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Abstract
The fact that derivative securities are equivalent to specific dynamic trading
strategies in complete markets suggests the possibility of constructing
buy-and-hold portfolios of options that mimic certain dynamic investment
policies, e.g. asset-allocation rules. We explore this possibility by solving the
following problem: given an optimal dynamic investment policy, find a set of
options at the start of the investment horizon which will come closest to the
optimal dynamic investment policy. We solve this problem for several
combinations of preferences, return dynamics and optimality criteria, and
show that under certain conditions, a portfolio consisting of just a few options
is an excellent substitute for considerably more complex dynamic investment
policies.

1. Introduction
It is now well known that under certain conditions, complex
financial instruments such as options and other derivative
securities can be replicated by sophisticated dynamic trading
strategies involving simpler securities such as stocks and
bonds. This ‘delta-hedging’ strategy—for which Robert
Merton and Myron Scholes shared the Nobel Memorial
Prize in Economics in 1998—is largely responsible for the
multitrillion-dollar derivatives industry and is now part of the
standard toolkit of every derivatives dealer in the world.

The essence of delta-hedging is the ability to actively
manage a portfolio continuously through time, and to do so
in a ‘self-financing’ manner, i.e. no cash inflows or outflows
after the initial investment, so that the portfolio’s value tracks
the value of the derivative security without error at each point
in time, until the maturity date of the derivative. If such a
portfolio strategy were possible, then the cost of implementing
it must equal the price of the derivative, otherwise an arbitrage
opportunity would exist. Black and Scholes (1973) and Merton
(1973) used this argument to deduce the celebrated Black–
Scholes option-pricing formula, but an even more significant
outcome of their research was the insight that there exists
a correspondence between dynamic trading strategies over a
period of time and complex securities at a single point in time.

In this paper, we consider the reverse implications of
this correspondence by constructing an optimal portfolio of
1 Corresponding author.

complex securities at a single point in time to mimic the
properties of a dynamic trading strategy over a period of
time. Specifically, we focus on dynamic investment policies,
i.e. asset-allocation rules, that arise from standard dynamic
optimization problems in which an investor maximizes the
expected utility of his end-of-period wealth, and we pose
the following problem: given an investor’s optimal dynamic
investment policy for two assets, stocks and bonds, construct a
‘buy-and-hold’ portfolio—a portfolio that involves no trading
once it is established—of stocks, bonds and options at
the start of the investment horizon that will come closest
to the optimal dynamic policy. By defining ‘closest’ in
three distinct ways—expected utility, mean-squared error
of terminal wealth and utility-weighted mean-squared error
of terminal wealth—we propose three sets of numerical
algorithms for solving this problem in general, and characterize
specific solutions for several sets of preferences (constant
relative risk-aversion, constant absolute risk-aversion) and
return dynamics (geometric Brownian motion, mean-reverting
processes).

The optimal buy-and-hold problem is an interesting one
for several reasons. First, it is widely acknowledged that
the continuous-time framework in which most of modern
finance has been developed is an approximation to reality—it is
currently impossible to trade continuously, and even if it were
possible, market frictions would render continuous trading
infinitely costly. Consequently, any practical implementation
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of continuous-time asset-allocation policies invariably requires
some discretization in which the investor’s portfolio is
rebalanced only a finite number of times, typically at equally
spaced time intervals, with the number of intervals chosen
so that the discrete asset-allocation policy ‘approximates’ the
optimal continuous-time policy in some metric. However,
Merton’s (1973) insight suggests that it may be possible to
approximate a continuous-time trading strategy in a different
manner, i.e. by including a few well-chosen options in the
portfolio at the outset and trading considerably less frequently.
In particular, Merton (1995) observes that derivatives can be
an effective substitute for dynamic open-market operations of
central banks seeking to engage in interest-rate stabilization
policies. Therefore, in the presence of transactions costs,
derivative securities may be an efficient way to implement
optimal dynamic investment policies2. Indeed, we find that
under certain conditions, a buy-and-hold portfolio consisting
of just a few options is an excellent substitute for considerably
more complex dynamic investment policies.

Second, the approximation errors between the optimal
dynamic policy and the buy-and-hold policy will reveal
the importance of dynamic trading, the ‘completeness’ of
financial markets, and the ability of investors to achieve certain
financial goals in a cost-effective manner3. In particular,
the conditions that guarantee dynamic completeness are non-
trivial restrictions on market structure and price dynamics
(see, for example, Duffie and Huang (1985)), hence there are
situations in which exact replication is impossible. These
instances of market incompleteness are often attributable
to institutional rigidities and market frictions—transactions
costs, periodic market closures and discreteness in trading
opportunities and prices—and while the pricing of derivative
securities can still be accomplished in some cases via
equilibrium arguments4, this still leaves open the question of
how expensive it is to achieve certain financial objectives, or
how close one can come to those objectives for a given budget?

Finally, the optimal buy-and-hold portfolio can be used
to develop a measure of the risks associated with the
corresponding dynamic investment policy that the buy-and-
hold portfolio is designed to replicate. While there is general
agreement in the financial community regarding the proper
measurement of risk in a static context—the market beta
2 Taxes can be viewed as another type of transactions cost and the optimal
buy-and-hold portfolio offers several additional advantages over the optimal
dynamic investment policy for taxable investors.
3 Financial markets are said to be ‘complete’ (in the Arrow–Debreu sense)
if it is possible to construct a portfolio of securities at a point in time which
guarantees a specific payoff in a specific state of nature at some future date.
The notion of ‘dynamic completeness’ is the natural extension of this idea to
dynamic trading strategies. See Harrison and Kreps (1979) and Duffie and
Huang (1985) for a more detailed discussion.
4 Examples of continuous-time incomplete-markets models include Breeden
(1979), Duffie and Shafer (1985, 1986), Föllmer and Sonderman (1986),
Duffie (1987) and He and Pearson (1991). Examples of discrete-time
incomplete-markets models include Scheinkman and Weiss (1986), Aiyagari
and Gertler (1991), Heaton and Lucas (1992, 1996), Weil (1992), Telmer
(1993), Aiyagari (1994), Lucas (1994) and He and Modest (1995). Other
aspects of pricing and hedging in incomplete markets have been considered
by Magill and Quinzii (1996), Kallsen (1999), Kramkov and Schachermeyer
(1999), Bertsimas et al (2000b), Goll and Rueschendorf (2000) and Schäl
(2000).

from the Capital Asset Pricing Model—there is no consensus
regarding the proper measurement of risk for dynamic
investment strategies. Market betas are notoriously unreliable
in a multiperiod setting5, and other measures such as the Sharpe
ratio, the Sortino ratio and maximum drawdown have been
used to capture different risk exposures of dynamic investment
strategies. By developing a correspondence between a
dynamic investment strategy and a buy-and-hold portfolio, it
may be possible to construct a more comprehensive set of risk
measures for the dynamic strategy through the characteristics
of the buy-and-hold portfolio and the approximation error.

In section 2 we provide a brief review of the strands of
the asset allocation and derivatives pricing literature that are
most relevant to our problem. We describe the buy-and-hold
alternative to the standard asset-allocation problem in section 3
and propose three methods for solving it: maximization of
expected utility, minimization of mean-squared error and a
hybrid of the two (minimization of utility-weighted mean-
squared error). While the first approach is the most direct,
it is also the most computationally intensive. The latter two
approaches are simpler to implement, however, they do not
maximize expected utility and as a result, the portfolios that
they generate may be suboptimal. These issues are addressed
in more detail in sections 4 and 5 where we implement
the three methods for geometric Brownian motion, the
Ornstein–Uhlenbeck process, and a bivariate linear diffusion
process with a stochastic mean-reverting drift. Extensions,
qualifications and other aspects of the optimal buy-and-hold
portfolio are discussed in section 6, and we conclude in
section 7.

2. Literature review
The literature on asset allocation is vast and addresses a
broad set of issues, many that are beyond the scope of this
paper’s main focus6. Most studies that consider derivatives
in the context of asset allocation use option-pricing methods
to gauge the economic value of market-timing skills, e.g.
Merton (1981), Henriksson and Merton (1981), and Evnine
and Henriksson (1987). Carr et al (2000) solve the asset-
allocation problem in an economy where derivatives are
required to complete the market. Carr and Madan (2000)
consider a single-period model where agents are permitted to
trade the stock, bond and European options with a continuum
of strikes. Because of the inability to trade dynamically,
options constitute a new asset class and the impact of beliefs
and preferences on the agent’s positions in the three asset
classes is studied. In a general equilibrium framework, they
derive conditions for mutual-fund separation where some of the
separating funds are composed of derivative securities. None
of these papers explores the possibility of substituting a simple
buy-and-hold portfolio for a dynamic investment policy.

Three other strands of the literature are relevant to our
paper: Merton’s (1995) functional approach to understanding

5 See, for example, the short-put strategy described in Lo (2000).
6 See Sharpe (1987), Arnott and Fabozzi (1992) and Bodie et al (1999) for
more detailed expositions of asset allocation.
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the dynamics of financial innovation7, the literature on
dynamic portfolio choice with transactions costs, and the
literature on option replication.

Among the many examples contained in Merton (1995)
illustrating the importance of function in determining
institutional structure is the example of the German
government’s issuance in 1990 of ten-year Schuldschein bonds
with put-option provisions. Merton (1995) observes that
the put provisions have the same effect as an interest-rate
stabilization policy in which the government repurchases
bonds when bond prices fall and sells bonds when bond
prices rise. More importantly, Merton (1995) writes that
‘. . . the put bonds function as the equivalent of a dynamic,
‘open market’, trading operation without any need for actual
transactions’. This automatic stabilization policy is a ‘proof
of concept’ for the possibility of substituting a buy-and-hold
portfolio for a particular dynamic investment strategy, and the
optimal buy-and-hold portfolio of section 3 may be viewed as
a generalization of Merton’s automatic stabilization policy to
the asset-allocation problem.

Magill and Constantinides (1976) were among the first
to point out that in the presence of transactions costs, trading
occurs only at discrete points in time. More recent studies
by Davis and Norman (1990), Aiyagari and Gertler (1991),
Heaton and Lucas (1992, 1996) and He and Modest (1995)
have contributed to the growing consensus that trading costs
have a significant impact on investment performance and,
therefore, investor behaviour. Despite the recent popularity of
internet-based day-trading, it is now widely accepted that buy-
and-hold strategies such as indexation are difficult to beat—
transactions costs and management fees can quickly dissipate
the value-added of many dynamic asset-allocation strategies.

The option-replication literature is relevant to our paper
primarily because of the correspondence between a complex
security and a dynamic trading strategy in simpler securities, an
insight which gave rise to this literature. The classic references
are Black and Scholes (1973), Merton (1973), Cox and Ross
(1976), Harrison and Kreps (1979), Duffie and Huang (1985),
and Huang (1985a, b). More recently, several studies have
considered the option-replication problem directly, in some
cases using mean-squared error as the objective function to be
minimized8, and in other cases with transactions costs9. In the
latter set of studies, the existence of transactions costs induces
discrete trading intervals, and the optimal replication problem
is solved for some special cases, e.g. call and put options on
stocks with geometric Brownian motion or constant-elasticity-
of-variance price dynamics, or for more general derivative
securities under vector-Markov price processes.

We take these somewhat disparate literatures as our
starting point. Merton’s (1995) automatic stabilization policy
illustrates the possibility of substituting a static buy-and-
hold portfolio for a specific dynamic trading strategy, i.e. an

7 See also, Bodie and Merton (1995) and Merton (1997).
8 See, for example, Duffie and Jackson (1990), Schweizer (1992, 1995, 1996),
Schäl (1994), Delbaen and Schachermeyer (1996) and Bertsimas et al (2000a).
9 See Leland (1985), Hodges and Neuberger (1989), Bensaid et al (1992),
Boyle and Vorst (1992), Davis et al (1993), Edirisinghe et al (1993), Henrotte
(1993), Avellaneda and Paras (1994), Neuberger (1994), Whalley and Wilmott
(1994), Grannan and Swindle (1996) and Toft (1996).

interest-rate stabilization policy. The fact that trading is costly
implies that continuous asset-allocation is not feasible, and that
alternatives to frequent trading are important to investors. The
technology for replicating options is clearly well established,
and a natural generalization of that technology is to construct
portfolios of options that replicate more general dynamic
trading strategies. We begin developing this generalization
in the next section.

3. The optimal buy-and-hold portfolio
The asset-allocation problem has become one of the classic
problems of modern finance, thanks to Samuelson’s (1969)
and Merton’s (1969) pioneering studies over three decades
ago. The simplest formulation—one without intermediate
consumption—consists of an investor’s objective to maximize
the expected utility E[U(WT )] of end-of-period wealth WT by
allocating his wealth Wt between two assets, a risky security
(the ‘stock’) and a riskless security (the ‘bond’), over some
investment horizon [0, T ]. The bond is assumed to yield a
riskless instantaneous return of r dt and with an initial market
price of $1, the bond price at any date t is simply exp(rt). The
stock price is denoted by Pt and is typically assumed to satisfy
an Itô stochastic differential equation:

dPt = µ(Pt , t) Pt dt + σ(Pt , t) Pt dBt (3.1)

where Bt is standard Brownian motion and µ(Pt , t) and
σ(Pt , t) satisfy certain regularity conditions that ensure the
existence of a solution to (3.1). The standard asset-allocation
problem is then:

Max{ωt }E[U(WT )] (3.2)

subject to

dWt = [r + ωt(µ − r)]Wt dt + ωtWtσ dBt (3.3)

where ωt is the fraction of the investor’s portfolio invested in
the stock at time t and (3.3) is the budget constraint that wealth
Wt must satisfy at all times t ∈ [0, T ].10

Denote by {ω∗
t } the optimal dynamic investment policy,

i.e. the solution to (3.2) and (3.3), and let W ∗
T denote the end-

of-period wealth generated by the optimal policy. The question
we wish to answer in this paper is: how close can we come
to this optimal policy with a buy-and-hold portfolio of stocks,
bonds and options? We measure closeness in three ways: a
direct approach in which we maximize the expected utility
of the buy-and-hold portfolio, and two indirect approaches
in which we minimize the mean-squared error and weighted
mean-squared error between W ∗

T and the end-of-period wealth
of the buy-and-hold portfolio. These three approaches are
described in sections 3.1–3.3, respectively.

3.1. Maximizing expected utility

Our reformulation of the standard asset-allocation problem
(3.2) and (3.3) contains only two modifications: (1) we allow
the investor to include up to n European call options in his

10 See Merton (1992, chapter 5) for details.
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portfolio at date 0 which expire at date T ;11 and (2) we do not
allow the investor to trade after setting up his initial portfolio
of stocks, bonds and options. Specifically, denote by Di the
date-T payoff of a European call option with strike price equal
to ki , hence:

Di = (PT − ki)
+. (3.4)

Then the ‘buy-and-hold’ asset-allocation problem for the
investor is given by:

Max{a,b,ci ,ki }E[U(VT )] (3.5)

subject to

VT ≡ a exp(rT ) + b PT + c1D1 + c2D2 + · · · + cnDn (3.6)

W0 = exp(−rT )EQ[VT ] (3.7)

where a and b denote the investor’s position in bonds and
stock, and c1, . . . , cn the number of options with strike prices
k1, . . . , kn, respectively. Note that we use VT instead of WT

to denote the investor’s end-of-period wealth to emphasize
the distinction between this case and the standard asset-
allocation problem in which stocks and bonds are the only
assets considered and intermediate trading is allowed.

The budget constraint is given by (3.7), where EQ[·]
is the expectation operator under the equivalent martingale
measure Q.12 This constraint is highly nonlinear in the option
strikes {ki}, creating significant computational challenges for
any optimizer. Moreover, for certain utility functions, it is
necessary to impose solvency constraints to avoid bankruptcy,
and such constraints add to the computational complexity of
the problem.

For these reasons, our approach for solving (3.5)–(3.7)
consists of two steps. In the first step, we assume that the
strike prices {ki} are fixed, in which case (3.5)–(3.7) reduces
to maximizing a concave objective function subject to linear
constraints. Such a problem has a unique global optimum that
is generally quite easy to find. This is done by discretizing
the distribution of PT and solving the Karush–Kuhn–Tucker
conditions which, in this case, are sufficient for an optimal
solution13. We will refer to this problem—where the strikes
{ki} are fixed—as the ‘subproblem’.

The second step involves determining the best set of
strikes. We propose to solve this problem by specifying in
advance a large number, N 	 n, of possible strikes where the
N strikes are chosen to be representative of the distribution of
PT . We then solve the subproblem for each of the

(
N

n

)
possible

combinations of options and select the best combination.
In selecting the set of N strikes, we must ensure that

their range spans a significant portion of the support of PT .
Therefore, the distribution of PT must be taken into account in
specifying the strikes. Given a distribution for PT , we select

11 Without loss of generality, we focus exclusively on call options for
expositional simplicity. Parallel results for put options can be easily derived
via put-call parity (see, for example, Cox and Rubinstein (1985)).
12 Note that specifying Q yields pricing formulae for all the options contained
in our optimal buy-and-hold portfolio since exp(−rT )EQ[Di ] is the date-0
price of option i. Therefore, option-pricing formulae are implicit in (3.7).
For example, it is easy to verify that under geometric Brownian motion,
exp(−rT )EQ[Di ] reduces to the celebrated Black–Scholes formula.
13 See, for example, Bertsekas (1999).

an interval of its support and choose N points—spaced either
evenly (for simplicity) or according to the probability mass of
the distribution ofPT (for efficiency)—so that approximately 4
to 6 standard deviations ofPT are contained within the interval.

In solving each subproblem, we discretize the distribution
of PT . This yields a straightforward nonlinear optimization
problem with a concave objective function and linear
constraints, which can be solved relatively quickly.

One subtlety arises for CRRA utility: the function is not
defined for negative wealth. In such cases, the following n+2
solvency constraints must be imposed along with the budget
constraint to ensure non-negative wealth:

0 � a exp(rT )
0 � a exp(rT ) + bk1

0 � a exp(rT ) + (b + c1)k2 − c1k1
...

0 � a exp(rT ) + (b + c1 + · · · + cn−1)kn
−(c1k1 + · · · + cn−1kn−1)

0 � b + c1 + · · · + cn
0 � k1 � k2 � · · · � kn.

(3.8)

3.2. Minimizing mean-squared error

In situations where the computational demands of the buy-
and-hold asset-allocation problem of section 3.1 are too great,
a less demanding alternative is to use mean-squared error as
the metric for measuring the closeness of the end-of-period
wealth VT of the buy-and-hold portfolio of stocks, bonds,
and options with the end-of-period wealth W ∗

T of the optimal
portfolio. In addition, for dynamic investment policies that
are not derived from maximization of expected utility, e.g.
dollar-cost averaging, a mean-squared-error objective function
may be appropriate. In this case, the buy-and-hold portfolio
problem becomes:

Min{a,b,ci ,ki }E[(W ∗
T − VT )

2] (3.9)

subject to

VT ≡ a exp(rT ) + b PT + c1D1 + c2D2 + · · · + cnDn (3.10)

W0 = exp(−rT )EQ[VT ] (3.11)

If W ∗
T depends only on the terminal stock price PT and not

on any of its path {Pt }—as is the case when {Pt } follows
a geometric Brownian motion and W ∗

T is the end-of-period
wealth from an optimization of an investor’s expected utility—
it can be shown that VT can be made arbitrarily close to W ∗

T in
mean-square as the number of options n in the buy-and-hold
portfolio increases without bound. If we do not impose any
additional constraints beyond the budget constraint (such as the
solvency constraints (3.8) of section 3.1), the corresponding
subproblems for (3.9)–(3.11) can be solved very quickly, and
the first-order conditions, which are necessary and sufficient,
merely amount to solving a series of linear equations.

Specifically, the subproblem associated with (3.9)–(3.11)
consists of selecting portfolio weights for stocks, bonds and
options to minimize the mean-squared error between W ∗

T and
VT , holding fixed the strike prices {ki} of then options available
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to the investor. It is clear from (3.9)–(3.11) that for fixed
strike prices, the objective function is convex so the first-order
conditions are sufficient to characterize an optimal solution.
These conditions may be written as

exp(rT ) E [PT ] E [D1] · · · E [Dn] exp(−rT )

exp(rT )E [PT ] E
[
P 2
T

]
E [D1PT ] · · · E [DnPT ] P0

exp(rT )E [D1] E [PT D1] E
[
D2

1

] · · · E [DnD1] exp(−rT )EQ[D1]

exp(rT )E [D2] E [PT D2] E [D1D2] · · · E [DnD2] exp(−rT )EQ[D2]

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

exp(rT )E [Dn] E [PT Dn] E [D1Dn] · · · E
[
D2

n

]
E
[
D2

n

]
exp(rT ) exp(rT )P0 EQ[D1] · · · EQ [Dn] 0




a

b

c1

c2

.

.

.

cn

λ


=



E
[
W ∗

T

]
E
[
W ∗

T PT

]
E
[
W ∗

T D1
]

E
[
W ∗

T D2
]

.

.

.

E
[
W ∗

T Dn

]
exp(rt)W0


(3.12)

or, in matrix notation:

Ση = ε (3.13)

where λ is the Lagrange multiplier corresponding to the budget
equation.

Inverting (3.13) to compute

η̂ = Σ−1ε (3.14)

and then substituting η̂ ≡ [â b̂ ĉ1 · · · ĉnλ̂]′ into the objective
function (3.9) yields the optimal value for a given subproblem.
Repeating this procedure for all

(
N

n

)
subproblems and selecting

the best of these solutions gives an approximate solution to
(3.9)–(3.11).

However, for some utility functions, it is necessary to
impose the solvency constraints (3.8), in which case the
solution to the subproblem cannot be simplified according to
(3.14).

3.3. Minimizing weighted mean-squared error

A third alternative to the two approaches outlined in
sections 3.1 and 3.2 is to maximize expected utility but
where we substitute an approximation for the utility function.
This yields a weighted mean-squared-error objective function
where the weighting function is the second derivative of the
utility function evaluated at the optimal end-of-period wealth
W ∗

T . This is a hybrid of the two approaches proposed above that
provides important economic motivation for mean-squared
error, and approximates the direct approach of maximizing
expected utility described in section 3.1.

Specifically, consider the subproblem of section 3.1 in
which we maximize expected utility holding fixed the strike
prices {ki}:

Max{a,b,ci }E[U(VT )]

subject to the budget (3.7) and solvency constraints (3.8). Take
a Taylor expansion of U(W ∗

T ± λ(W ∗
T −VT )) about the global

optimal W ∗
T :

E[U(W ∗
T ± λ(W ∗

T − VT ))]

≈ E[U(W ∗
T )] ± λE[(W ∗

T − VT )U
′(W ∗

T )]

+
λ2

2
E[(W ∗

T − VT )
2U ′′(W ∗

T )]. (3.15)

If VT were ‘budget feasible’, by which we mean that
exp(−rT )EQ[VT ] = W0, and VT were sufficiently close to
W ∗

T , then this implies that ±λ(W ∗
T −VT ) is a feasible direction

of travel from W ∗
T . For sufficiently small λ, (3.15) implies that

E[(W ∗
T − VT )U

′′(W ∗
T )] = 0

under certain regularity conditions. Therefore, maximizing
E[U(VT )] should be equivalent to maximizing

1
2 E[(W ∗

T − VT )
2 U ′′(W ∗

T )] (3.16)

for VT sufficiently close to W ∗
T . This gives rise to a third

approach to the buy-and-hold asset-allocation problem, one
that involves approximating W ∗

T in mean-square rather than
explicitly maximizing expected utility:

Min{a,b,ci ,ki }E[−U ′′(W ∗
T )(W

∗
T − VT )

2] (3.17)

subject to

VT ≡ a exp(rT ) + b PT + c1D1 + c2D2 + · · · + cnDn (3.18)

W0 = exp(−rT )EQ[VT ]. (3.19)

For CRRA utility, we still need to impose solvency constraints,
but even with such constraints we can solve the subproblem
much more quickly in the weighted mean-squared error case
than in the maximization of expected utility proposed in
section 3.1. Indeed, the computational challenges for the
weighted mean-squared error approach are comparable to the
mean-squared error approach of section 3.2.

A potential difficulty with the utility-weighted mean-
squared-error approach is that some of the expectations in
(3.17) may not be defined. Even when the expectations are
defined, it is possible that some of them are very difficult
to compute when they are ill-conditioned, i.e. ‘close’ to
being undefined. In such cases the approach either will not
work or will be very difficult to implement. This typically
occurs for low values of relative risk aversion. Fortunately,
it is precisely for low values of risk aversion that a direct
maximization of expected utility works best. The reason
is that the discretization of the support of PT leads to
approximation errors that can be extreme for high values of risk
aversion. In particular, the discretized distribution has finite
support, hence the optimal buy-and-hold strategy obtained
with this distribution may perform poorly outside this finite
support. The power-law specification of CRRA preferences
will magnify small approximation errors of this type when the
risk-aversion parameter is large.

Therefore, the maximization of expected utility and
the minimization of utility-weighted mean-squared-error
complement each other. As we will see in section 5,
when both approaches work well, they result in almost
identical portfolios and certainty equivalents. Therefore, in the
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numerical examples of section 5, we will maximize expected
utility for low values of relative risk aversion and minimize
utility-weighted mean-squared-error for higher values when
computing the utility-optimal buy-and-hold portfolios.

4. Three leading cases
To derive the optimal buy-and-hold portfolios according to the
three criteria of section 3, we require a few auxiliary results
that depend on the specific utility function of the investor and
the stochastic process for stock prices. In this section, we
derive these results for CRRA and CARA utility under three
leading cases for the stock-price process: geometric Brownian
motion (section 4.1), the trending Ornstein–Uhlenbeck process
(section 4.2), and a bivariate linear diffusion process with a
stochastic mean-reverting drift (section 4.3).

In the case of geometric Brownian motion, the required
results are straightforward—we are able to characterize W ∗

T

explicitly for both CRRA and CARA preferences, and all
three approaches to the optimal buy-and-hold portfolio can
be readily implemented. However, for the other two stochastic
processes, the optimal dynamic asset-allocation strategies are
path dependent, which implies that no buy-and-hold portfolio
of stocks, bonds and European call options can ever achieve the
same certainty equivalents as the optimal dynamic strategies.
In such situations, we propose an alternative to W ∗

T as a
target for the optimal buy-and-hold portfolio, and derive this
alternative explicitly in sections 4.2 and 4.3.

4.1. Geometric Brownian motion

In the case of geometric Brownian motion, the stock price Pt

satisfies the following stochastic differential equation (SDE):

dPt = µPt dt + σPt dBt (4.1)

where Bt is a standard Brownian motion. Recall that the
standard asset-allocation problem in the absence of derivatives
is given by (3.2) and (3.3):

Max{ωt }E[U(WT )]

subject to the budget equation

dWt = [r + ωt(µ − r)]Wt dt + ωtWtσ dBt

where ωt is the fraction of the investor’s portfolio invested in
the stock at time t (see Merton (1969, 1971) for a more detailed
exposition). For concreteness, we consider two specific
utility functions: constant absolute risk-aversion (CARA)
and constant relative risk-aversion (CRRA) utility. These
are well-known utility functions for which there are closed-
form solutions to the standard asset-allocation problem. In
particular, for CRRA utility, we have:

U(WT ) = W
γ

T

γ
(4.2)

W ∗
T = W0 exp

(
rT − ξ 2T (2γ − 1)

2 (1 − γ )2 +
ξBT

(1 − γ )

)
(4.3)

ω∗
t = µ − r

(1 − γ ) σ 2
(4.4)

and for CARA utility,

U(WT ) = − exp (−γWT )

γ
(4.5)

W ∗
T = γW0 exp(rT ) + ξ 2T + ξBT

γ
, ξ ≡ µ − r

σ
(4.6)

ω∗
t = exp(−r(T − t))ξ

γ σWt

. (4.7)

Given these closed-form solutions, we can make explicit
comparisons of the optimal buy-and-hold portfolio of stocks,
bonds and options with the standard optimal asset-allocation
strategies for the two utility functions.

4.2. The Ornstein–Uhlenbeck process

If stock prices are predictable to some degree, the asset-
allocation problem becomes considerably more challenging
since the optimal investment strategy is path-dependent. This
implies that of W ∗

T is also path-dependent and very difficult to
compute explicitly, hence the mean-squared-error approaches
of sections 3.2 and 3.3 are not feasible. However, in
certain cases, it is possible to derive an upper bound on the
certainty equivalent of the optimal buy-and-hold portfolio of
stocks, bonds and options, which provides some indication
of the benefits of options in replicating dynamic investment
strategies. We present such an upper bound in this section
for the case where log-prices Xt ≡ logPt follow a trending
Ornstein–Uhlenbeck process14:

dXt = [−δ (Xt − µt − X0) + µ] dt + σ dBt, δ > 0.
(4.8)

which has the solution:

Xt = X0 + µt + σ exp(−δt)

∫ t

0
exp(δs) dBs. (4.9)

The solution to the standard asset-allocation problem (3.2) and
(3.3) in this case is characterized by the following Hamilton–
Jacobi–Bellman equation:

0 = Maxωt

{
Jt + WtJW

(
r + ωt [−δ(Xt − µt − X0) + µ

+ 1
2σ

2 − r]
)

+ JX(−δ(Xt − µt − X0) + µ)

+ 1
2ω

2
t σ

2W 2
t JWW + 1

2σ
2JXX + σ 2ωtWtJXW

}
(4.10)

where
J (Wt,Xt , t) ≡ Maxωt

Et [U(WT )]. (4.11)

The solutions to (4.10) for CRRA and CARA utility are given
in the appendix.

Because W ∗
T is path-dependent in this case, even if we

allow the number of options n in the buy-and-hold portfolio
to increase without bound, the certainty equivalent of the buy-
and-hold portfolio will never approach the certainty equivalent
of W ∗

T . However, an upper bound on the certainty equivalent
of any buy-and-hold portfolio can be derived by allowing the
investor to purchase an unlimited number of options at all

14 See Lo and Wang (1995) for a more detailed exposition of its properties.
We also derive results for the standard Ornstein–Uhlenbeck process (without
trend), which are included in the appendix.
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possible strike prices. The certainty equivalent of the end-of-
period wealth in this case, which we denote by V∞

T , is clearly
an upper bound for any buy-and-hold portfolio containing a
finite number n of options.

To derive V∞
T , we require the conditional state-price

density of the terminal stock price PT , defined as:

πb
T ≡ E [πT |PT = b] (4.12)

where πT is the unconditional state-price density of the
terminal stock price15. The economic interpretation of πb

T is
the price per unit probability of 1 unit of wealth at time T in
the event that PT = b. By definition, πb

T is given by:

πb
T = E [πT |PT = b] = E

[
πT 1{PT =b}

]
E
[
1{PT =b}

] . (4.13)

The numerator of (4.13) is computed by applying Girsanov’s
theorem and noting that the Radon–Nikodym derivative
dQ/dF of the equivalent martingale measureQwith respect to
the true probability measure F is equal to exp(rT )πT . Under
Q, the stock price at time T is given by

P
Q
T = exp (ZT ) ≡ P0 exp

((
r − σ 2

2

)
T + σB̂T

)
. (4.14)

where B̂T is a standard Brownian motion under Q. Under the
true probability measure, F , recall that the stock price at time
T is given by

PT = exp (XT ) ≡ exp

(
X0 + µT + σe−δT

∫ T

0
eδsdBs

)
.

(4.15)
With this in mind, we can write (4.13) as

πb
T = exp(−rT )f

Q
PT
(b)

fPT
(b)

(4.16)

where fPT
and f

Q
PT

denote the log-normal density functions of
PT under F and Q respectively. Simplifying (4.16) yields:

πb
T =

(
σx

σz

)
exp

(
− rT

−1

2

[(
log b − µz

σz

)2

−
(

log b − µx

σx

)2
])

(4.17)

where

µx = X0 + µT, σ 2
x = σ 2

2δ
(1 − exp(−2δT ))

µz = X0 +

(
r − σ 2

2

)
T , σ 2

z = σ 2T . (4.18)

Using πb
T as the state-price density process, we can derive the

optimal buy-and-hold portfolio in which options of all possible
strikes may be included. Using the approach proposed in Cox

15 See Duffie (1996) for a more detailed exposition of state-price densities.

and Huang (1989) for the case of CRRA utility, the problem
reduces to:

max E

[
(VT )

γ

γ

]
subject to E

[
πb
T VT

] = W0

(4.19)
which has the solution:

V∞
T = W0

(
πb
T

) 1
γ−1

E
[(
πb
T

) γ

γ−1

] (4.20)

where

E
[(
πb
T

) γ

γ−1

]
= σo

σx

(
σx

σz

) γ

γ−1

exp

(
−rT γ

γ − 1
+

γ
[
µx − µz

]2

2
[
γ − 1

] [
γ σ 2

x − σ 2
z

])
and

σ 2
o = σ 2

x σ
2
z (γ − 1)(

γ σ 2
x − σ 2

z

) . (4.21)

This, in turn, implies:

U∞ ≡ E

[(
V∞
T

)γ
γ

]
= W

γ

0

γ
E
[(
πb
T

) γ

γ−1

]1−γ

CE(V∞
T ) = (

γU∞) 1
γ

where CE(·) denotes the certainty equivalent operator.
The case of CARA utility can also be handled in a similar

manner.
Having solved for the optimal buy-and-hold portfolio

and its certainty equivalent in the infinite options case, we
can now compare this upper bound to the optimal buy-and-
hold portfolios with a finite number of options. We use the
same method as in the geometric Brownian motion case (see
section 4.1), hence we omit the details.

4.3. A bivariate linear diffusion process

We now turn to a third set of price dynamics for Pt , one
in which there are two sources of uncertainty, implying that
markets are incomplete. Nevertheless, we are still able to
compute optimal buy-and-hold portfolios of stocks, bonds and
options, and can also derive the upper bound to the buy-and-
hold certainty equivalents as in section 4.2. Specifically, let
Xt ≡ logPt satisfy the following bivariate linear diffusion
process:

dXt =
(
µt − σ 2

1

2

)
dt + σ1dB1t (4.22)

dµt = κ (θ − µt) dt + σ2dB2t (4.23)

where B1t and B2t are two standard Brownian motions with
instantaneous correlation coefficient ρ. Kim and Omberg
(1993, 1996) derive the optimal value function for the standard
asset-allocation problem with these price dynamics for an
investor with CARA utility. Despite the fact that markets are
incomplete, it is clear that options can be replicated using
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trading strategies in only the stock and the bond16, hence
options can be priced by arbitrage in this case. Therefore, we
can perform the same analysis for these dynamics as we did for
geometric Brownian motion in section 4.1 and the Ornstein–
Uhlenbeck process in section 4.2.

To derive V∞
T for the bivariate diffusion (4.22) and (4.23),

we perform a similar set of calculations as in section 4.2. We
begin by solving (4.22) and observing that PT is log-normally
distributed with parameters:

µX = X0 + (θ − σ 2
1

2
)T +

θ − µo

κ
(exp(−κT ) − 1) (4.24)

σ 2
x = σ 2

1 T +
2σ1σ2ρ

κ

[
T +

exp(−κT )

κ
− 1

κ

]
+
σ 2

2

κ3

[
T κ − 3

2
+ 2 exp(−κT ) − exp(−2κT )

2

]
.

(4.25)

The conditional state-price density then follows in the same
manner as (4.17):

πb
T =

(
σx

σz

)
exp

(
− rT

− 1

2

[(
log b − µz

σz

)2

−
(

log b − µx

σx

)2
])

(4.26)

where

µz = X0 +

(
r − σ 2

2

)
T , σ 2

z = σ 2T (4.27)

With the conditional state-price density in hand, V∞
T and its

certainty equivalent are readily derived.

5. Numerical results
To illustrate the practical relevance of our optimal buy-and-
hold portfolio, we provide numerical results in this section
for CRRA preferences under each of the three stochastic
processes of section 4 using the nonlinear programming solver
LOQO and the algebraic mathematical programming language
AMPL17. Before turning to those results, we begin with a
simple example to motivate our analysis. Let stock prices
follow geometric Brownian motion (4.1) and set

U(WT ) = W
γ

T

γ
, γ = − 4,

W0 = $100 000, T = 20 years,

P0 = $50, r = 0.05,

µ = 0.15, σ = 0.20

which implies a relative risk-aversion coefficient of 5, a
portfolio weightω∗

t of 50% for the stock in the optimal dynamic
asset-allocation policy (4.4), and a certainty equivalent of
$448 169 forW ∗

T . Now consider the problem of constructing an
optimal buy-and-hold portfolio containing stocks, bonds, and

16 For further discussion, see Lo and Wang (1995).
17 AMPL is described in Fourer et al (1999). Information on LOQO can be
obtained from http://www.princeton.edu/ loqo/.

a maximum of two options, assuming that there are only four
possible options to choose from, with the following strikes:

k1 = $176, k2 = $976, k3 = $1775, k4 = $2575.

For the approach outlined in section 3.1, we maximize the
expected utility:

Max{a,b,ci ,ki }E[U(VT )]

subject to

VT ≡ a exp(rT ) + b PT + c1D1 + c2D2

W0 = exp(−rT )EQ[VT ]

and the corresponding solvency constraints. We discretize the
support of PT using a grid of 4000 points, chosen in such a
way that the weight associated with each point in the objective
function is equal to 1/4000. A direct optimization then yields
the following certainty equivalents for subproblems of the
optimal buy-and-hold problem for the various combinations
of strikes:

Options Used: CE(V ∗
T ):

1 and 2 $447 307
1 and 3 $447 137
1 and 4 $447 067
2 and 3 $437 971
2 and 4 $437 850
3 and 4 $436 506

(5.1)

From (5.1), it is apparent that the optimal buy-and-hold strategy
is to use options with strikes k1 = 176 and k2 = 976, and the
optimal portfolio positions are:

a∗ = $36 097, b∗ = 1521, c∗
1 = −907, c∗

2 = −353.
(5.2)

With only two options, the optimal buy-and-hold portfolio
yields an estimated certainty equivalent of $447 30718, which
is 99.8% of the certainty equivalent of the optimal dynamic
asset-allocation strategy, a strategy that requires continuous
trading over a 20-year period!

Note that the portfolio weights implied by the positions
(5.2) are 36.1% in bonds, 76.1% in stocks and −12.2%
in options. The optimal buy-and-hold portfolio consists
of shorting options 1 and 2, and investing the proceeds—
approximately $12 100—in stocks and bonds along with the
initial wealth of $100 000.

Alternatively, we can minimize the mean-squared error
between VT and W ∗

T according to section 3.2:

Min{a,b,ci ,ki }E[(W ∗
T − VT )

2]

subject to

VT ≡ a exp(rT ) + b PT + c1D1 + c2D2

W0 = exp(−rT )EQ[VT ]

18 The estimation error is due to the discretization of the distribution of PT .
Once we obtain the strategy (5.2), we can compute the certainty equivalent
exactly, and in this case, it is $446 034, which is 99.5% of the certainty
equivalent of the optimal dynamic asset-allocation strategy.
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and also subject to the solvency constraints (3.8). The root-
mean-squared-error (RMSE) (as a percentage of E[W ∗

T ]) of
each of the subproblems is given by:

Options Used: RMSE (%):
1 and 2 6.27
1 and 3 4.73
1 and 4 5.69
2 and 3 6.47
2 and 4 5.75
3 and 4 9.95

Under the mean-squared-error criterion, the optimal buy-and-
hold portfolio consists of a different set of options than under
the expected-utility criterion—in this case, options 1 and 3—
and the optimal positions are:

a∗ = $20 928, b∗ = 1980, c∗
1 = −1508, c∗

2 = −291.
(5.3)

With such a buy-and-hold portfolio, the root-mean-squared-
error is 4.73% of the expected value of W ∗

T , and the certainty
equivalent of this portfolio is $436 034, which is 97.3% of the
certainty equivalent of the optimal dynamic asset-allocation
strategy. Despite the fact that (5.3) is only an indirect method of
approximating W ∗

T , the certainty equivalent is almost identical
to that of the optimal dynamic strategy. The portfolio weights
corresponding to (5.3) are 20.9% in bonds, 99.0% in stocks
and −19.9% in options.

Finally, if we minimize the weighted mean-squared-error
according to section 3.3,

Min{a,b,ci ,ki }E[−U ′′(W ∗
T )(W

∗
T − VT )

2]

subject to

VT ≡ a exp(rT ) + b PT + c1D1 + c2D2

W0 = exp(−rT )EQ[VT ]

and the solvency constraints (3.8), we obtain the following
weighted RMSEs for the various subproblems:

Options Used: Weighted RMSE:
1 and 2 0.738
1 and 3 0.764
1 and 4 0.777
2 and 3 1.830
2 and 4 1.839
3 and 4 2.013

which yields an optimal buy-and-hold portfolio containing
options 1 and 2 and positions:

a∗ = $35 321, b∗ = 1523, c∗
1 = −930, c∗

2 = −349.
(5.4)

Although the weighted RMSE of the optimal buy-and-hold
portfolio, 0.738, is somewhat difficult to interpret, the certainty
of equivalent of the portfolio is $445 967 which is 99.5%
of the certainty equivalent of the optimal dynamic asset-
allocation strategy. With portfolio weights of 35.3% in bonds,
76.2% in stocks and −11.5% in options, the minimum utility-
weighted mean-squared-error approach yields an almost-
identical solution to the maximum expected-utility approach

(recall that the portfolio weights of the latter are 36.1% in
bonds, 76.1% in stocks and −12.2% in options). Therefore,
the hybrid approach provides an excellent approximation to
the maximization of expected utility.

In sections 5.1–5.3, we perform more computationally
intense optimizations for the three stochastic processes of
section 4 under CRRA preferences using the three approaches
described in section 3: maximizing expected utility, and
minimizing mean-squared error and weighted mean-squared
error. In particular, for each stochastic process, we compute
two optimal buy-and-hold portfolios for each of six different
values of the relative risk aversion coefficient (RRA =
1, 2, 5, 10, 15, 20): a utility-optimal buy-and-hold portfolio
obtained by either direct maximization of expected utility or
minimization of utility-weighted mean-squared error (as in
sections 3.1 and 3.3, respectively), and a mean-square-optimal
buy-and-hold portfolio (as in section 3.2). For each stochastic
process and each value of the relative risk-aversion coefficient,
we consider N = 45 possible strike prices and up to n = 3
options for the utility-optimal buy-and-hold portfolios and up
to n = 5 options for the mean-square-optimal buy-and-hold
portfolios. This yields up to

(45
3

)=14 190 and
(45

5

)=1221 759
subproblems for each of the two optimizations, respectively.

The strikes are selected in the following way. Letting
µx and σx denote the mean and variance of XT ≡ logPT ,
we partition the interval [ exp(µx−3σx) , exp(µx+3σx) ] into
45 evenly spaced points which we denote by s1 ≡ exp(µx −
3σx), . . . , s45 ≡ exp(µx +3σx). We then use these points as
our strikes, ki = si , i = 1, . . . , 45. Such a procedure for
choosing the set of strikes {ki} is simple to implement, however,
more sophisticated methods can be employed to improve the
performance of the overall optimization process.

To facilitate comparisons across different optimal buy-
and-hold portfolios we use one set of 45 strikes for each
of the three stochastic processes considered in sections 5.1–
5.3, i.e. for each stochastic process, we construct one set
of 45 strikes and keep these fixed as we vary the values of
relative risk aversion and the number of options n in the buy-
and-hold portfolio. This is clearly suboptimal—for example,
when n = 1, we can optimize the buy-and-hold portfolio
over several thousand possible strike prices very quickly—
but holding the strikes fixed allows us to gauge the impact of
other parameters such as the risk-aversion coefficient and the
number of options on the objective function being optimized.
In practical applications, the set of possible strikes should be
optimized for each specification of the buy-and-hold problem;
in our limited experience, simple heuristics for optimizing the
set of strikes can lead to substantial improvements in overall
performance.

For each of the three cases considered in sections 5.1–5.3,
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we maintain the following set of assumptions:

U(WT ) = W
γ

T

γ

γ = 0,−1,−4,−9,−14,−19
W0 = $100 000
T = 20 years
P0 = $50
r = 0.05
E[log(Pt/Pt−1)] = 0.15
Var[log(Pt/Pt−1)] = 0.202

(5.5)

where the values of γ correspond to relative risk-aversion
coefficients of 1, 2, 5, 10, 15, and 20, respectively.

5.1. Geometric Brownian motion

For geometric Brownian motion (4.1), we set the parameters
(µ, σ ) to match the mean and variance of continuously
compounded returns specified in (5.5). Based on our algorithm
for constructing the set of strike prices from the distribution of
logPT , we select the strikes for our n options from among the
following 45 possibilities (in dollars):

69 401 733 1 066 1 398
1 731 2 063 2 396 2 728 3 061
3 393 3 725 4 058 4 390 4 723
5 055 5 388 5 720 6 052 6 385
6 717 7 050 7 382 7 715 8 047
8 379 8 712 9 044 9 377 9 709

10 042 10 374 10 706 11 039 11 371
11 704 12 036 12 369 12 701 13 033
13 366 13 698 14 031 14 363 14 696

Utility-optimal buy-and-hold portfolios. Table 1 reports
the utility-optimal buy-and-hold portfolios for various levels
of risk aversion and, for each risk-aversion parameter, for the
number of options n varying from 0 to 3. For example, the first
panel of table 1 contains results for the log-utility case (γ =0,
or RRA=1). This is a very low level of risk aversion—by most
empirical and experimental accounts, an unrealistically low
level—and implies that the investor’s objective is to maximize
the expected geometric average rate of return of his portfolio.
Examples of investors with such preferences are proprietary
traders and hedge-fund managers. The results for the RRA=1
panel were obtained by maximizing expected utility directly
using a discretized distribution for PT (see section 3.1). The
results for the remaining five panels of table 1 were obtained
by minimizing the utility-weighted mean-squared error (see
section 3.3).

The first row of table 1’s first panel corresponds to the
optimal buy-and-hold portfolio with no options (n = 0)—
for log-utility, the optimal portfolio is to put 100% of the
investor’s wealth into the stock19. Not surprisingly, the
certainty equivalent of such a strategy is only 20.2% of the
certainty equivalent of the optimal dynamic strategy CE(W ∗

T ).

19 In fact, in the absence of solvency constraints, the optimal portfolio weight
for the stock would be much greater than 100%, i.e. for CRRA preferences,
the solvency constraints are binding.
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Figure 1. Payoff diagram of hedged position (long stock and short
call).

By not allowing the investor to trade at all over the 20-
year period, and without access to any options, the investor’s
welfare is reduced by approximately 80%. As the number of
options is increased, his welfare increases so that for n = 3
options the certainty equivalent of the optimal buy-and-hold is
92.2% of CE(W ∗

T ).
For log utility, it is interesting to note that the RMSE is

approximately 3 650% even for n=3 and despite the fact that
the certainty equivalent of the optimal buy-and-hold portfolio
is close to that of the optimal dynamic investment policy.
This, and the very slow rate at which the RMSE decreases
as we increase n from 0 to 3, suggests that it may be possible
to obtain an excellent approximation to the optimal dynamic
strategy—in terms of expected utility—without being able to
approximate W ∗

T very well in mean-square.
Note that within each relative risk-aversion panel of table

1, the RMSEs decrease monotonically as the number of options
n increases from 0 to 3. This, of course, need not be the
case since we are maximizing expected utility, not minimizing
RMSE. In fact, it is quite possible for the RMSE to increase
as we increase n. However, the fact that they do decrease
monotonically suggests that there is some correlation between
smaller RMSE and a more preferred buy-and-hold portfolio.
Of course, as n becomes arbitrarily large, the RMSE must
converge to 0.

Perhaps the most interesting feature of table 1 is how the
results fall naturally into two distinct groups. The first group
consists of the first two panels, corresponding to investors
who are not very risk averse (relative risk-aversion coefficients
of 1 and 2, respectively) and who, in the standard dynamic
asset-allocation framework, would optimally hold more than
100% of their wealth in the risky asset. In a buy-and-hold
portfolio without options (n = 0), these investors are bound
by the solvency constraints (3.8), making it difficult for them
to approximate CE(W ∗

T ) very well (the certainty equivalents
CE(V ∗

T ) of the optimal buy-and-hold portfolios are only 20.2%
of CE(W ∗

T ) for the log-utility investor and 81.9% for the
investor with RRA = 2). Options are of particular benefit
to these investors, who purchase call options so that they can
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Table 1. Utility-optimal buy-and-hold portfolios of stocks, bonds and n European call options for CRRA utility under geometric Brownian
motion stock-price dynamics with parameters (µ, σ ) calibrated to match the following moments: E[log(Pt/Pt−1)] = 0.15,
Var[log(Pt/Pt−1)] = 0.04. Other calibrated parameters include: riskless rate r = 5%, initial stock price P0 = $50, initial wealth
W0 = $100 000, and time period T = 20 years. ‘RRA’ denotes the coefficient of relative risk aversion, ‘CE(W ∗

T )’ denotes the certainty
equivalent of the optimal dynamic stock/bond policy, and ‘CE(V ∗

T )’ denotes the certainty equivalent of the optimal buy-and-hold portfolio,
reported as a percentage of CE(W ∗

T ).

Option positions in optimal
portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $9 948 433 RRA = 1 (Log utility)

0 0.0 100.0 20.2 3 659.6
1 60.4 39.6 68.7 3 653.4 54 653

733
2 80.0 20.0 87.7 3 642.4 13 371 143 901

401 1 398
3 99.3 0.7 92.2 3 642.4 786 12 518 144 890

69 401 1 398

CE(W ∗
T ) = $1 644 465 RRA = 2

0 0.0 100.0 81.9 206.2
1 63.3 36.7 94.5 188.6 2 214

69
2 59.1 40.9 99.2 146.2 1 647 3 040

69 401
3 59.3 40.7 99.4 97.4 1 661 2 795 4 120

69 401 1 398

CE(W ∗
T ) = $558 453 RRA = 5

0 0.0 62.0 97.3 143.5
1 −46.3 131.9 99.1 103.8 −1 620

69
2 −36.9 120.4 99.8 35.9 −1 207 −602

69 401
3 −37.0 120.5 99.8 14.8 −1 215 −573 −197

69 401 1 398

CE(W ∗
T ) = $389 619 RRA = 10

0 0.0 26.5 96.6 154.9
1 −47.1 102.0 98.9 104.5 −1 647

69
2 −37.5 90.0 99.7 25.4 −1 258 −387

69 401
3 −37.6 90.1 99.7 5.9 −1 262 −377 −91

69 401 1 731

increase their risk exposure20. They do not invest in bonds at
all, but divide their wealth between stocks and options. As the
number of options allowed increases, the fraction of wealth
devoted to options in the optimal buy-and-hold portfolio for
the log-utility investor also increases, from 60.4% for n=1 to
99.3% for n= 3. For a relative risk-aversion coefficient of 2,
the proportion of the optimal buy-and-hold portfolio devoted to
options declines slightly as n increases, apparently stabilizing
at approximately 59% for n=3.

20 Call options are generally more risky than the underlying stock on which
they are based. See, for example, Cox and Rubinstein (1985).

The second group consists of the remaining four panels,
which correspond to investors who, in the standard dynamic
asset-allocation framework, would optimally hold less than
100% of their wealth in the risky asset. For these investors
a buy-and-hold portfolio with no options has a certainty
equivalent that is approximately 97% of CE(W ∗

T ). It is
remarkable that a well-chosen buy-and-hold portfolio in the
stock and the bond can do so well over a 20-year horizon.

When just 1 or 2 options are added to the buy-and-hold
portfolio in these cases, the certainty equivalents CE(V ∗

T ) of
the optimal portfolios increase to approximately 99.7% of
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Table 1. Continued.

Option positions in optimal
portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $345 561 RRA = 15

0 0.0 16.2 97.2 124.0
1 −37.1 76.6 99.1 82.3 −1 297

69
2 −29.6 67.1 99.8 17.6 −1 000 −262

69 401
3 −29.7 67.2 99.8 4.2 −1 003 −256 −50

69 401 1 731

CE(W ∗
T ) = $325 437 RRA = 20

0 0.0 11.6 97.7 101.0
1 −30.0 60.7 99.3 66.5 −1 048

69
2 −24.0 53.0 99.8 13.3 −812 −196

69 401
3 −24.0 53.1 99.8 3.2 −814 −192 −34

69 401 1 731

CE(W ∗
T ). In contrast to the first two panels, investors with

higher risk-aversion parameters are net sellers of call options,
forgoing some of the upside gain in order to limit losses on
the downside. The value of these option positions ranges from
24% to 37% of their initial wealth. The optimal buy-and-hold
portfolios invest the option premia, together with the initial
wealth of $100 000, in stocks and bonds.

The combination of a short position in a call option and a
long position in the underlying stock is often called a ‘hedged
position’ since the gains (losses) of one security offset to some
degree the losses (gains) of the other. Figure 1 provides an
example of such a hedged position: a long position in one
share of stock and a short position in a call option on that stock
with strike price k. The combination yields a payoff that has
limited upside—beyond k, the payoff is constant at k—which
a sufficiently risk-averse investor might find attractive, since
he receives cash now in exchange for an uncertain upside.

For risk-aversion coefficients greater than or equal to 5,
table 1 shows that the optimal buy-and-hold portfolios all
include hedged positions in which part of the upside potential
in the stock is relinquished in exchange for option premia that
are invested in stocks and bonds. For a relative risk-aversion
coefficient of 10, the optimal buy-and-hold portfolio with 3
options consists of a −37.6% investment in options, 90.1%
in the stock, and 47.5% in bonds. Since this portfolio yields
an excellent approximation to the optimal dynamic investment
strategy (it has a certainty equivalent CE(V ∗

T ) of 99.7%), we
can be fairly confident that these rather unorthodox positions
do, in fact, accurately represent the investor’s preferences.
Indeed, by graphing the payoff diagram of this optimal buy-
and-hold portfolio along the lines of figure 1, we can obtain a
visual representation of the investor’s dynamic risk exposures
at a single point in time.

A common characteristic in all of the panels of table 1
is the optimal strike prices of the options in the buy-and-hold
portfolio. Despite the fact that the possible strikes range from
$69 to $14 696, the highest strike selected by the optimization
algorithm is $1731. Under geometric Brownian motion, the
expected stock price 20 years into the future is:

E0[PT ] = P0 exp(µT ) = $50 × exp(0.17 × 20) = $1498.

Therefore, almost all of the options selected by the optimal buy-
and-hold portfolio are in-the-money relative to the expected
terminal price E0[PT ], which characterizes another aspect of
the investor’s risk profile.

Also, the fact that among the 45 possible strikes, only
5 are employed in the optimal buy-and-hold portfolios over
the range of relative risk-aversion coefficients from 1 to 20
suggests the possibility of standardizing a small number of
‘canonical’ long-dated options that will appeal to a broad set
of investors.

Mean-square-optimal buy-and-hold portfolios. Table 2
reports the mean-square-optimal buy-and-hold portfolios for
various levels of risk aversion and, for each risk-aversion
parameter, for the number options n varying from 0 to 5. We
use a larger number of options in this case to illustrate the
fact that even with a larger number of options, a mean-square-
optimal portfolio need not come close in certainty equivalence
to the optimal dynamic investment policy.

The first row of table 2’s first panel corresponds to the
optimal buy-and-hold portfolio with no options (n=0), which
is identical to the first row of table 1’s first panel. As the number
of options n is increased, the investor’s welfare increases,
so that for n = 5, the certainty equivalent of the optimal
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Table 2. Mean-square-optimal buy-and-hold portfolios of stocks, bonds and n European call options for CRRA utility under geometric
Brownian motion stock-price dynamics with parameters (µ, σ ) calibrated to match the following moments: E[log(Pt/Pt−1)] = 0.15,
Var[log(Pt/Pt−1)] = 0.04. Other calibrated parameters include: riskless rate r = 5%, initial stock price P0 = $50, initial wealth
W0 = $100 000, and time period T = 20 years. ‘RRA’ denotes the coefficient of relative risk aversion, ‘CE(W ∗

T )’ denotes the certainty
equivalent of the optimal dynamic stock/bond policy, and ‘CE(V ∗

T )’ denotes the certainty equivalent of the optimal buy-and-hold portfolio,
reported as a percentage of CE(W ∗

T ).

Option positions in optimal portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $9 948 433 RRA = 1 (Log utility)

0 0.0 100.0 20.2 3 659.6
1 0.2 99.8 20.4 2 889.6 29.0 × 10−6

14 696
2 62.9 −4.0 10.2 2 886.7 331 561 28.3 × 10−6

1 398 14 696
3 2.8 97.2 23.1 2 870.6 2 431 277 −68.2 × 10−6 94.7 × 10−6

5 388 14 363 14 696
4 8.0 92.0 28.1 2 869.5 943 747 2 987 657 −85.9 × 10−6 111.0 × 10−6

3 393 8 712 14 363 14 696
5 15.5 84.5 34.9 2 869.3 465 463 1 415 411 2 917 259 −92.0 × 10−6 116.2 × 10−6

2 396 6 052 10 374 14 363 14 696

CE(W ∗
T ) = $1 644 465 RRA = 2

0 0.0 100.0 81.9 206.2
1 0.8 99.2 83.4 57.2 14 846

2 063
2 3.9 96.1 86.6 26.6 9 233 15 764

1 066 9 044
3 7.6 92.4 89.3 15.8 6 873 8 120 15 063

733 4 390 14 696
4 19.6 68.4 89.4 13.8 4 908 4 815 6 273 14 315

401 2 063 5 388 14 696
5 17.5 82.5 94.0 13.3 4 342 3 797 3 753 4 430 13 501

401 1 731 3 725 6 717 14 696

CE(W ∗
T ) = $558 453 RRA = 5

0 0.0 24.4 84.7 28.3
1 −0.1 42.5 94.2 7.8 −543

1 398
2 −0.6 50.8 96.6 3.6 −554 −225

733 4 058
3 −2.5 61.8 98.4 2.2 −624 −246 −159

401 1 731 6 385
4 −2.3 60.5 98.2 1.4 −569 −218 −134 −110

401 1 398 3 725 10 374
5 −2.1 59.0 98.1 1.0 −500 −191 −134 −102 −91

401 1 066 2 396 5 388 13 698

buy-and-hold strategy is 34.9% of CE(W ∗
T ). Although this

is a considerable improvement over the n = 0 case, it is
still quite far below the optimal dynamic strategy’s certainty
equivalent. This is not unexpected in light of the fact that we
are minimizing mean-squared-error, not maximizing expected
utility. As n increases beyond 5, this approximation will
improve eventually, but the optimization process becomes
considerably more challenging for larger n. For example, the
n = 15 case involves

(45
15

) = 344 867 425 584 subproblems,

and if each subproblem requires 0.01 seconds to solve, the
overall optimization would take approximately 109.4 years to
complete.

Unlike table 1, in table 2 the certainty equivalents of
the optimal buy-and-hold portfolio, CE(V ∗

T ), do not increase
monotonically with the number of options n. For example,
in the case of log utility (RRA = 1), CE(V ∗

T ) is 20.4% of
CE(W ∗

T ) for n = 1 option, but declines to 10.2% for n = 2
options. This underscores the fact that we are minimizing
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Table 2. Continued.

Option positions in optimal portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $389 619 RRA = 10

0 0.0 6.7 86.4 27.0
1 −0.1 17.7 94.8 6.4 −297

1 066
2 −1.8 30.0 98.0 3.0 −450 −107

401 2 396
3 −1.5 27.9 97.7 1.7 −375 −101 −52

401 1 398 4 723
4 −1.4 27.3 97.6 1.3 −343 −93 −54 −32

401 1 066 2 728 7 715
5 −68.0 139.6 96.5 0.9 −2345 −236 −100 −54 −32

69 401 1 066 2 728 7 715

CE(W ∗
T ) = $345 561 RRA = 15

0 0.0 3.7 89.6 21.5
1 −0.3 14.0 97.0 5.0 −248

733
2 −1.2 19.2 98.3 2.2 −306 −60

401 2 396
3 −1.0 18.0 98.1 1.3 −260 −60 −27

401 1 398 4 723
4 −47.6 96.4 98.5 1.0 −1 637 −189 −62 −27

69 401 1 398 4 723
5 −51.2 102.2 98.0 0.7 −1 767 −163 −56 −29 −19

69 401 1 066 2 396 6 385

CE(W ∗
T ) = $325 437 RRA = 20

0 0.0 2.5 91.7 17.5
1 −0.2 10.0 97.5 3.9 −180

733
2 −0.9 14.1 98.5 1.7 −230 −41

401 2 396
3 −0.8 13.2 98.4 1.1 −198 −40 −18

401 1 398 4 390
4 −37.8 75.7 98.9 0.8 −1 304 −142 −42 −18

69 401 1 398 4 390
5 −40.7 80.2 98.5 0.5 −1 405 −122 −40 −20 −12

69 401 1 066 2 396 6 385

mean-squared-error in the optimal buy-and-hold portfolios of
table 2, not maximizing expected utility. In fact, it is possible
for a buy-and-hold portfolio to exhibit a small RMSE and
a small certainty equivalent at the same time21. Therefore,
while RMSE must decline monotonically with n, the certainty
equivalents need not. Of course, as the number of options
n increases without bound, CE(V ∗

T ) will approach CE(W ∗
T )

eventually, even if not monotonically.
The option positions in the optimal buy-and-hold

portfolios provide additional insight into the differences
between maximizing expected utility and minimizing mean-

21 This typically occurs when the buy-and-hold strategy results in a final wealth
V ∗
T that is close to zero over some interval of PT .

squared-error in constructing the optimal buy-and-hold
portfolio. As n increases from 0 to 1 in the first panel of
table 2, the optimal buy-and-hold portfolio changes from 100%
stocks to 99.8% stocks and 0.2% options, with a huge position
(29.0 million) in the option with strike price $14 696. Given
a current stock price of $50, this option is obviously deeply
out-of-the-money, hence its price is extremely close to zero,
so close that 29.0 million options amount to only 0.2% of
the investor’s initial portfolio. Moreover, recall that these
are 20-year options, hence a strike price of $14 696 should
be compared not only with the current stock price but with
the expected stock price at maturity, PT . Recall that under
geometric Brownian motion, the expected stock price 20 years
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into the future is $1498. Therefore, even taking into account
the expected appreciation in the stock over the next 20 years,
the strikes are still extraordinarily high.

The n = 2 case differs dramatically from the n = 1
case. When given the opportunity to include 2 options in the
buy-and-hold portfolio, the optimal weights become 62.9%
in options, −4.0% in the stock, and the remaining 41.1% in
bonds. The optimal buy-and-hold portfolio involves shorting
$4000 of the stock and putting the proceeds, as well as
the original $100 000, into bonds and options. The options
component consists of two positions: 331 561 options with
a strike of $1398, and 28.3 million options with a strike of
$14 696. The latter position is similar to that of the n = 1
case, and accounts for a relatively small part of the portfolio.
The majority of the 69.2% allocated to options is due to the
former position in options of a much lower strike price. The
lower strike price implies a higher option price, hence the cost
of 331 561 of these options dwarfs the cost of 28.3 million of
the higher-strike options. While this buy-and-hold portfolio
is indeed optimal from a mean-squared-error criterion, the
certainty equivalent reported in table 2 shows that the investor’s
welfare has actually declined by half, as compared to the n = 1
case. Moreover, the RMSE declines only slightly, suggesting
that we treat this case cautiously and with a certain degree of
skepticism.

As the investor’s risk-aversion parameter increases, table
2 shows that the optimal buy-and-hold portfolio performs
considerably better in terms of certainty equivalence, in most
cases attaining 90% or more of the certainty equivalent of
the optimal dynamic strategy. For risk-aversion coefficients
greater than 2, the RMSE of the buy-and-hold portfolio is
less than 5% with only one or two options. The intuition for
this pattern follows from the fact that investors with higher
risk aversion invest a smaller proportion of their wealth in the
stock market, hence their final wealth W ∗

T has lower variance
which makes it easier to approximate W ∗

T with a buy-and-hold
strategy.

The option positions in optimal buy-and-hold portfolios
are also different for higher levels of risk aversion, consisting
of fewer options and at lower strike prices. To see why, observe
that for risk-aversion coefficients of 5 and greater, the optimal
buy-and-hold portfolios with no options (n=0) consist largely
of bonds (75.6% in bonds for RRA=5, 95.3% for RRA=10,
96.3% for RRA=15, and 97.5% for RRA=20). When options
are allowed in the buy-and-hold portfolios, additional risk-
reduction possibilities become feasible and the optimization
algorithm takes advantage of such opportunities. In particular,
for risk-aversion levels of 5 and greater, the option positions
are generally negative—the optimal buy-and-hold portfolios
consist of selling options and investing the proceeds as well
as the original $100 000 initial wealth in stocks and bonds.
For example, the third panel of table 2 shows that with a risk-
aversion coefficient of 5, the optimal buy-and-hold portfolio
with 5 options is 59.0% in stocks, 43.1% in bonds and −2.1%
in options, with short positions in all 5 options, and where
the optimal strikes range from $401 to $13 698. These results
correspond well with those of table 1, in which the optimal
buy-and-hold portfolios of investors with higher risk-aversion

coefficients contained hedged positions (long positions in the
stock and short positions in options).

5.2. The Ornstein–Uhlenbeck process

To calibrate the parameters of the trending Ornstein–
Uhlenbeck process (4.8), we observe that the moments of the
stationary distribution of {Pt } are given by:

E[log(Pt/Pt−1)] = µ

Var[log(Pt/Pt−1)] = σ 2

δ
(1 − exp(−δ))

Corr[log(Pt/Pt−1), log(Pt−1/Pt−2)] = − 1

2
(1 − exp(−δ)).

Therefore, using the parameters in (5.5) and setting the first-
order autocorrelation coefficient equal to −0.05 uniquely
calibrates the parameter vector (µ, σ, δ). The distribution of
logPT implied by these parameters yields the following 45
possible strikes (in dollars) from which we select our n options
in the optimal buy-and-hold portfolio:

265 346 426 506 587
667 748 828 908 989

1 069 1 150 1 230 1 310 1 391
1 471 1 552 1 632 1 712 1 793
1 873 1 954 2 034 2 114 2 195
2 275 2 356 2 436 2 517 2 597
2 677 2 758 2 838 2 919 2 999
3 079 3 160 3 240 3 321 3 401
3 481 3 562 3 642 3 723 3 803

Note that the distribution of possible strikes lies in a much
narrower range in this case than in the geometric Brownian
motion case of section 5.1: 265 to 3723 for the trending
Ornstein–Uhlenbeck process versus 69 to 14 363 for geometric
Brownian motion. This is an implication of the mean-
reverting nature of the trending Ornstein–Uhlenbeck process,
a stochastic process in which log-prices are stationary about a
deterministic trend, in contrast to geometric Brownian motion
in which log-prices are difference-stationary. In the former
case, the variance of the log-price process is bounded as the
horizon increases without bound, whereas in the latter case,
the variance is proportional to the horizon, implying a wider
range of strikes.

Recall from section 4.2 that because the optimal dynamic
asset-allocation strategy is path-dependent under (4.8), the
certainty equivalent of V ∗

T will not approach the certainty
equivalent of W ∗

T as the number of options n in the buy-and-
hold portfolio increases without bound. Indeed, there is an
upper bound for CE(V ∗

T ), which is the certainty equivalent of
the optimal buy-and-hold portfolio with an infinite number of
options, CE(V∞

T ), and for path-dependent dynamic portfolio
strategies, CE(V∞

T ) is strictly less than CE(W ∗
T ). In the

case of the trending Ornstein–Uhlenbeck process (4.8) and
CRRA preferences, we have an explicit expression forV∞

T (see
section 4.2), hence we can construct a mean-square optimal
buy-and-hold portfolio where the benchmark is V∞

T , not W ∗
T .
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Table 3. Utility-optimal buy-and-hold portfolios of stocks, bonds, and n European call options for CRRA utility under a trending
Ornstein–Uhlenbeck stock-price process where the parameters (σ, µ, δ) have been calibrated to match the following moments:
E[log(Pt/Pt−1)] = 0.15, Var[log(Pt/Pt−1)] = 0.04, Corr[log(Pt/Pt−1), log(Pt−1/Pt−2)] = −0.05. Other calibrated parameters include:
riskless rate r = 5%, initial stock price P0 = $1, initial wealth W0 = $100 000, and time period T = 20 years. ‘RRA’ denotes the
coefficient of relative risk aversion, ‘CE(W ∗

T )’ denotes the certainty equivalent of the optimal dynamic stock/bond policy, ‘CE(V∞
T )’ denotes

the certainty equivalent of the optimal buy-and-hold portfolio with a continuum of options, and ‘CE(V ∗
T )’ denotes the certainty equivalent of

the optimal buy-and-hold portfolio with a finite number n of options, reported as a percentage of CE(V∞
T ).

Option positions in optimal
portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $13 162 500 CE(V∞

T ) = $12 417 350 RRA = 1 (Log utility)
0 0.0 100.0 16.2 115.7
1 96.6 3.4 89.1 42.3 24 955

426
2 98.8 1.2 96.2 40.3 6 251 30 824

346 587
3 98.8 1.2 97.8 12.6 6047 33 494 −39 564

346 587 1793

CE(W ∗
T ) = $6166 222 CE(V∞

T ) = $5814 196 RRA = 2
0 0.0 100.0 31.3 87.5
1 83.9 16.1 89.0 29.1 10 204

265
2 83.0 17.0 90.5 34.2 7 822 4 810

265 426
3 83.0 17.0 91.6 6.7 8 283 6 623 −15 246

265 506 1 391

CE(W ∗
T ) = $2011 701 CE(V∞

T ) = $1874 790 RRA = 5
0 0.0 100.0 72.2 30.8
1 16.7 83.3 79.8 56.6 2 036

265
2 19.5 80.5 82.7 26.9 5 777 −5 062

265 346
3 18.9 81.1 83.2 13.9 5 304 −4 202 −2 385

265 346 989

CE(W ∗
T ) = $957 797 CE(V∞

T ) = $900 296 RRA = 10
0 0.0 100.0 91.9 117.3
1 −6.6 106.6 96.8 11.2 −1 712

426
2 −7.0 107.0 97.1 3.8 −1 047 −951

346 748
3 −6.8 106.8 97.1 2.5 −958 −641 −525

346 587 1 150

Utility-optimal buy-and-hold portfolios. Table 3 summa-
rizes the utility-optimal buy-and-hold portfolios for the same
combination of risk-aversion parameters and number of op-
tions n as in the geometric Brownian motion case of table 1.
The results for the panels with RRA = 1, 2, 5 were obtained by
maximizing expected utility directly using a discretized distri-
bution for PT (see section 3.1), and the results for the remain-
ing three panels of table 3 were obtained by minimizing the
utility-weighted mean-squared error (see section 3.3).

Note that for each level of risk aversion, the certainty
equivalent CE(W ∗

T ) of the optimal dynamic strategy is

considerably larger than that of the geometric Brownian motion
case. The presence of predictability can be exploited by the
investor and in doing so, his expected utility is increased
dramatically, e.g. from a certainty equivalent of $9948 433
in the geometric Brownian motion case to $13 162 500 in
the Ornstein–Uhlenbeck case for log-utility. A more direct
measure of the economic value of predictability can be
obtained by considering the difference between the certainty
equivalents of the optimal dynamic strategy and those of the
optimal buy-and-hold portfolio with an infinite number of
options. For a log-utility investor, this difference is $745 150
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Table 3. Continued.

Option positions in optimal
portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $681 834 CE(V∞

T ) = $647 654 RRA = 15
0 0.0 75.8 87.9 151.9
1 −15.9 108.7 95.3 10.3 −1 937

265
2 −15.5 108.1 95.2 2.0 −1 869 −285

265 1 150
3 −16.9 110.2 95.7 3.9 −2 844 1 435 −689

265 346 587

CE(W ∗
T ) = $560 880 CE(V∞

T ) = $537 074 RRA = 20
0 0.0 54.1 87.9 138.6
1 −13.9 89.0 93.2 5.1 −1 686

265
2 −15.5 91.7 93.7 11.6 −2 385 740

265 346
3 −15.7 92.0 93.8 4.0 −2 868 1 753 −643

265 346 506

or 5.6% of CE(W ∗
T ), a significant amount. As the level of risk

aversion increases, this difference declines in absolute terms—
less wealth is allocated to the risky asset, hence predictability
has less of an impact—but is relatively stable as a percentage
of CE(W ∗

T ), fluctuating between 4% and 6%.
The most interesting feature of table 3 is that the certainty

equivalents of the buy-and-hold portfolios do not approach
CE(V∞

T ) as quickly as the certainty equivalents of table 1. This
is most easily seen in the third panel (RRA = 5) in which the
certainty equivalent of the optimal buy-and-hold portfolio with
3 options is only 83.2% of CE(V∞

T ). However, as we remarked
earlier, the data for this panel were computed by maximizing
expected utility through a discretization of the distribution of
PT using a grid of 4000 points. Because of the relatively high
value of RRA, any interval in the support ofPT whereWT (PT )

is close to 0 will result in a large negative contribution to the
certainty equivalent. We can address this issue by using a finer
grid, but only at the expense of computational complexity22.

Another interesting feature of table 3 is that there is no
investment in the bond in any of the buy-and-hold portfolios
in the first four panels (RRA = 1, 2, 5, 10). While this is
not unexpected for low levels of risk aversion—such investors
seek higher expected returns by the nature of their risk
preferences—it is quite surprising for investors with RRA =
10. The intuition for this result comes from the fact that
stock returns are predictable in this case, hence there is greater
value to be gained from investing in stocks for each level of
risk aversion. Alternatively, the predictability in stock returns

22 Since these numerical results are mainly for illustrative purposes, we have
not endeavoured to optimize them within each panel. Instead, to ensure
comparability across risk-aversion parameters and other specifications, we
have attempted to hold fixed as many aspects of the optimization process as
possible.

make stocks less risky, ceteris paribus, hence even a risk-averse
investor will hold a larger fraction of his wealth in stocks in
this case.

As in tables 1 and 2, the optimal buy-and-hold portfolios
for less risk-averse investors (RRA = 1, 2, 5) are net positive
in options, ranging from 98.8% when RRA = 1 to 18.9% when
RRA = 5, forn = 3. However, unlike the geometric Brownian
motion case, the optimal buy-and-hold portfolios do contain
short positions in some options, even for these lower levels of
risk aversion. For example, when RRA = 2 and n = 3, the
optimal buy-and-hold portfolio consists of long positions in
the $265-strike and $506-strike options, but a short position of
15 246 options in the $1391-strike option. For higher levels
of risk aversion, the situation is reversed: the optimal buy-
and-hold portfolios are net negative in options, but they do
contain long positions in certain options. For example, when
RRA = 20 and n = 3, the optimal buy-and-hold portfolio
consists of short positions in the $265-strike and $506-strike
options, but a long position of 1753 options in the $346-strike
option.

These long and short positions underscore the complexity
of an investor’s ideal risk exposures, and may provide a
useful benchmark for comparing different dynamic investment
policies at a single point in time. In particular, it may be
possible to re-interpret these option positions as classic spread
trades, e.g. bull/bear and butterfly spreads, or combinations,
e.g. strips, straps, straddles and strangles23. By doing so,
we may be able to gain insight into the implicit bets that
a particular dynamic asset-allocation strategy contains, and

23 For this purpose, it may be useful to convert some of the call-option positions
into their put-option equivalents using the put-call parity relation (see, for
example, Cox and Rubinstein (1985)).
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Table 4. Mean-square-optimal buy-and-hold portfolios of stocks, bonds and n European call options for CRRA utility under a trending
Ornstein–Uhlenbeck stock-price process with parameters (σ, µ, δ) calibrated to match the following moments: E[log(Pt/Pt−1)] = 0.15,
Var[log(Pt/Pt−1)] = 0.04, Corr[log(Pt/Pt−1), log(Pt−1/Pt−2)] = −0.05. Other calibrated parameters include: riskless rate r = 5%, initial
stock price P0 = $50, initial wealth W0 = $100 000, and time period T = 20 years. ‘RRA’ denotes the coefficient of relative risk aversion,
‘CE(W ∗

T )’ denotes the certainty equivalent of the optimal dynamic stock/bond policy, ‘CE(V∞
T )’ denotes the certainty equivalent of the

optimal buy-and-hold portfolio with a continuum of options, and ‘CE(V ∗
T )’ denotes the certainty equivalent of the optimal buy-and-hold

portfolio with a finite number n of options, reported as a percentage of CE(V∞
T ).

Option positions in optimal portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $13 162 500 CE(V∞

T ) = $12 417 350 RRA = 1 (Log utility)
0 0.0 100.0 16.2 115.7
1 91.7 8.3 87.4 37.5 32 697

506
2 86.8 13.2 81.3 9.3 44 428 −44 691

587 1712
3 87.0 13.0 81.5 6.3 44 694 −55 819 10 865

587 1 793 3 803
4 88.7 −3.4 56.7 4.5 45 736 −33 938 −29 561 17 831

587 1 632 2 195 3 803
5 90.2 9.8 56.7 2.7 24 169 24 603 −32 245 −33 388 16 665

506 748 1 552 2 114 3 803

CE(W ∗
T ) = $6166 222 CE(V∞

T ) = $5814 196 RRA = 2
0 0.0 100.0 31.3 87.5
1 87.2 12.8 88.5 28.9 10 599

265
2 75.4 24.6 79.8 5.0 14 198 −14 689

346 1 471
3 82.7 −9.0 24.3 3.6 15 686 −6 392 −9 114

346 1 150 1 632
4 79.8 7.4 64.4 2.3 15 136 −8 530 −9 152 2 399

346 1 230 1 873 3 803
5 82.1 −5.9 37.4 1.6 15 582 −5 987 −6 895 −6 095 3 515

346 1 150 1 552 2 195 3 803

CE(W ∗
T ) = $2011 701 CE(V∞

T ) = $1874 790 RRA = 5
0 0.0 100.0 72.2 30.8
1 −0.2 100.2 72.4 26.8 −2 005

1 793
2 17.1 82.9 81.4 6.3 2 421 −3 647

265 908
3 20.6 79.4 81.5 2.8 3 139 −3 022 −1 705

265 667 1 391
4 26.4 73.6 80.5 1.8 5 151 −3 730 −1 731 −1 162

265 426 908 1 552
5 29.0 71.0 79.9 1.4 7 665 −5 731 −1 481 −1 063 −810

265 346 748 1 150 1 632

develop a standard lexicon for comparing those bets across
investment policies.

Mean-square-optimal buy-and-hold portfolios. Table 4
summarizes the mean-square-optimal buy-and-hold portfolios
for the same combination of strikes, risk-aversion parameters,
and number of options n as in table 3. Table 4 shows that
the RMSE of the optimal buy-and-hold portfolio declines

rapidly. With only one or two options, the optimal buy-
and-hold portfolio is typically within 5% of the upper bound
CE(V∞

T ). For example, in the case where relative risk-aversion
is 2, the RMSE of the optimal buy-and-hold portfolio with no
options is 87.5%; with 1 option, the RMSE declines to 28.9%;
and with 2 options, the RMSE is 5.0%. With 5 options, the
RMSE is less than 2.0% for all but the lowest level of risk
aversion (RRA = 1, for which the RMSE is 2.7%). But as
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Table 4. Continued.

Option positions in optimal portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $957 797 CE(V∞

T ) = $900 296 RRA = 10
0 0.0 39.0 67.9 28.4
1 −1.7 74.7 86.5 4.5 −1 377

748
2 −4.0 92.4 93.0 1.8 −1 367 −464

506 1 230
3 −5.2 98.1 94.8 1.0 −1 200 −485 −277

426 828 1 471
4 −7.4 107.4 97.2 0.7 −1 166 −479 −288 −215

346 667 989 1 552
5 −7.1 106.2 96.9 0.6 −1 061 −418 −278 −209 −158

346 587 828 1 150 1 632

CE(W ∗
T ) = $681 834 CE(V∞

T ) = $647 654 RRA = 15
0 0.0 22.0 70.3 25.4
1 −2.1 53.9 87.2 3.7 −1 003

587
2 −4.0 64.4 90.7 1.4 −1 008 −259

426 1 069
3 −6.1 72.9 93.0 0.8 −1 028 −283 −146

346 748 1 391
4 −5.9 71.8 92.8 0.5 −974 −233 −136 −93

346 667 989 1 552
5 −9.6 84.4 95.4 0.4 −1 037 −290 −168 −106 −86

265 506 748 1 069 1 552

CE(W ∗
T ) = $560 880 CE(V∞

T ) = $537 074 RRA = 20
0 0.0 15.0 73.7 22.6
1 −1.5 37.6 86.8 3.0 −708

587
2 −3.0 46.4 89.9 1.2 −760 −155

426 1 069
3 −4.7 53.6 91.8 0.6 −808 −177 −86

346 748 1 391
4 −8.5 66.4 94.4 0.4 −971 −191 −98 −67

265 587 908 1 471
5 −7.8 63.9 94.1 0.3 −866 −193 −105 −64 −50

265 506 748 1 069 1 552

in table 2, the certainty equivalents of the optimal buy-and-
hold portfolio do not increase monotonically as the number
of options increases, since we are optimizing mean-squared-
error, not expected utility. For example, in the second panel
(RRA = 2) the certainty equivalent drops precipitously from
64.4% to 37.4% of the upper bound CE(V∞

T ) as the number
of options increases from 4 to 5. However, for higher levels of
risk aversion, the certainty equivalents do tend to increase with
the number of options in the portfolio (and are guaranteed to
converge to the upper bound CE(V∞

T ) as n increases without
bound).

As risk aversion increases, the optimal buy-and-hold
portfolios behave in a similar manner to those in table 2:

options are used to hedge long positions in the stock. For
risk-aversion levels of 10 or greater, all options positions are
negative.

5.3. A bivariate linear diffusion process

We calibrate the parameters (κ, θ, σ1, σ2, ρ) of the bivariate
linear diffusion (4.22) and (4.23) using the following values:

E[log(Pt/Pt−1)] = 0.15
Var[log(Pt/Pt−1)] = 0.04
Var[µt ] = 0.0252

Corr[µt, µt−1] = 0.05
ρ = 0.

(5.6)
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The first two moments are calibrated with the same values
as those in the geometric Brownian motion and trending
Ornstein–Uhlenbeck cases. The value for the variance of
µt implies a standard deviation of 250 basis points for the
conditional mean µt , and we assume that µt is only slightly
autocorrelated over time, and not correlated at all with the
Brownian motion driving prices. This calibration implies the
following 45 possible strikes (in dollars) from which we select
our n options in the optimal buy-and-hold portfolio:

68 403 737 1 071 1 405
1 739 2 073 2 407 2 742 3 076
3 410 3 744 4 078 4 412 4 746
5 081 5 415 5 749 6 083 6 417
6 751 7 085 7 420 7 754 8 088
8 422 8 756 9 090 9 425 9 759

10 093 10 427 10 761 11 095 11 429
11 764 12 098 12 432 12 766 13 100
13 434 13 768 14 103 14 437 14 771

Note the similarity between the range of these strikes and that of
geometric Brownian motion in section 5.1. This suggests that
the economic properties of the bivariate linear diffusion process
are close to those of geometric Brownian motion, which will
be borne out by the optimal buy-and-hold portfolios described
below.

As in the case of the trending Ornstein–Uhlenbeck
process, under (4.22) and (4.23) the optimal dynamic asset-
allocation strategy is path-dependent. Therefore, we shall
again use the upper bound V∞

T as the benchmark in our
mean-square-optimal buy-and-hold portfolio, and compare its
certainty equivalent CE(V ∗

T ) to CE(V∞
T ).

Utility-optimal buy-and-hold portfolios. Table 5 reports
the optimal buy-and-hold portfolios under (4.22) and (4.23)
for CRRA preferences with the same risk aversion levels as
in tables 1–4. The results of the first two panels of table
5 were computed by maximizing expected utility according
to section 3.1 and the results of the remaining panels were
computed by minimizing utility-weighted mean-squared-error
according to section 3.3.

Table 5 contains certain features in common with tables
1 and 3, but also exhibits some important differences. As
in table 3, the certainty equivalents of V∞

T are lower than
their counterparts for W ∗

T , but in table 5 the gap declines
monotonically as risk aversion increases. For log-utility,
CE(V∞

T ) is 15.5% less than CE(W ∗
T ), but this difference is only

7.5% when RRA = 2, 3.1% when RRA = 5, and 0.8% when
RRA=20. In contrast, the gap between CE(W ∗

T ) and CE(V∞
T )

in table 3 is still 4.2% when RRA=20. This underscores the
fact that the predictability of the bivariate linear diffusion is of
a different form from that of the trending Ornstein–Uhlenbeck
process.

Indeed, there are striking similarities between tables 5 and
1, another indication that the terminal stock pricePT and option
prices corresponding to the two stochastic processes—as we
have calibrated them—have much in common. However, note
that the certainty equivalents in table 1 are relative to CE(W ∗

T ),
not CE(V∞

T ). Nevertheless, even the values of CE(V∞
T ) in

table 5 are extremely close to the values of CE(W ∗
T ) in table

1. This close correspondence suggests that for all practical
purposes, the bivariate process (4.22) and (4.23) offers the
same buy-and-hold investment opportunities to the investor
as geometric Brownian motion.

Mean-square-optimal buy-and-hold portfolios. Table 6
reports the mean-square-optimal buy-and-hold portfolios
under (4.22) and (4.23) for CRRA preferences with the same
risk aversion levels as in table 5. These results match
those in table 2 quite closely. Specifically, as in table
2, the optimal buy-and-hold portfolio is a particularly poor
approximation to both W ∗

T and V∞
T in the log-utility case, with

RMSE’s greater than 3500%, certainty equivalents CE(V ∗
T ) no

greater than 35% of CE(V∞
T ), and large swings in portfolio

weights as n is changed from 1 to 2 and from 2 to 3.
For higher levels of risk aversion, the optimal buy-and-hold
portfolios in table 6 are remarkably close to those in table 2
in terms of portfolio weights, option positions, and certainty
equivalents, providing further confirmation that the bivariate
linear diffusion, calibrated according to (5.6), shares many of
the same economic properties as geometric Brownian motion.

6. Discussion
For expositional purposes, we have made a number of
simplifying assumptions, many of which can be relaxed at
the expense of notational and computational complexity. In
section 6.1, we consider some practical issues regarding the
implementation of the optimal buy-and-hold portfolio. We
discuss the advantages of using more complex derivative
securities in section 6.2, and in section 6.3 we consider
extending our analysis to other preferences and price processes.
Finally, in section 6.4 we argue that the gap between CE(W ∗

T )

and CE(V∞
T ) is a useful measure of the economic value of

predictability, and discuss the role of taxes and transactions
costs in interpreting the gap.

6.1. Practical considerations

An obvious prerequisite to any practical implementation of
the optimal buy-and-hold portfolio proposed in section 3 is
the existence of options with the appropriate maturity T and
strike prices {k∗

i }. These two issues—time-to-maturity and the
set of available strikes—are related, since a longer time-to-
maturity generally implies a greater dispersion for the optimal
strikes (to accommodate the greater dispersion in the terminal
stock-price distribution). For horizons less than one year,
there are relatively liquid options on the S&P 500 and other
indexes, usually with a reasonable number of strikes above and
below the spot price, hence the possibility of replacing certain
dynamic investment strategies with an optimal buy-and-hold
portfolio is plausible. However, for longer maturities such as
the 20-year horizons proposed in the numerical examples of
section 5, exchange-traded options do not exist.

This might seem to be a serious impediment to
implementing the optimal buy-and-hold strategy for realistic
investment horizons. However, we think there is hope for
several reasons. First, longer-maturity index options are
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Table 5. Utility-optimal buy-and-hold portfolios of stocks, bonds and n European call options for CRRA utility under a bivariate linear
diffusion stock-price process with parameters (σ1, σ2, ρ, κ, θ) of the steady-state distribution calibrated to match the following moments:
E[log(Pt/Pt−1)] = 0.15, Var[log(Pt/Pt−1)] = 0.04, Var[µt ] = 0.0252, Corr[µt , µt−1] = 0.05, and ρ = 0. Other calibrated parameters
include: riskless rate r = 5%, initial stock price P0 = $50, initial wealth W0 = $100 000, and time period T = 20 years. ‘RRA’ denotes the
coefficient of relative risk aversion, ‘CE(W ∗

T )’ denotes the certainty equivalent of the optimal dynamic stock/bond policy, ‘CE(V∞
T )’ denotes

the certainty equivalent of the optimal buy-and-hold portfolio with a continuum of options, and ‘CE(V ∗
T )’ denotes the certainty equivalent of

the optimal buy-and-hold portfolio with a finite number n of options, reported as a percentage of CE(V∞
T ).

Option positions in optimal
portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $11 861 394 CE(V∞

T ) = $10 142 498 RRA = 1 (Log utility)
0 0.0 100.0 19.8 4 346.6
1 60.3 39.7 68.2 4 341.5 56 231

737
2 79.9 20.1 87.5 4 332.2 13 577 151 097

403 1 405
3 99.3 0.7 91.9 4 332.2 786 12 725 152 096

68 403 1 405

CE(W ∗
T ) = $1778 906 CE(V∞

T ) = $1 645 135 RRA = 2
0 0.0 100.0 81.8 214.7
1 64.6 35.4 94.4 197.4 2 258

68
2 58.0 42.0 99.2 155.4 1 600 3 159

68 403
3 58.2 41.8 99.4 106.3 1 624 2 811 4 379

68 403 1 405

CE(W ∗
T ) = $575 004 CE(V∞

T ) = $557 315 RRA = 5
0 0.0 61.8 97.4 141.8
1 −45.9 131.2 99.1 103.0 −1 604

68
2 −36.7 119.8 99.8 35.4 −1 201 −595

68 403
3 −36.8 120.0 99.8 14.8 −1 207 −568 −192

68 403 1 405

CE(W ∗
T ) = $395 205 CE(V∞

T ) = $389 080 RRA = 10
0 0.0 26.5 96.7 154.7
1 −46.8 101.5 98.9 105.1 −1 635

68
2 −37.3 89.5 99.7 25.3 −1 250 −386

68 403
3 −37.4 89.6 99.7 6.1 −1 254 −376 −90

68 403 1 739

always available through custom OTC derivatives contracts,
although this is admittedly a very expensive alternative.
Second, the scarcity of longer-maturity contracts is a reflection
of existing demand—if optimal buy-and-hold portfolios
become popular, this will create new demand for such
contracts, leading to increased supply. Recent legislative
debate regarding the privatization of the US social security
system suggests the possibility of a huge increase in demand
for such products and services. Third, insurance companies
now provide various policies that have similar features to
long-dated options, e.g. annuities with call and put features,

contingent life-insurance policies etc, hence they may be a
natural supplier of optimal buy-and-hold portfolios. And
finally, an imperfect alternative to long-dated options is a
carefully managed sequence of shorter-term options, and it
may be possible to derive a dynamic trading strategy consisting
of a sequence of overlapping options contracts that will yield
the same investment profile as the optimal buy-and-hold
strategy24. A dynamic trading strategy seems contrary to our

24 See Bertsimas et al (2000b) for an example of how such a strategy might
be derived.
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Table 5. Continued.

Option positions in optimal
portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $348 828 CE(V∞

T ) = $345 214 RRA = 15
0 0.0 16.2 97.3 124.2
1 −36.9 76.2 99.1 82.9 −1 288

68
2 −29.5 66.8 99.8 17.6 −994 −261

68 403
3 −29.5 66.8 99.8 4.3 −996 −255 −49

68 403 1 739

CE(W ∗
T ) = $327 732 CE(V∞

T ) = $325 182 RRA = 20
0 0.0 11.6 97.7 101.2
1 −29.8 60.3 99.3 67.1 −1 041

68
2 −23.8 52.8 99.8 13.3 −807 −196

68 403
3 −23.9 52.8 99.8 3.3 −809 −191 −33

68 403 1 739

motivation for constructing a buy-and-hold alternative to the
standard optimal dynamic asset-allocation policy. However,
the inclusion of a few well-chosen short-maturity options from
time to time in an otherwise passive buy-and-hold portfolio
might be a very cost-effective and efficient alternative to
the optimal dynamic policy, and we are investigating this
possibility in our current research program.

Another issue that arises in the practical implementation of
the optimal buy-and-hold strategy is computational challenges
associated with the optimization procedure. As discussed
in section 5, there are limits to the number of subproblems
that can be handled in a reasonable amount of time, which
imposes limits on the number of possible strikes that can
be considered, as well as the number of options n in the
buy-and-hold portfolio. In our numerical examples, we have
made no attempt to optimize our algorithm for numerical
and computational efficiency, preferring instead to maintain
consistency across examples to facilitate comparisons. For
example, when solving for the optimal buy-and-hold portfolio
with n = 1 option, there was no need to limit ourselves to
just 45 possible strikes. In fact, this problem can be solved
very efficiently even if we were to consider several thousand
possible strikes. In addition, by selecting the range of strikes as
a function of the relative risk-aversion parameter, it is possible
to obtain considerably better results than those of tables 1–625.
Therefore, the numerical results of section 5 should be taken

25 Specifically, having selected the N possible strikes, we solve the
(
N
n

)
subproblems as described in section 5.1. Once this is completed, we use the
strikes {k̂i} from the subproblem with the best optimum to select another set of
N possible strikes. This new set of N strikes spans a smaller interval than the
original set, but still contains {k̂i}. We then solve another

(
N
n

)
subproblems

and select the best optimum as our solution, and denote the corresponding
strikes as {k∗

i }. This two-stage procedure for determining the set of possible
strikes often yields significant improvements in the objective function.

as illustrative only, and not necessarily indicative of the best
possible performance of the optimal buy-and-hold portfolios.

6.2. Other derivative securities

For simplicity, we have used only European call options in
our buy-and-hold strategies. A natural extension is to include
more complex derivatives, perhaps with path dependences
such as knock-out or average-rate options. This extension
may be especially relevant in the presence of predictability,
since in such cases we cannot attain CE(W ∗

T ) with a buy-
and-hold strategy even if we include an infinite number of
European options. In fact, the specific form of predictability
may suggest a class of derivatives that are particularly suitable.
For example, in the case of the trending Ornstein–Uhlenbeck
process (4.8), it seems reasonable to conjecture that derivatives
whose payoffs depend on∫ T

0
h(|Xt − X0 − µt |)dt (6.1)

for some function h(·)would be most useful for approximating
W ∗

T in a buy-and-hold portfolio. This should be true more
generally for other mean-reverting stock-price processes. On
the other hand, if the stock-price process displays some type
of persistence or ‘momentum’, a different class of derivatives
might be more appropriate.

6.3. Other preferences and price processes

Although we have confined much of our analysis in sections 4
and 5 to the special cases of CRRA and CARA preferences
under three specific price processes, we wish to emphasize that
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Table 6. Mean-square-optimal buy-and-hold portfolios of stocks, bonds, and n European call options for CRRA utility under a bivariate
linear diffusion stock-price process with parameters (σ1, σ2, ρ, κ, θ) of the steady-state distribution calibrated to match the following
moments: E[log(Pt/Pt−1)]=0.15, Var[log(Pt/Pt−1)]=0.04, Var[µt ]=0.0252, Corr[µt , µt−1]=0.05, and ρ=0. Other calibrated
parameters include: riskless rate r=5%, initial stock price P0 = $50, initial wealth W0 =$100 000, and time period T =20 years. ‘RRA’
denotes the coefficient of relative risk aversion, ‘CE(W ∗

T )’ denotes the certainty equivalent of the optimal dynamic stock/bond policy,
‘CE(V∞

T )’ denotes the certainty equivalent of the optimal buy-and-hold portfolio with a continuum of options, and ‘CE(V ∗
T )’ denotes the

certainty equivalent of the optimal buy-and-hold portfolio with a finite number n of options, reported as a percentage of CE(V∞
T ).

Option positions in optimal portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $11 861 394 CE(V∞

T ) = $10 142 498 RRA = 1 (Log utility)
0 0.0 100.0 19.8 4 346.6
1 0.2 99.8 20.0 3 579.8 35.36 × 10−6

14 771
2 100.0 0.0 0.0 3 578.5 247 608 34.8 × 10−6

1 071 14 771
3 2.8 97.2 22.7 3 564.7 2 695 502 −75.6 × 10−6 108.2 × 10−6

5 415 14 437 14 771
4 8.1 91.9 27.7 3 563.8 1 023 256 3412 389 −96.3 × 10−6 127.2 × 10−6

3 410 8 756 14 437 14 771
5 15.6 84.4 34.5 3 563.7 497 357 1 586 801 3 353 435 −103.3 × 10−6 133.3 × 10−6

2 407 6 083 10 427 14 437 14 771

CE(W ∗
T ) = $1778 906 CE(V∞

T ) = $1645 135 RRA = 2
0 0.0 100.0 81.8 214.7
1 0.5 99.5 82.9 62.2 16 875

2 407
2 2.0 98.0 85.0 29.3 11 060 18 392

1 405 10 761
3 7.6 92.4 89.3 17.9 7 084 8 847 17 361

737 4 412 14 771
4 19.8 66.3 88.7 16.0 5 044 5 127 6 858 16 539

403 2 073 5 415 14 771
5 17.5 82.5 94.0 15.5 4 417 4 021 4 093 4 828 15 662

403 1 739 3 744 6 751 14 771

CE(W ∗
T ) = $575 004 CE(V∞

T ) = $557 315 RRA = 5
0 0.0 24.6 85.0 27.9
1 −0.1 42.5 94.3 7.7 −536

1 405
2 −0.6 50.6 96.6 3.5 −546 −223

737 4 078
3 −2.4 61.5 98.4 2.1 −615 −243 −158

403 1 739 6 417
4 −2.2 60.2 98.3 1.3 −561 −215 −133 −109

403 1 405 3 744 10 427
5 −2.0 58.8 98.1 1.0 −493 −189 −132 −101 −91

403 1 071 2 407 5 415 13 768

the optimal buy-and-hold portfolio can be derived for many
other preferences and price processes. For example, the class
of hyperbolic absolute risk-aversion (HARA) preferences can
be accommodated, as well as any price process for which the
conditional state-price density can be computed. Even more
general preferences and price processes are allowable at the
expense of computational complexity. For example, for price
processes that do not admit closed-form expressions for the

conditional state-price densities, these can be estimated non-
parametrically as in Aı̈t-Sahalia and Lo (1998).

6.4. The predictability gap

As we have seen in sections 4.2 and 4.3, in the presence
of predictability in the stock-price process, buy-and-hold
portfolios of stocks, bonds and European call options cannot
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Table 6. Continued.

Option positions in optimal portfolio with n options

n Options Stock CE(V ∗
T ) RMSE Quantity Quantity Quantity Quantity Quantity

(%) (%) (%) (%) Strike ($) Strike ($) Strike ($) Strike ($) Strike ($)

CE(W ∗
T ) = $395 204 CE(V∞

T ) = $389 080 RRA = 10
0 0.0 6.7 86.5 26.9
1 −0.1 17.7 94.9 6.4 −295

1 071
2 −1.7 29.8 98.0 3.0 −446 −107

403 2 407
3 −1.5 27.8 97.7 1.7 −371 −101 −53

403 1 405 4 746
4 −1.4 27.2 97.6 1.3 −340 −93 −54 −32

403 1 071 2 742 7 754
5 −68.4 140.1 96.4 0.9 −2 357 −235 −100 −53 −33

68 403 1 071 2 742 7 754

CE(W ∗
T ) = $348, 828 CE(V∞

T ) = $345 214 RRA = 15
0 0.0 3.7 89.7 21.4
1 −0.3 13.9 97.1 5.0 −246

737
2 −1.2 19.1 98.3 2.2 −304 −60

403 2 407
3 −1.0 17.9 98.1 1.3 −257 −59 −27

403 1 405 4 746
4 −47.8 96.7 98.5 1.0 −1 644 −188 −62 −27

68 403 1 405 4 746
5 −51.5 102.6 97.9 0.7 −1 776 −162 −56 −29 −19

68 403 1 071 2 407 6 417

CE(W ∗
T ) = $327 732 CE(V∞

T ) = $325 182 RRA = 20
0 0.0 2.5 91.8 17.5
1 −0.2 9.9 97.6 3.9 −179

737
2 −0.9 14.0 98.6 1.7 −228 −41

403 2 407
3 −0.8 13.2 98.4 1.1 −197 −40 −18

403 1 405 4 412
4 −38.2 76.2 98.9 0.8 −1 316 −140 −44 −18

68 403 1 405 4 746
5 −40.9 80.5 98.5 0.5 −1 411 −121 −40 −20 −12

68 403 1 071 2 407 6 417

approximateW ∗
T arbitrarily well, even as the number of options

increases without bound. We use the term ‘predictability gap’
to denote the difference between CE(W ∗

T ) and CE(V∞
T ), which

depends on the investor’s preferences as well as the parameters
of the stock-price process.

The natural question to ask is how significant is this
predictability gap? Given that the end-of-period wealth W ∗

T

of the optimal dynamic asset-allocation policy is generally
unattainable due to transaction costs and other market frictions,
CE(W ∗

T ) can be viewed as a theoretical upper bound on how
well an investor can do. On the other hand, if V∞

T is well
approximated by an optimal buy-and-hold portfolio V ∗

T with
just a few options, it is more likely to be attainable in practice

given that only a few trades are required to establish the
portfolio and there are few costs to bear thereafter. Therefore,
if the predictability gap is small, the buy-and-hold portfolio
may well be optimal even in the presence of predictable stock
returns. To investigate this possibility, we must consider the
impact of transaction costs on CE(W ∗

T ).
Most of the studies in the transaction costs literature

ignore predictability, assuming independently and identically
distributed (IID) returns instead26. Such studies may
underestimate the impact of transaction costs because the

26 For example, Magill and Constantinides (1976), Constantinides (1986),
Davis and Norman (1990), Dumas and Luciano (1991) and Gennotte and
Jung (1992) all assume IID return-generating processes.
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presence of predictability provides another motive for trade,
i.e. time-varying investment opportunity sets. Therefore, we
might expect transaction costs—as a percentage of initial
wealth W0—to be higher if stock returns are predictable.

Balduzzi and Lynch (1999) do consider transaction costs
in the case of predictability, computing the impact on an
investor’s expected utility when transaction costs exist but are
ignored by the investor. They do not report the difference
between the certainty equivalent of the optimal asset-allocation
policy in an economy without transaction costs and the
certainty equivalent of the optimal policy in an economy with
transaction costs (though their framework should allow them
to do so easily). They do mention, however, that ‘. . . the
presence of transaction costs . . . decreases the utility cost of
ignoring predictability’. This suggests that CE(W ∗

T ) might
be reduced significantly, reducing the predictability gap and
providing more compelling motivation for the optimal buy-
and-hold portfolio.

An even more compelling motivation for the optimal
buy-and-hold portfolio is the presence of taxes. For taxable
investors, CE(W ∗

T ) is reduced by the present value of the
sequence of capital gains taxes that are generated by an optimal
dynamic asset-allocation strategy. In contrast, all of the
capital gains taxes are deferred until date T in a buy-and-hold
portfolio. Therefore, the economic value of predictability is
likely to be even lower for taxable investors, and the optimal
buy-and-hold portfolio that much more attractive.

7. Conclusion
In this paper, we compare optimal buy-and-hold portfolios
of stocks, bonds and options to the standard optimal
dynamic asset-allocation policies involving only stocks and
bonds. Under certain conditions, buy-and-hold portfolios are
excellent approximations—in terms of certainty equivalence
and mean-squared-error of end-of-period wealth—to their
dynamic counterparts, suggesting that in those cases, dynamic
trading strategies may be ‘automated’ by simple buy-and-
hold portfolios with just a few options. Cases where
the approximation breaks down are also of interest, since
such situations highlight the importance of dynamic trading
opportunities.

There are a number of extensions of this research that
may be worth pursuing. The most obvious is to perform
similar analyses for other stochastic processes and preferences,
those that are more consistent with the empirical evidence.
The main challenge in this case is, of course, tractability and
computational complexity.

A more important extension is to consider approximating
other dynamic investment strategies with buy-and-hold
portfolios of derivatives. Although we focus on optimal
dynamic asset-allocation strategies in this paper, there is
no reason to confine our attention to such a narrow class
of strategies. For example, deriving optimal buy-and-hold
strategies to approximate dollar-cost averaging strategies or
other popular dynamic investment strategies—strategies that
need not be based on expected utility maximization—might
be of considerably broader interest.

Finally, the composition of the optimal buy-and-hold
portfolio provides an interesting summary of the risk exposures
of the optimal dynamic asset-allocation policy that the buy-
and-hold portfolio approximates. By examining the payoff
structure of the optimal buy-and-hold portfolio, and its
sensitivities to various market factors and economic shocks,
we can develop insights into the risks of dynamic investment
policies using measures computed at a single point in time. We
hope to explore these and other extensions in the near future.

Acknowledgments
This research was partially supported by the MIT Laboratory
for Financial Engineering and the National Science Foundation
(grant no SBR–9709976). We thank Michael Dempster,
Doyne Farmer, Leonid Kogan, Jiang Wang and participants
at the Boston University Derivative Securities Conference
and the MathSoft Conference on Statistical Modeling
and Computation in Finance for valuable discussions and
comments.

Appendix A
In this appendix, we derive the optimal value function J (·)
from the Hamilton–Jacobi–Bellman equation (4.10) for the
trending and standard Ornstein–Uhlenbeck processes.

Appendix A.1. Trending Ornstein–Uhlenbeck
value function

We present here the solution to the Hamilton–Jacobi–Bellman
equation (4.10) of section 4.2. Recall that this equation is given
by:

0 = Maxωt

{
Jt + WtJW

(
r + ωt [−δ(Xt − µt − X0)

+µ + 1
2σ

2 − r]
)

+ JX(−δ(Xt − µt − X0) + µ)

+ 1
2ω

2
t σ

2W 2
t JWW + 1

2σ
2JXX + σ 2ωtWtJXW

}
. (A.1)

Solving for ωt and substituting back into (A.1) yields the
following partial differential equation (PDE):

0 = JtJWW + [−δ (Xt − µt − X0) + µ] JXJWW

+ rWJWJWW +
σ 2

2
JXXJWW − σ 2

2
J 2
XW

−
(

−δ (Xt − µt − X0) + µ +
σ 2

2
− r

)
JWJXW

−
(
−δ (Xt − µt − X0) + µ + σ 2

2 − r
)2

2σ 2
J 2
W (A.2)

subject to J (W,X, T ) = U(W). We solve this PDE by
conjecturing that

J (W,X, t) = U(W exp[r(T −t)]) exp(α(t)+β(t)X+ζ(t)X2)

where α(T ) = β(T ) = ζ(T ) = 0. Therefore solving the PDE
reduces to solving three ordinary differential equations. We
then solve these differential equations for α(t), β(t) and ζ(t).
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CRRA utility

For an investor with the CRRA utility function, U(W) =
Wγ /γ , it is only possible to solve explicitly for β(t) and
ζ(t). Solving for α(t) required evaluating a number of definite
integrals for which there did not seem to be analytic solutions.
These integrals are easy to solve numerically, however, and it
is therefore possible to find a very good numerical solution to
the value function, J (W,X, t). We present here the solutions
for β(t) and ζ(t). Let

a = 1 +
√

1 − γ , b = 1 − √
1 − γ ,

q = −2δ√
1−γ

, H = −γ δ2µ

σ 2
√

1−γ

I = (2r−σ 2)γ δ
2σ 2 , J = γ δ(2r−2µ−σ 2)

2σ 2
√

1−γ
,

K = −γ δµ

σ 2 .

(A.3)

Then β(t) and ζ(t) are given by:

β(t) =
√

1 − γ

δ(a − b exp[q(T − t)])

[
(H t + K + I + J )

− (H t − K + J − I ) exp(q(T − t))

− 2(K + I ) exp

(
q(T − t)

2

)]
(A.4)

ζ(t) = γ δ

2σ 2

[
1 − exp(q(T − t))

a − b exp(q(T − t))

]
. (A.5)

CARA utility

For the CARA utility function, U(W) = − exp(−γW)/γ ,
α(t), β(t), ζ(t) are:

α(t) = 41
(
t3 − T 3

)
3

+
42
(
t2 − T 2

)
2

+ 43 (t − T ) (A.6)

β(t) = 51
(
t2 − T 2

)
+ 52 (T − t) (A.7)

ζ(t) = δ2 (t − T )

2σ 2
(A.8)

where

51 = δ2

4
− rδ2

2σ 2
− δ2µ

2σ 2
(A.9)

52 = δ

2σ 2

(
δσ 2T − 2rδT + 2µ + σ 2 − 2r

)
(A.10)

41 = δ2µ2

2σ 2
+

(
σ 2

2
− r

)
51 (A.11)

42 = δµ

σ 2

(
µ − r +

σ 2

2

)
−
(
σ 2

2
− r

)
52 − δ2

2
(A.12)

43 =
(
µ − r + σ 2

2

)2

2σ 2
+ 51T

2

(
r − σ 2

2

)
− 52T

(
r − σ 2

2

)
+
δ2T

2
. (A.13)

Appendix A.2. Non-trending Ornstein–Uhlenbeck
value function

Recall that Xt ≡ logPt and let Xt satisfy the following
stochastic differential equation:

dXt = − δ (Xt − α) dt + σdBt (A.14)

whereα and δ are both positive. The solution to (A.14) is given
by:

Xt = α + exp(−δt) [X0 − α] + σ exp(−δt)

∫ t

0
exp(δs) dBs

(A.15)
and the corresponding Hamilton–Jacobi–Bellman equation is
given by

0 = Maxω

[
Jt + WJW

(
(1 − ω)r − δω (logP − α) +

ωσ 2

2

)
+ PJP

(
σ 2

2
− γ (logP − α)

)
+

1

2
W 2σ 2JWWω2

+
1

2
P 2σ 2JPP + WPσ 2ωJPW

]
. (A.16)

We solve this PDE by conjecturing that the value function is
of the form:

J (W,X, t) = U(W exp[r(T −t)]) exp(α(t)+β(t)X+ζ(t)X2)

(A.17)
where α(T ) = β(T ) = ζ(T ) = 0.

CRRA utility

For U(W) = Wγ /γ , we have the following system of ODEs:
dα

dt
= γ

γ − 1

[
σ 2

2δ
β2 +

53

2
β +

52

2σ 2
− σ 2ζ

]
(A.18)

dβ

dt
= (

2σ 2ζ − δ
) β

γ − 1
+

γ

γ − 1

[
53ζ +

51

2σ 2

]
(A.19)

dζ

dt
= 2σ 2

γ − 1
ζ 2 − 2δ

γ − 1
ζ +

δ2γ

2σ 2 (γ − 1)
(A.20)

where

51 = 2rδ − σ 2δ − 2αδ2 (A.21)

52 = σ 4/4 + α2δ2 + r2 − rσ 2 + σ 2δα − 2rδα (A.22)

53 = σ 2 − 2r +
2αδ

γ
(A.23)

Then

β (t) = (
2 (d1 + d2) − d1

(
es(T−t) + e−s(T−t)

)− d2
(
aes(T−t)

+ be−s(T−t)
)) (

s
(
aes(T−t) − be−s(T−t)

))−1
(A.24)

ζ (t) = δγ

2σ 2

[
1 − eq(T−t)

a − beq(T−t)

]
(A.25)

where

d1 = γ 253δ

2 (γ − 1) σ 2
, d2 = γ51

2 (γ − 1) σ 2

a = 1 +
√

1 − γ , b = 1 −
√

1 − γ (A.26)

s = δ (a − γ )

(1 − γ ) a
, q = −2δ√

1 − γ

To define α (t), let:

f1 = σ 2

2 (γ − 1)
, f2 = γ53

2 (γ − 1)

f3 = γ52

2 (γ − 1) σ 2
, ρ1 = 2 (d1 + d2)

s
(A.27)

ρ2 = − (d1 + ad2)

s
, ρ3 = − (d1 + bd2)

s
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and
I1 = [

2as
(
ae2s(T−t) − b

)]−1
(A.28)

I2 = −1

2s

[
1

a2
log

(
a − be−2s(T−t)

be−2s(T−t)

)
− 1

a
(
a − be−2s(T−t)

)] (A.29)

I3 = −1

2s

[
1

b2
log

(
ae2s(T−t)

ae2s(T−t) − b

)
− 1

b
(
ae2s(T−t) − b

)] (A.30)

I4 = 1

2s

[
es(T−t)

b
(
ae2s(T−t) − b

)
+

1

b
√−ab

tan−1

(√−a

b
es(T−t)

)]
(A.31)

I5 = 1

2s

[
es(T−t)

a
(
ae2s(T−t) − b

)
− 1

a
√−ab

tan−1

(√−a

b
es(T−t)

)]
(A.32)

I7 = −1

s
√−ab

tan−1

(√−a

b
es(T−t)

)
(A.33)

I6 = I1 (A.34)

I8 = −1

2as
log

(
ae2s(T−t) − b

)
(A.35)

I9 = −1

2bs
log

(
a − be−2s(T−t)

)
(A.36)

I10 = δγ

2σ 2

[
1

aq
log

(
ae−q(T−t) − b

)
− 1

bq
log

(
a − beq(T−t)

)]
(A.37)

Then
α(t)

= f1
[
ρ2

1I1 + ρ2
2I2 + ρ2

3I3 + 2ρ1ρ2I4 + 2ρ1ρ3I5 + 2ρ2ρ3I6
]

+f2 [ρ1I7 + ρ2I8 + ρ3I9] − σ 2I10 + f3t + G (A.38)
where G is the constant defined by the condition α(T ) = 0.

CARA utility

The solution of (A.16) for CARA utility, U(W) =
− exp(−γW)/γ is given by:

α(t) = δ2

6σ 2

(
σ 2

2
− r

)2

(t − T )3

+

[
51

4σ 2

(
σ 2

2
− r

)
− δ2

4

]
(T − t)2 − 52

2σ 2
(T − t)

(A.39)

β(t) = δ2

2

(
1

2
− r

σ 2

)
(t − T )2 − 51

2σ 2
(T − t) (A.40)

ζ(t) = δ2

2σ 2
(t − T ) (A.41)

where the solution is of the form:

J (W,X, t)

= U (W exp[r(T − t)]) exp(α(t) + β(t)X + ζ(t)X2).

(A.42)
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