 𝜙 = @𝑝 Ø 𝑝 and 𝜓 = @𝑞 Ø 𝑞, we have:28

ℳ ▷ 𝑀((@𝑝 Ø 𝑝) or (@𝑞 Ø 𝑞))
ℳ ▷ ◇((@𝑝 Ø 𝑝) ^ ¬(@𝑞 Ø 𝑞))
ℳ ▷ ◇(¬(@𝑝 Ø 𝑝) ^ (@𝑞 Ø 𝑞))
ℳ ̸▷ 𝑀(@𝑝 Ø 𝑝)

Thus, FCP does not hold for all non-Åqvist cases in Fusco’s semantics.
With that said, we think this is not a serious cost to Fusco’s approach, for two

reasons. First, these sorts of counterexamples are quite strange. It is hard to see
how we could have robust and reliable intuitions about their analogues in natural
language. This is especially complicated by evidence that the actually operator
@ is not be an adequate formalization of the English word ‘actually’.29 So these
consequences of Fusco’s semantics would likely be hard to test empirically.

Second, there is an alternative formulation of free choice available that avoids
these complications. We can drop the premises Å𝜙 and Å𝜓 from the inference so
long as we diagonalize the disjuncts first.

Theorem 6. 𝑀(:𝜙 or :𝜓),◇(:𝜙 ^ ¬:𝜓) ▷DMÅUR 𝑀:𝜙

Proof. Immediate from Theorem 5 and the fact that (DM Å:𝜙. □

In fact, Theorem 5 can be seen as a special instance of this more general principle,
since Å𝜙 ( ◻(𝜙Ø:𝜙). We often diagonalize material in the scope of modals as part
of a broader reinterpretation strategy. For instance, while (9) is not metaphysically
necessary, and thus (10) is false so-interpreted, there does seem to be a reading of
(10) on which it is true, viz., one where the flavor of necessity is a priority.

(9) I am here now.
(10) Necessarily, I am here now.

a. False: ◻(I am here now)
b. True: ◻:(I am here now)

It would therefore be unsurprising if diagonalization occurred in the scope of
disjunction, given that disjunction is itself interpreted as a kind of binary modal.

28To see why, note that for each 𝑣 P 𝑊 , 𝐴𝑛𝑠(𝑣,@𝑝Ø𝑝,@𝑞Ø𝑞) = {@𝑝Ø𝑝,@𝑞Ø𝑞}. This is because
@𝜙 Ø 𝜙 is a diagonal validity. Thus, for each 𝑣 P 𝑊 , we have ℳ , 𝑣, 𝑣 , 𝑀((@𝑝 Ø 𝑝) or (@𝑞 Ø 𝑞))
iff ∃𝛿 P {𝑞, 𝑞̄} : ℳ , 𝑣, 𝑤𝑝̄𝛿 , (@𝑝 Ø 𝑝)_ (@𝑞 Ø 𝑞). It is easily verified this holds for all 𝑣, since some
deontically ideal world agrees with 𝑣 on 𝑞. Moreover, the possibility premises are satisfied on every
row, since every combination of truth values to 𝑝 and 𝑞 is realized. But while ℳ ▷ 𝑀(@𝑞 Ø 𝑞), we
do not have 𝑀(@𝑝 Ø 𝑝) satisfied at every diagonal point. Specifically, ℳ , 𝑤𝑝𝑞 , 𝑤𝑝𝑞 . 𝑀(@𝑝 Ø 𝑝)
and ℳ , 𝑤𝑝𝑞̄ , 𝑤𝑝𝑞̄ . 𝑀(@𝑝 Ø 𝑝).

29For data showing that English ‘actually’ is more complex, see Yalcin (2015).
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This concludes the explanation of free choice when the accessibility relation is
deontically rigid. Let us now turn to the case where it is not. In fact, Fusco (2015)
does not endorse deontic rigidity because of cases like the following:

Choosing Childbearing. You face a choice between conceiving a child
early in your life [= 𝑝] or a different child significantly later [= 𝑞].
You believe that your values will be transformed by the choice you
make. In particular, because the choice you make will be a necessary
condition for the existence of a person you will love, you will affirm that
choice over any other. There is no single psychological standpoint that
values both of these potential persons to equal degree. (Parfit, 1984,
pg. 360–361; Paul, 2014, Ch. 3; Paul, 2015.)

Nice Choices at the Spa. Aromatherapy [= 𝑝] or body-wrap [= 𝑞]—
which is it to be? You believe that, whichever you choose, you will
be very glad you chose it. Mid-aromatherapy, the aromatherapy will
seem self-evidently superior [to the body-wrap]. Mid-body-wrap, the
body-wrap will seem self-evidently superior [to the aromatherapy].
(Hare and Hedden, 2016, pg. 3)

𝑝

𝑤1

𝑞

𝑤2

Figure 10: A one-dimensional nice choice

Suppose “nice choices” like the ones described above are possible. Then worlds
where the agent makes different choices may have different deontic points of view.
This would require abandoning Deontic Rigidity as a constraint on the deontic
accessibility relation.

To accommodate free choice inferences in this more general framework, Fusco
proposes to capture FCP by reconceiving of the connection between obligation and
permission. In brief, where the standard view is that 𝑀 is just 𝑂̂, i.e., the dual of
𝑂, Fusco proposes to analyze 𝑀 in terms of a weaker condition, viz., ◇𝑂̂. Thus,
the revised truth conditions for 𝑀 are as follows:

(𝑀2) 𝑦, 𝑥 , 𝑀𝜙 iff there is some 𝑥1 such that 𝑥1𝑅𝑂𝑥1 and 𝑦, 𝑥1 , 𝜙

Redefining 𝑀 in this way, we obtain free choice once again:
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Theorem 7. Where 𝑀 B ◇𝑂̂:

(a) 𝑀(𝜙 or 𝜓),◇(𝜙 ^ ¬𝜓),Å𝜙,Å𝜓 ▷DMÅU 𝑀𝜙

(b) 𝑀(:𝜙 or :𝜓),◇(:𝜙 ^ ¬:𝜓) ▷DMÅU 𝑀:𝜙

Proof. The proof of (a) is the same as that of Theorem 5 up to where we inferred
thatℳ , 𝑣, 𝑣 , 𝑀(𝜙 or 𝜓). From there, it follows that there exists a 𝑢 P 𝑊 such that
for some 𝑢1 P 𝑊 , ⟨𝑣, 𝑢⟩𝑅𝑂 ⟨𝑣, 𝑢1⟩ and ℳ , 𝑣, 𝑢1 , 𝜙 or 𝜓. Since 𝐴𝑛𝑠(𝑣, 𝜙,𝜓) = {𝜙},
that means ℳ , 𝑣, 𝑢1 , 𝜙. By (iii), ℳ , 𝑤, 𝑢1 , 𝜙. But because 𝑅𝑂 is uniform,
⟨𝑤, 𝑢⟩𝑅𝑂 ⟨𝑤, 𝑢1⟩. Hence, ℳ , 𝑤, 𝑢 , 𝑂̂𝜙. So ℳ , 𝑤, 𝑤 , ◇𝑂̂𝜙 = 𝑀𝜙. The proof of
(b) is immediate as before. □

Thus, one does not need to commit oneself to the claim that each world must agree
with every other about which worlds are deontically ideal in order to capture free
choice, so long as we take a revisionary stance on the relationship between ‘may’
and ‘ought’.

Note that, in deontically rigid models, this definition of 𝑀 is equivalent to 𝑂̂:

Theorem 8. (DMR 𝑂̂𝜙 Ø◇𝑂̂𝜙.

Thus, one could in principle adopt this definition (𝑀 B ◇𝑂̂) in FR as well; it’s
just that doing so would not be a genuine departure from the orthodox view that
‘may’ is the dual of ‘ought’.

5 Conclusion
In this paper, we explored several ways of axiomatizing ◻, :, @, and the deontic
operators 𝑂 and 𝑀, with an eye to FCP and Ross’s Puzzle, following the path
sketched by Fusco (2015, 2019). The language also provides a way of connecting the
a priori (𝐴) operator to Stalnaker’s “Assertion”, via the idea that a natural notion
of global or informational consequence is in fact a diagonalized one as well. We
axiomatized Fusco’s logic of disjunction using rules that collapse into the standard
disjunction introduction/elimination rules in the one-dimensional setting. We
then explored several different formulations of two-dimensional deontic logic and
how these different choice points relate to the deontic puzzles in § 1.

While our focus has primarily been on deontic logic, the various choice points in
§ 4 highlight a broader lesson for the study of two-dimensional logics. When lifting
a one-dimensional system into two dimensions, one needs to keep in perspective
the original motivations for doing so. For some applications, it will be desirable not
to impose uniformity on accessibility relations, thus preserving the full generality
of the two-dimensional framework. But for other applications to natural language,
especially in the context of a Stalnakerian picture of assertion, uniformity may be
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motivated by more than mere convenience. We leave further discussion of these
issues for another time.

A Axiomatizing D2D
In this appendix, we prove Theorem 3: D2D(R) is sound and complete for the
class DM(R) of (rigid) deontic matrix models. The proof is an extension of the
completeness results in Fritz 2014; Fusco forthcoming for two-dimensional lan-
guages without deontic operators. For this reason, we will skip some of the proofs
and refer the reader to those articles for details.

The proof strategy is in three steps. We identify three classes of frames:

1. FrD2D(R), the class of D2D(R)-frames;

2. RD(R), an intermediate class of (rigid) deontic Restall frames;

3. MFD(R), the class of (rigid) deontic matrix frames.

The first step is to establish the soundness and completeness of D2D(R) over
FrD2D(R). This follows immediately from Sahlqvist’s theorem, since all the axioms
are Sahlqvist formulas.

Theorem 9. D2D(R) is sound and strongly complete with respect to FrD2D(R).

Proof. By Sahlqvist’s Theorem (Blackburn et al., 2002, Ch. 4). □

The second step is to show that FrD2D(R) is modally equivalent to an intermediate
class of frames RD(R), viz., (rigid) deontic Restall frames. This is established by
showing that RD(R) is the class of point-generated subframes of FrD2D(R). The
final step is then to show that every deontic Restall frame is equivalent to a matrix
frame by showing how to construct a bounded morphism from an arbitrary deontic
Restall frame into a deontic matrix frame.

FrD2D(R) RD(R) MFD(R)
gen. submodel bounded morphism

We start with some facts about D2D, which are all left as an exercise to the
reader:

Fact 1. The following are all provable in 2D:
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(𝑋) :(@𝜙 Ø 𝜙)
(𝑌) @(:𝜙 Ø 𝜙)
(:◇:) :◇:𝜙 Ø◇:𝜙

(Red:) ::𝜙 Ø :𝜙

(Red@) @@𝜙 Ø @𝜙

(𝐴@) 𝐴𝜙 Ñ @𝜙

In addition, the following is provable in D2D:

(@5𝑂̂) 𝑂̂@𝜙 Ñ @𝜙

Definition 12. A Kripke frame is a tuple ℱ = ⟨𝑊, 𝑅◻, 𝑅@, 𝑅:, 𝑅𝑂⟩ where 𝑊 is a
set of points and each 𝑅△ is a binary relation on 𝑊 .

Fact 2. The axioms of D2D(R) have the following (global) first-order correspon-
dents in Kripke frames:

(𝑇◻) 𝑅◻ is reflexive

(5◻) 𝑅◻ is Euclidean

(@5◇) ∀𝑤, 𝑣, 𝑢 :
(𝑤𝑅◻𝑣 & 𝑤𝑅@𝑢) ñ 𝑣𝑅@𝑢

(𝐺) 𝑅@ Ď 𝑅◻

(𝑅@) 𝑅@ is a function

(𝑅:) 𝑅: is a function

(𝑋Ñ) ∀𝑤, 𝑣, 𝑢 :
(𝑤𝑅:𝑣 & 𝑣𝑅@𝑢) ñ 𝑣 = 𝑢

(𝑌Ñ) ∀𝑤, 𝑣, 𝑢 :
(𝑤𝑅@𝑣 & 𝑣𝑅:𝑢) ñ 𝑣 = 𝑢

(4𝐴) 𝑅◻ ˝ 𝑅: is transitive

(5𝐴) ∀𝑥, 𝑦, 𝑎, 𝑏 :
(𝑥𝑅◻𝑦 & 𝑥𝑅◻𝑎 & 𝑎𝑅:𝑏) ñ

∃𝑐(𝑏𝑅◻𝑐 & ∀𝑑(𝑐𝑅:𝑑 ñ 𝑦𝑅:𝑑))
(𝑍) 𝑅𝑂 Ď 𝑅◻

(𝐷𝑂) 𝑅𝑂 is serial

(𝑈𝑂) 𝑅𝑂 is shift-reflexive

(𝐷𝑅) ∀𝑤, 𝑣, 𝑢 :
(𝑤𝑅◻𝑣 & 𝑤𝑅𝑂𝑢) ñ 𝑣𝑅𝑂𝑢

The correspondents for (𝑋) and (𝑌) in Fact 1 are as follows:

(𝑋) Within 𝐼𝑚𝑔(𝑅:), 𝑅@ is the identity relation

(𝑌) Within 𝐼𝑚𝑔(𝑅@), 𝑅: is the identity relation

The following facts are all proven in Fusco forthcoming:

Fact 3. 𝐼𝑚𝑔(𝑅@) = 𝐼𝑚𝑔(𝑅:).
Fact 4. ∀𝑑1, 𝑑2 P 𝐼𝑚𝑔(𝑅@): if 𝑑1(𝑅◻ ˝ 𝑅:)𝑑2, then 𝑑2(𝑅◻ ˝ 𝑅:)𝑑1.

Fact 5. 𝑅◻ ˝ 𝑅: an equivalence relation on 𝐼𝑚𝑔(𝑅@).
Fact 6. Suppose 𝑤𝑅@𝑑1 and 𝑤𝑅:𝑑2. Then ∃𝑤1 s.t. 𝑤1𝑅@𝑑2 and 𝑤1𝑅:𝑑1.
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Before we show FrD2D(R) is modally equivalent to RD(R), it will help to prove the
following lemma. (Notation: if 𝑅△ is a function, we use “𝑅△(𝑥)” for the unique 𝑦
such that 𝑥𝑅△𝑦)

Lemma 1. For any point-generated subframe ℱ𝑤 = ⟨𝑊 1, 𝑅1
◻, 𝑅

1
:
, 𝑅1

@, 𝑅
1
𝑂⟩ P FrD2D:

𝑊 1 = 𝑅◻[𝑅:[𝑅◻[{𝑤}]]].
Proof. We let 𝑋 B 𝑅◻[𝑅:[𝑅◻[{𝑤}]]]. We show (1) 𝑤 P 𝑋 and (2) that for each
operator ▽ that 𝑅▽[𝑋] Ď 𝑋.

(1) Let 𝑢 = 𝑅@(𝑤). By (𝐺), 𝑤𝑅◻𝑢. By (𝑌), 𝑢𝑅:𝑢. By symmetry of 𝑅◻, 𝑢𝑅◻𝑤.
Hence via 𝑢, it follows that 𝑤 P 𝑋.

(2-◻) Since 𝑅◻ is transitive, 𝑅◻[𝑋] = 𝑋.

(2-𝑂) Since 𝑅𝑂 Ď 𝑅◻, it follows that 𝑅𝑂[𝑋] Ď 𝑅◻[𝑋] Ď 𝑋.

(2-:) By (4𝐴), 𝑅:[𝑋] = 𝑅:[𝑅◻[𝑅:[𝑅◻[{𝑤}]]]] = 𝑅:[𝑅◻[{𝑤}]. By (𝑇◻), 𝑅:[𝑅◻[{𝑤}] Ď

𝑅◻[𝑅:[𝑅◻[{𝑤}]] = 𝑋.

(2-@) By (𝐴@),𝑅@[𝑋] Ď 𝑅:[𝑅◻[𝑋]] Ď 𝑅:[𝑅◻[𝑅◻[𝑅:[𝑅◻[{𝑤}]]]]] = 𝑅:[𝑅◻[𝑅:[𝑅◻[{𝑤}]]]].
By (4𝐴) and (𝑇◻), 𝑅:[𝑅◻[𝑅:[𝑅◻[{𝑤}]]]] Ď 𝑅:[𝑅◻[{𝑤}] Ď 𝑅◻[𝑅:[𝑅◻[{𝑤}]] =
𝑋.

□

Definition 13. A (rigid) deontic Restall Frame is a frame ℛ = ⟨𝑊, 𝑅◻, 𝑅@, 𝑅:, 𝑅𝑂⟩
such that

1. 𝑅◻ is an equivalence relation

2. 𝑅@ is a function such that

(a) 𝑤𝑅@𝑣 Ñ 𝑤𝑅◻𝑣

(b) 𝑅@ maps any two 𝑅◻-related worlds to the same point

3. 𝑅: is a function such that:

(a) for any 𝑤: 𝑅:[𝑅◻[{𝑤}]] = 𝐼𝑚𝑔(𝑅@)
(b) 𝑅: is reflexive over 𝐼𝑚𝑔(𝑅@)

4. 𝑅𝑂 is a (rigid,) serial, shift-reflexive subrelation of 𝑅◻.

Let RD(R) be the class of (rigid) deontic Restall frames.

Lemma 2. RD(R) Ă FrD2D(R).
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Proof. To verify this, it suffices to go through the first-order correspondents of
D2D(R) from Fact 2. □

Lemma 3. Every point-generated subframeℱ𝑤 P FrD2D(R) is a (rigid) deontic Restall
frame.

Proof. Where ℱ𝑤 = ⟨𝑊 1, 𝑅1
@, 𝑅

1
:
, 𝑅1
◻, 𝑅

1
𝑂⟩ is a 𝑤-generated subframe in FrD2D, let

𝑣 be an arbitrarily chosen world in 𝑊 1. We want to establish that ℱ𝑤 satisfies
conditions 1–4 of deontic Restall frames. Conditions 1–3 are established in Fusco
forthcoming. Condition 4 follows from the correspondences in Fact 2.

□

Theorem 10. FrD2D(R) and RD(R) are modally equivalent.

Proof. By Lemma 2, any formula falsifiable in ℛ P RD(R) is falsifiable in some
ℱ P FrD2D(R). By Lemma 3, any formula falsifiable in a point-generated subframe
ℱ𝑤 P FrD2D(R) is falsifiable in some ℛ P RD(R). But any formula falsifiable in a
ℱ P FrD2D(R) is falsifiable in a point-generated subframe (Blackburn et al., 2002,
Proposition 2.6.). □

Now we just need to reduce RD(R) to MFD(R). Some notation:

• We write 𝑅[𝑌] for the image of a set 𝑌 under 𝑅.

• Let 𝐷 = 𝐼𝑚𝑔(𝑅@). We will use 𝑖, 𝑗 . . . as indices over 𝐷.

• Where ℛ is a deontic Restall frame, let 𝐶 = {𝑐1, . . . , 𝑐𝑛} be the set of 𝑅◻-cells
in ℛ. Since there is one 𝑑 P 𝐷 in each such cell, 𝐶 is the cardinality of 𝐷.

Fact 7.
∪

𝑖P𝐷 𝑐𝑖 = 𝑊 .

Fact 8. There is a unique 𝑅@-fixed point in each 𝑅◻-cell 𝑐𝑖 Ă 𝑊 .

Notation: call this 𝑅@-fixed point 𝑅@(𝑐𝑖).
Fact 9. For any 𝑤 and any 𝑐 𝑗 Ď 𝑊 , ∃!𝑣 P 𝑐 𝑗 s.t. 𝑤𝑅:𝑣.

More notation: where 𝑐𝑖 P 𝐶, let 𝑐 𝑗𝑖 be the set {𝑤 P 𝑐𝑖 | ∃𝑣 P 𝑐 𝑗 : 𝑤𝑅:𝑣}. Let 𝑅:(𝑐 𝑗𝑖 )
be the unique 𝑣 P 𝑐 𝑗 such that ∀𝑤 P 𝑐 𝑗𝑖 , 𝑤𝑅:𝑣. That 𝑅:(𝑐 𝑗𝑖 ) is a fixed point of 𝑅:

follows from (Red:).

Corollary 1. Each 𝑐𝑖 can be partitioned into {𝑐 𝑗𝑖 | 𝑗 P 𝐷}, where 𝑐 𝑗𝑖 is a nonempty
subset of 𝑐𝑖 such that∀𝑤 P 𝑐 𝑗𝑖 ,𝑤𝑅:(𝑅@(𝑐 𝑗)). Hence∪𝑗P𝐷 𝑐 𝑗𝑖 = 𝑐𝑖 , and∪

𝑖P𝐷(∪𝑗P𝐷 𝑐 𝑗𝑖 ) =
𝑊 .

Theorem 11. RD(R) and MFD(R) are modally equivalent.
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Proof. Since MFD(R) Ă RD(R), every (rigid) deontic matrix frame is equivalent to
some (rigid) deontic Restall frame. For the converse, given a deontic Restall frameℛ
with domain 𝑊 and 𝐼𝑚𝑔(𝑅@) = 𝐷, we will build a matrix frame ℳ and construct,
row-by-row, a surjective bounded morphism 𝑓 from ℳ to ℛ, from which modal
equivalence follows (Blackburn et al., 2002, Proposition 2.14).

The points of our matrix frame ℳ will be (𝐷 ˆ𝑊) ˆ (𝐷 ˆ𝑊). For any 𝑖 , 𝑗 P 𝐷
and 𝑦 P 𝑊 , let 𝐴 𝑗

𝑖 ,𝑦 be the set {⟨𝑖 , 𝑦⟩} ˆ {⟨𝑗 , 𝑥⟩ : 𝑥 P 𝑊}. Note that |𝐴 𝑗
𝑖,𝑦 | = |𝑊 |.

For each 𝑖, 𝑗 P 𝐷 and 𝑦 P 𝑊 , fix some surjective 𝑔 𝑗
𝑖 ,𝑦 : 𝑊 Ñ 𝑐 𝑗𝑖 such that if 𝑖 = 𝑗

and 𝑦 = 𝑥, then 𝑔 𝑗
𝑖,𝑦(𝑥) = 𝑅@(𝑐𝑖). (This condition maps the “diagonal” points of

the matrix frame into 𝐷 in the deontic Restall frame.) We know such surjective
functions exist since |𝐴 𝑗

𝑖 ,𝑦 | ě |𝑐 𝑗𝑖 |.
The accessibility relations 𝑅ℳ

◻ , 𝑅ℳ
@ , and 𝑅ℳ

:
are already determined by the

definition of a deontic matrix frame. To define 𝑅ℳ
𝑂 , first define a function 𝐹 : (𝐷 ˆ

𝑊) ˆ (𝐷 ˆ𝑊) Ñ𝑊 as follows: 𝐹(⟨⟨𝑖, 𝑦⟩, ⟨𝑗 , 𝑥⟩⟩) = 𝑔 𝑗
𝑖 ,𝑦(𝑥). We define 𝑅ℳ

𝑂 in terms
of 𝐹:

⟨⟨𝑖 , 𝑦⟩, ⟨𝑗, 𝑥⟩⟩𝑅ℳ
𝑂 ⟨⟨𝑖 , 𝑦⟩, ⟨𝑗1, 𝑥1⟩⟩ ô 𝐹(⟨⟨𝑖 , 𝑦⟩, ⟨𝑗, 𝑥⟩⟩)𝑅𝑂𝐹(⟨⟨𝑖, 𝑦⟩, ⟨𝑗1, 𝑥1⟩⟩).

We will now show that 𝐹 is a bounded morphism from ℳ to ℛ.30 To do this, it
suffices to go through the Back and Forth conditions for△ P {◻,@, :, 𝑂} for each
point. The only new case not in the proof from Fusco forthcoming is the 𝑂 case.

(𝑂, Forth) Immediate by the definition of 𝑅ℳ
𝑂 .

(𝑂, Back) Suppose 𝐹(⟨⟨𝑖 , 𝑦⟩, ⟨𝑗, 𝑥⟩⟩)𝑅𝑂𝑣1. We want to show that there is some
⟨⟨𝑖, 𝑦⟩, ⟨𝑗1, 𝑥1⟩⟩ such that ⟨⟨𝑖 , 𝑦⟩, ⟨𝑗, 𝑥⟩⟩𝑅𝑋

𝑂 ⟨⟨𝑖 , 𝑦⟩, ⟨𝑗1, 𝑥1⟩⟩ and also that
𝐹(⟨⟨𝑖, 𝑦⟩, ⟨𝑗1, 𝑥1⟩⟩) = 𝑣1. To witness this existential, we can choose any
⟨⟨𝑖, 𝑦⟩, ⟨𝑗1, 𝑥1⟩⟩ such that 𝐹(⟨⟨𝑖 , 𝑦⟩, ⟨𝑗1, 𝑥1⟩⟩) = 𝑣1 (we know one exists
since 𝐹 is surjective).

Hence, 𝐹 is a bounded morphism, and so ℳ is modally equivalent to ℛ. □

30𝐹 is a bounded morphism if it satisfies the following conditions for each △ P {◻,@, :, 𝑂}
(Blackburn et al., 2002, pg. 59):

1. 𝑤 and 𝐹(𝑤) satisfy the same proposition letters;

2. if 𝑤𝑅ℳ
△𝑣 then 𝐹(𝑤)𝑅△𝐹(𝑣) (the Forth condition);

3. if 𝐹(𝑤)𝑅△𝑣1 then there exists some 𝑣 such that 𝑤𝑅ℳ
△𝑣 and 𝐹(𝑣) = 𝑣1 (the Back condition).
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B Axiomatizing Deontic Åqvist Logic
In this appendix, we prove Theorem 4: F is sound and complete for the class of
Åqvist uniform deontic matrix models DMÅU. (The proof that FR is sound and
complete for DMÅUR is analogous.) Soundness is straightforward and left to the
reader. For completeness, the strategy will be to bootstrap off the completeness
result for D2D in § A.

First, we need to prove some lemmas about the expressive power of D2D.

Lemma 4. For any ℒD2D-formula 𝜙, the following formulas are strictly valid over
DM:

(a) ◻(@𝜙 _ 𝜓) Ø (@𝜙 _ ◻𝜓)
(b) 𝑂(@𝜙 _ 𝜓) Ø (@𝜙 _ 𝑂𝜓).

Recall the definition of explicitly 1D formulas (Definition 10).

Lemma 5. For any deontic matrix model ℳ = ⟨𝑊 ˆ 𝑊, 𝑅◻, 𝑅@, 𝑅:, 𝑅𝑂 , 𝑉⟩, if ℳ
satisfies (Å) and (𝑈) everywhere, then for any 𝑤, 𝑤1, 𝑣 P 𝑊 , any explicitly 1D
ℒD2D-formula 𝜙:

ℳ , 𝑤, 𝑣 , 𝜙 ô ℳ , 𝑤1, 𝑣 , 𝜙.

Proof. By induction. □

Definition 14. An @-atom is a ℒD2D-formula that is either explicitly 1D, or is of
the form @𝜙 where 𝜙 is explicitly 1D.

The following is an extension of a result for languages without : or 𝑂 proven in
Hazen et al. 2013:

Lemma 6. Every ℒD2D-formula is strictly equivalent to a boolean combination of
@-atoms over DMÅU.

Proof. By induction on the structure of ℒD2D-formulas. Throughout, we’ll use
“𝜙 ” 𝜓” to mean 𝜙 and 𝜓 are strictly equivalent over DMÅU. The atomic and
boolean cases are trivial. We’ll present the other cases. Assume for inductive
hypothesis that the claim holds of 𝜙. In particular, assume that:

𝜙 ”

𝑘∧
𝑖=1

𝑛𝑖∨
𝑗=1

𝛼𝑖 , 𝑗

where each 𝛼𝑖 , 𝑗 is an @-atom.
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(◻) Since ◻ commutes with conjunction:

◻𝜙 ” ◻
𝑘∧

𝑖=1

𝑛𝑖∨
𝑗=1

𝛼𝑖 , 𝑗 ”

𝑘∧
𝑖=1
◻

𝑛𝑖∨
𝑗=1

𝛼𝑖 , 𝑗

So it suffices to show that each ◻∨𝑛𝑖
𝑗=1 𝛼𝑖 , 𝑗 is equivalent to a boolean combi-

nation of @-atoms. First, write ∨𝑛𝑖
𝑗=1 𝛼𝑖 , 𝑗 as:

@𝛽𝑖 ,1 _ ¨ ¨ ¨ _ @𝛽𝑖,𝑚 _ 𝛾𝑖 ,𝑚+1 _ ¨ ¨ ¨ _ 𝛾𝑖 , 𝑗

where each 𝛽𝑖,𝑥 and 𝛾𝑖,𝑦 are explicitly 1D. Then by Lemma 4(a):

◻
𝑛𝑖∨
𝑗=1

𝛼𝑖, 𝑗 ” ◻(@𝛽𝑖,1 _ ¨ ¨ ¨ _ @𝛽𝑖 ,𝑚 _ 𝛾𝑖 ,𝑚+1 _ ¨ ¨ ¨ _ 𝛾𝑖 , 𝑗)

” @𝛽𝑖,1 _ ¨ ¨ ¨ _ @𝛽𝑖 ,𝑚 _ ◻(𝛾𝑖 ,𝑚+1 _ ¨ ¨ ¨ _ 𝛾𝑖 , 𝑗)
But now all these terms are @-atoms.

(𝑂) Similar to the (◻) case.

(@) Since @ commutes with booleans:

@𝜙 ” @
𝑘∧

𝑖=1

𝑛𝑖∨
𝑗=1

𝛼𝑖 , 𝑗 ”

𝑘∧
𝑖=1

𝑛𝑖∨
𝑗=1

@𝛼𝑖 , 𝑗

Now, either 𝛼𝑖, 𝑗 is explicitly 1D, in which case @𝛼𝑖 , 𝑗 is an @-atom, or 𝛼𝑖, 𝑗 =
@𝛽𝑖, 𝑗 where 𝛽𝑖 , 𝑗 is explicitly 1D, in which case @𝛼𝑖 , 𝑗 ” @@𝛽𝑖 , 𝑗 ” @𝛽𝑖, 𝑗 ”

𝛼𝑖 , 𝑗 , so we can replace @𝛼𝑖 , 𝑗 with 𝛼𝑖, 𝑗 . The result is therefore a boolean
combination of @-atoms.

(:) Since : commutes with booleans:

:𝜙 ” :

𝑘∧
𝑖=1

𝑛𝑖∨
𝑗=1

𝛼𝑖 , 𝑗 ”

𝑘∧
𝑖=1

𝑛𝑖∨
𝑗=1

:𝛼𝑖, 𝑗

Now, either 𝛼𝑖 , 𝑗 is explicitly 1D or 𝛼𝑖, 𝑗 = @𝛽𝑖 , 𝑗 where 𝛽𝑖 , 𝑗 is explicitly 1D. In the
former case, :𝛼𝑖 , 𝑗 ” 𝛼𝑖 , 𝑗 by Lemma 5. In the latter case, :𝛼𝑖, 𝑗 ” :@𝛽𝑖 , 𝑗 ” :𝛽𝑖 , 𝑗 ,
which is equivalent to 𝛽𝑖, 𝑗 by Lemma 5 again. So either way, :𝛼𝑖 , 𝑗 ” 𝛼𝑖 , 𝑗 ,
which means 𝜙 is strictly equivalent to :𝜙 already.

□

Theorem 12. F is sound and complete for DMÅU.
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Proof. Let Γ be a F-consistent set of formulas. Take a maximal F-consistent exten-
sion Γ+ Ě Γ (the proof that one exists is standard). By Theorem 3, there is a deontic
matrix model ℳ and some 𝑦, 𝑥 P 𝑊 such that ℳ , 𝑦, 𝑥 , Γ+. We first show that
the valuation 𝑉 is already Åqvist. Then we show how to transform ℳ into an
equivalent model whose deontic accessibility relation is uniform.

First, 𝑉 is Åqvist: since ◻:◻(𝑝 Ø :𝑝) P Γ+ for all 𝑝 P Prop, it follows that
ℳ , 𝑤, 𝑣 , 𝑝 Ø :𝑝 for all 𝑤, 𝑣 P 𝑋. Henec, for all 𝑤, 𝑤1, 𝑣 P 𝑋:

⟨𝑤, 𝑣⟩ P 𝑉(𝑝) ô ℳ , 𝑤, 𝑣 , 𝑝
ô ℳ , 𝑤, 𝑣 , :𝑝
ô ℳ , 𝑣, 𝑣 , 𝑝
ô ℳ , 𝑤1, 𝑣 , :𝑝
ô ℳ , 𝑤1, 𝑣 , 𝑝
ô ⟨𝑤1, 𝑣⟩ P 𝑉(𝑝).

Next, we show how to transform ℳ into an equivalent one whose deontic
accessibility relation is uniform. Define 𝑅Y

𝑂 as follows:

⟨𝑤, 𝑣⟩𝑅Y
𝑂 ⟨𝑤, 𝑢⟩ ô ∃𝑧 : ⟨𝑧, 𝑣⟩𝑅𝑂 ⟨𝑧, 𝑢⟩

Define ℳY = ⟨𝑊 ˆ𝑊, 𝑅◻, 𝑅@, 𝑅:, 𝑅Y
𝑂 , 𝑉⟩. Clearly, 𝑅Y

𝑂 is uniform. (Note also that
if 𝑅𝑂 is rigid, so is 𝑅Y

𝑂 .)

Lemma 7. For all 𝑤, 𝑣 P 𝑊 and all explicitly 1D ℒD2D-formulas 𝜙:

ℳ , 𝑤, 𝑣 , 𝜙 ô ℳY, 𝑤, 𝑣 , 𝜙.

Proof. By induction on the complexity of 𝜙. We only present the 𝑂 case (the others
are straightforward). Suppose for inductive hypothesis that the claim holds of 𝜙.
Clearly, if ℳY, 𝑤, 𝑣 , 𝑂𝜙, then ℳ , 𝑤, 𝑣 , 𝑂𝜙 since 𝑅𝑂 Ď 𝑅Y

𝑂 . So we just need to
establish the converse.

Suppose ℳY, 𝑤, 𝑣 . 𝑂𝜙. Thus, for some 𝑢 P 𝑊 , we have ⟨𝑤, 𝑣⟩𝑅Y
𝑂 ⟨𝑤, 𝑢⟩

and ℳY, 𝑤, 𝑢 . 𝜙. By definition of 𝑅Y
𝑂 , for some 𝑧 P 𝑊 , ⟨𝑧, 𝑣⟩𝑅𝑂 ⟨𝑧, 𝑢⟩. And

by inductive hypothesis, ℳ , 𝑤, 𝑢 . 𝜙. Hence, by Lemma 5, ℳ , 𝑧, 𝑢 . 𝜙. So
ℳ , 𝑧, 𝑣 . 𝑂𝜙. But again by Lemma 5, ℳ , 𝑤, 𝑣 . 𝑂𝜙. □

Lemma 8. For all 𝑤, 𝑣 P 𝑊 and all @-atoms 𝜙:

ℳ , 𝑤, 𝑣 , 𝜙 ô ℳY, 𝑤, 𝑣 , 𝜙.

Proof. If 𝜙 is an explicitly 1D ℒD2D-formula, then this is ensured by Lemma 7. If
𝜙 = @𝜓 where 𝜓 is explicitly 1D, then:

ℳ , 𝑤, 𝑣 , @𝜓 ô ℳ , 𝑤, 𝑤 , 𝜓

ô ℳY, 𝑤, 𝑤 , 𝜓 (Lemma 7)
ô ℳY, 𝑤, 𝑣 , @𝜓.
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□

Hence, by Lemma 6, for any ℒD2D-formula 𝜙 and any 𝑤, 𝑣 P 𝑊 : ℳ , 𝑤, 𝑣 , 𝜙 iff
ℳY, 𝑤, 𝑣 , 𝜙. So ℳY, 𝑦, 𝑥 , Γ+. □
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