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Abstract

We analyze dynamic portfolio choice problems using an approximate dynamic program-
ming (ADP) algorithm. We extend the algorithm to the case of constraints on borrowing
and implement a duality-based simulation procedure for estimating bounds on the true
value function. We demonstrate that the ADP solution exhibits a high degree of accu-
racy in the considered examples, indicating that this is a promising approach to tackling
challenging practical problems in the area of asset allocation and portfolio choice. We
present additional evidence on the performance of the duality-based method for esti-
mating performance of approximate portfolio rules, showing that it provides a valuable
tool in conjunction with ADP-style algorithms.

Subject Classifications: Finance: portfolio optimization. Dynamic Programming:
optimal control, duality theory.



1 Introduction

Recent years have seen increased interest in the problem of optimal portfolio choice. This
interest has been fueled partly by methodological advances, and partly by the growing
practical importance of such problems, particularly since the increased emphasis on
defined contribution pension plans has recently shifted the burden of life-time asset
allocation onto individuals.

A significant effort in academic literature has been directed towards obtaining explicit
solutions to selected problems (e.g., Merton 1971, 1990, Karatzas, Lehoczky, Sethi and
Shreve, 1986, Kim and Omberg, 1986, Cox and Huang, 1989, Liu, 1998, Wachter,
2002) and analyzing calibrated versions of simple models (e.g., Brennan, Schwartz and
Lagnado, 1997, Munk, 2000, Campbell and Viceira, 1999, 2002, Brennan and Xia, 2002,
Barberis, 2002, Campbell, Chan and Viceira, 2003, Chacko and Viceira, 2005, Wachter
and Sangvinatsos, 2005), avoiding the challenge posed by lack of analytical tractabil-
ity and high dimensionality of many problems of practical interest. Recently, Brandt,
Goyal, Santa-Clara and Stroud (2005) suggested a computational algorithm, based on
approximate dynamic programming (ADP) ideas, aimed at high-dimensional and com-
putationally intensive problems. Their algorithm relies on functional approximations to
the value function and applies to problems with incomplete financial markets. An im-
portant unexplored aspect of their algorithm is the quality of approximation. While the
procedure can be shown to perform well on a few sample problems with known solutions,
it is clearly not a guarantee that it will fair as well on more challenging problems for
which solutions cannot be obtained using standard methods.

In this paper, we show how ADP approach can be strengthened by a rigorous duality-
based simulation method for evaluating the quality of approximate solutions, developed
by Haugh, Kogan, and Wang (2006) (HKW). Their simulation method can handle prob-
lems with position constraints, including incomplete markets. For the examples we
consider, the ADP algorithm delivers accurate approximations to the optimal policy, as
verified by our simulation technique. Second, our analysis also demonstrates the practi-
cal potential of the duality-based method of HKW. The latter demonstrated that their
simulation method shows promise in several examples based on a simple myopic port-
folio policy. In the problems considered, the myopic solution was close to the optimum,
leaving open the question of how well the algorithm would perform on problems with a
significant hedging component in the optimal policy. In this paper, we show that the
simulation method of HKW also performs well on problems for which myopic strategies
are far from optimal.
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2 The Model

We consider a portfolio choice problem under incomplete markets and portfolio con-
straints. We formulate our model in discrete time: the economy exists between 0 and
T , and trading takes place at equally spaced periods ti ∈ [0, T ], i = (0, 1, ..., I), t0 = 0,
tI = T . In later sections, when we compute duality-based performance bounds, we de-
fine the discrete-time model as an Euler approximation to a continuous-time diffusion
model.

The investment opportunity set

There are N risky assets and a riskfree asset. Without loss of generality, we assume
that the assets pay no dividends. The instantaneous moments of asset returns depend
on the M -dimensional vector of state variables Xt. We assume that the vector of state
variables Xt follows a general Markov process. The vector of risky returns is assumed to
be conditionally log-normally distributed, i.e., return on the risky asset n over the time

interval [ti, ti+1) is given by R
(n)
i = exp(r

(n)
i ), where the vector ri = (r

(1)
i , r

(2)
i , ..., r

(N)
i )>

has a conditional multi-variate normal distribution, given the state Xi at time ti. Thus,
in order to specify the return process, we only need to define the vector of conditional
means and the variance-covariance matrix of ri. We denote the return on the riskfree
asset over the same time interval by R

(f)
i = exp(r

(f)
i ).

The objective function

We assume that the portfolio policy is chosen to maximize the expected utility of wealth
at the terminal date T , E0[U(WT )]. We further assume that the utility function is of
constant relative risk aversion (CRRA) type, so that U (W ) = W 1−γ/(1−γ). In addition
to being a very popular specification of preferences, the CRRA utility function has an
advantage that optimal portfolio policies are independent of wealth, which makes the
problem more tractable computationally. We let θ denote the vector of portfolio shares
invested in the risky assets, so that the return on the portfolio is given by

R
(f)
i + θ>(Ri −R

(f)
i ı),

where ı = (1, ..., 1)>.

In summary, the portfolio choice problem is to solve for

sup
{θi}

E0

[
1

1− γ
W 1−γ

T

]
(1)

subject to the budget constraint

Wi+1 = Wi

(
R

(f)
i + θ>(Ri −R

(f)
i ı)

)
.
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3 Approximate Dynamic Programming for Portfolio

Optimization

We now describe our method for constructing approximate solutions to the portfolio
choice problems. We use the ADP algorithm for incomplete markets, developed by
Brandt et al. (2005). We also extend their method to handle no-borrowing constraints.

Brandt et al (2005) propose solving the portfolio choice problem by approximating the
value function Vi(Xi,Wi). The value function satisfies the Bellman equation

Vi(Xi,Wi) = max
θi

Ei

[
Vi+1

(
Xi+1, Wi

(
R

(f)
i + θ>i

(
Ri −R

(f)
i ı

)))]
. (2)

with the terminal condition VT (XT ,WT ) = W 1−γ
T /(1− γ).

Since in most cases the dynamic program (2) cannot be solved exactly we instead look
for an approximate solution. Following Brandt et al (2005), we use a 4th-order Taylor

expansion of Vi+1 around WiR
(f)
i in the right-hand-side of (2) and obtain

Vi(Xi,Wi) ≈ max
θi

Ei

[
Vi+1(Xi+1,WiR

(f)
i ) + ∂2Vi+1(Xi+1,WiR

(f)
i )WiR̃

>
i θi

+
1

2
∂2

2Vi+1(Xi+1,WiR
(f)
i )(WiR̃

>
i θi)

2 +
1

6
∂3

2Vi+1(Xi+1,WiR
(f)
i )(WiR̃

>
i θi)

3

+
1

24
∂4

2Vi+1(Xi+1, WiR
(f)
i )(WiR̃

>
i θi)

4

]
(3)

where R̃i =
(
Ri −R

(f)
i 1

)
is the vector of excess returns on the risky assets and ∂n

2 Vi

denotes the n-th order partial derivative of the value function with respect to its second
argument, wealth.

If we use θ̂i to denote the optimal weights in (3), then we can characterize the partial
derivatives of the value function as

Vi+1(Xi+1,WiR
(f)
i ) =

(WiR
(f)
i )1−γ

1− γ
Ei+1[Hi+1]

∂2Vi+1(Xi+1,WiR
(f)
i ) = (WiR

(f)
i )−γEi+1[Hi+1]

∂2
2Vi+1(Xi+1,WiR

(f)
i ) = −γ(WiR

(f)
i )−γ−1Ei+1[Hi+1]

∂3
2Vi+1(Xi+1,WiR

(f)
i ) = γ(γ + 1)(WiR

(f)
i )−γ−2Ei+1[Hi+1]

∂4
2Vi+1(Xi+1,WiR

(f)
i ) = −γ(γ + 1)(γ + 2)(WiR

(f)
i )−γ−3Ei+1[Hi+1]

where

Hi+1 =
I−1∏

k=i+1

(
R

(f)
k + R̃>

k θ̂k

)1−γ

.
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We can then rewrite (3) to obtain

Vi(Xi,Wi) = W 1−γ
i max

θi

Ei

[
1

1− γ

(
R

(f)
i

)1−γ

Ei+1[Hi+1] +
(
R

(f)
i

)−γ

Ei+1[Hi+1]R̃
>
i θi

− 1

2
γ

(
R

(f)
i

)−γ−1

Ei+1[Hi+1](R̃
>
i θi)

2 +
1

6
γ(γ + 1)

(
R

(f)
i

)−γ−2

Ei+1[Hi+1](R̃
>
i θi)

3

− 1

24
γ(γ + 1)(γ + 2)

(
R

(f)
i

)−γ−3

Ei+1[Hi+1](R̃
>
i θi)

4

]
. (4)

The optimal solution to (4) is clearly independent of Wi. The first-order optimality
conditions corresponding to (4) are given by

Ei

[(
R

(f)
i

)−γ

Ei+1[Hi+1]R̃i − γ
(
R

(f)
i

)−γ−1

Ei+1[Hi+1]R̃
>
i θ̂iR̃i

+1
2
γ(γ + 1)

(
R

(f)
i

)−γ−2

Ei+1[Hi+1](R̃
>
i θ̂i)

2R̃i

−1
6
γ(γ + 1)(γ + 2)

(
R

(f)
i

)−γ−3

Ei+1[Hi+1](R̃
>
i θ̂i)

3R̃i

]
= 0

implying in particular that

θ̂i = (Ei[Bi+1])
−1

{
1

γ
Ei[Ai+1] +

1

2
(1 + γ)Ei[Ci+1(θ̂i)]− 1

6
(1 + γ)(2 + γ)Ei[Di+1(θ̂i)]

}

(5)
where

Ai+1 =
(
R

(f)
i

)−γ

Ei+1[Hi+1]R̃i (6)

Bi+1 =
(
R

(f)
i

)−γ−1

Ei+1[Hi+1]R̃iR̃
>
i (7)

Ci+1(θi) =
(
R

(f)
i

)−γ−2

Ei+1[Hi+1](R̃
>
i θi)

2R̃i (8)

Di+1(θi) =
(
R

(f)
i

)−γ−3

Ei+1[Hi+1](R̃
>
i θi)

3R̃i. (9)

We discuss how functions Ai+1, Bi+1, Ci+1 and Di+1 can be estimated in Section 3.1
below.

For now, assume that these quantities can be estimated with sufficient accuracy. Then,
we can solve (5) by a simple iterative procedure. In particular, if we start with a good

initial approximation to θ̂i, θ0
i , then we can substitute θ0

i into the right-hand-side of (5)
and obtain a new estimate, θ1

i . We iterate in this manner until the sequence of estimates,
θk

i , converges.

There are many possible ways to find accurate initial approximations, θ0
i , for the iter-

ation. Brandt et al. (2005) suggest using the solution, to the ADP algorithm that is
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based on using a 2nd order Taylor expansion of the value function in (3). It is easily seen
that θ0

i is then given explicitly as

θ0
i = (Ei[Bi+1])

−1 {1

γ
Ei[Ai+1]}. (10)

Alternatively, one can use simple suboptimal portfolio strategies, such as the static and
myopic strategies of Section 5.2, as starting points for iteration.

There is no theoretical guarantee that the iterative procedure above converges. some-
times, one may need to use a higher order approximation to achieve convergence. For
example, the corresponding iteration for the 5th-order approximation is given by

θk+1
i = (Ei[Bi+1])

−1 {1

γ
Ei[Ai+1] +

1

2
(1 + γ)Ei[Ci+1(θ

k
i )]−

1

6
(1 + γ)(2 + γ)Ei[Di+1(θ

k
i )]

+
1

24
(1 + γ)(2 + γ)(3 + γ)Ei[Fi+1(θ

k
i )]}(11)

where Fi+1(θ
k
i ) =

(
R

(f)
i

)−γ−4

Ei+1[Hi+1](R̃
>
i θk

i )
4R̃i.

The procedure described above is suggested in Brandt et al. (2005). In the following
sections, we generalize their method to handle portfolio constraints. We introduce our
technique using several examples with common portfolio constraints. However, in order
to motivate our procedure for handling constraints, we first discuss the method for
estimating conditional expectations in (6–9).

3.1 Numerical Implementation: Estimating Conditional Ex-

pectations

In order to find the optimal θ̂i via the iterative procedures of (5) or (15) it is necessary
to estimate the quantities Ei[Ai+1], Ei[Bi+1], Ei[Ci+1] and Ei[Di+1] where Ai+1, Bi+1,
Ci+1 and Di+1 are given by equations (6), (7), (8) and (9), respectively. Indeed since
Ci+1 and Di+1 are actually functions of θi it is necessary to re-estimate them in each
iteration of (5) and (15). The key to a useful computational algorithm is to be able
to estimate required conditional expectations efficiently. A naive approach of using a
full-scale “within simulation” Monte Carlo simulation loop to estimate each conditional
expectation is too costly computationally and would make multi-period problems ex-
tremely difficult to solve. Besides, in order to estimate conditional expectations, one
would have to have information about the optimal policy along each of the paths in the
internal simulation loop, which is a non-trivial obstacle. To get around the need to con-
duct simulations within simulations, Brandt et al. (2005) suggest a clever across-path
regression procedure, based on the approaches of Longstaff and Schwartz (2001) and
Tsitsiklis and Van Roy (2001) for pricing American options. We now summarize this
approach and then discuss how it can be extended to constrained problems.
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The Across-Path Regression Approach

The algorithm is based upon simulating S sample paths of the underlying state variables
from t = 0 to t = T . We now describe how to estimate h(Xi) = Ei[G], where G is a
random variable, depending on the future values of state variables.

The S sample paths provide us with S realizations of the pair, (Xi, G). Using (Xs
i , G

s)
for s = 1, . . . , S to denote these realizations, we may now consider a linear regression of
the form

G = β>i f(Xi) + εi, (12)

where f(Xi) is a matrix containing S rows, each of which is a vector of values of basis
functions and εi is an orthogonal error term. Each basis function should be a function of
time i information, Xi. We choose a complete set of basis functions, which guarantees an
arbitrarily accurate approximation with a sufficient number of basis functions and a large
enough number of simulated paths. For example, using polynomial basis functions, and
truncating our expansion at the second order, we can take a constant, linear functions,
and quadratic functions to form our basis, in which case an n-th row of f(Xi) is given
by

fn(Xi) =

[
1 (Xn

i )>
(
Xn

i

⊗
Xn

i

)> ]

Higher-order terms of the form (Xn
i

⊗
Xn

i ...
⊗

Xn
i )> can be added to improve approxi-

mation accuracy. Of course, to avoid over-fitting, the number of basis functions should
remain sufficiently small compared to the number of simulated paths, S.

After estimating the regression (12), we use the fitted values β̂i to approximate the
conditional expectation, h(Xi):

h(Xi) ≈ ĥ(Xi) = β̂>i f(Xi)

3.2 No-borrowing Constraint

The across-path regression approach of the previous Section is an effective tool for
handling incomplete-markets problems, for which explicit expressions (5) are available.
However, a straightforward application of such an approach to problems with portfo-
lio constraints runs into significant computational obstacles: as soon as constraints on
the portfolio composition, θ, are imposed, one has to solve a constrained optimization
problem for every simulation path at every trading period. This precludes one from
estimating the optimal portfolio policy using an efficient regression approach.

In this paper we do not attempt to provide a general treatment of portfolio constraints.
Instead we consider the special case of no-borrowing constraints and solve the prob-
lem using an intuitive application of Lagrangian relaxation. In particular, we relax
constraints using Lagrange multipliers and obtain explicit expressions for the optimal
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policy in terms of such multipliers. We then perform iterations, similar to the case of
incomplete markets, updating the multipliers at each step. We do it in a manner that
guarantees feasibility of our approximate solution. The resulting iterative procedure is
well suited for implementation using the across-path regressions. We can then apply
the duality-based performance evaluation algorithm to the constrained portfolio choice
problem.

When the no-borrowing constraint is imposed, the optimization problem corresponding
to the 4th-order approximation to the value function takes form

Vi(Xi,Wi) = max
ı>θi≤1

Ei

[
1

1− γ

(
R

(f)
i

)1−γ

Ei+1[Hi+1] +
(
R

(f)
i

)−γ

Ei+1[Hi+1]R̃
>
i θi

− 1

2
γ

(
R

(f)
i

)−γ−1

Ei+1[Hi+1](R̃
>
i θi)

2 +
1

6
γ(γ + 1)

(
R

(f)
i

)−γ−2

Ei+1[Hi+1](R̃
>
i θi)

3

− 1

24
γ(γ + 1)(γ + 2)

(
R

(f)
i

)−γ−3

Ei+1[Hi+1](R̃
>
i θi)

4

]
(13)

Let α ≤ 0 denote a Lagrange multiplier on the portfolio constraint in (13). We relax
the no-borrowing constraint to obtain a problem of the form

Vi(Xi,Wi) = max
θi

Ei




(
R

(f)
i

)1−γ

1− γ
Ei+1[Hi+1] +

(
R

(f)
i

)−γ

Ei+1[Hi+1]R̃
>
i θi

− 1

2
γ

(
R

(f)
i

)−γ−1

Ei+1[Hi+1](R̃
>
i θi)

2 +
1

6
γ(γ + 1)

(
R

(f)
i

)−γ−2

Ei+1[Hi+1](R̃
>
i θi)

3

− 1

24
γ(γ + 1)(γ + 2)

(
R

(f)
i

)−γ−3

Ei+1[Hi+1](R̃
>
i θi)

4 + α(ı>θi − 1)

]
(14)

Note that the effect of the term α(ı>θi − 1) in (14) is to penalize the objective function
when the no-borrowing constraint is violated.

The first-order conditions for the optimization problem in (14) are given by

Ei

[(
R

(f)
i

)−γ

Ei+1[Hi+1]R̃i − γ
(
R

(f)
i

)−γ−1

Ei+1[Hi+1]R̃
>
i θ̂iR̃i

+
1

2
γ(γ + 1)

(
R

(f)
i

)−γ−2

Ei+1[Hi+1](R̃
>
i θ̂i)

2R̃i

− 1

6
γ(γ + 1)(γ + 2)

(
R

(f)
i

)−γ−3

Ei+1[Hi+1](R̃
>
i θ̂i)

3R̃i + αı

]
= 0.

As was the case for the incomplete markets problem without no-borrowing constraints,
we can rewrite these conditions in the form

θ̂nb
i = θ̂inc

i +
α

γ
(Ei[Bi+1])

−1 ı (15)

where θ̂inc
i refers to the expression for θ̂i in the incomplete market without any con-

straints. Starting with a feasible initial approximation to the portfolio policy, θ0
i , we
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then employ the same iterative procedure as in Section 3 to compute the optimal θ̂i.
We maintain feasibility of the sequence θ0

i , θ1
i , . . . , θk

i by varying α with each iteration.
In particular, it is easy to see that we can maintain feasibility of θk

i if we let αk be the
multiplier for the k-th iteration and choose it to satisfy

αk =





γ(1−ı>θinc,k
i )

ı>(Ei[Bi+1])
−1ı

, if ı>θinc,k
i ≥ 1,

0, otherwise.
(16)

The multiplier α defined by (16) remains non-positive after each iteration, since the
matrix Bi+1 is positive-definite.

It is easy to check that our choice of the multiplier in (16) is such that, if the k-th

iteration θnb,k−1
i were already optimal, then we would also recover the optimal solution

as θnb,k
i , and our iterative procedure would indicate convergence. This is because, by

construction, the solution θnb,k
i is feasible for the original problem, satisfies the first-

order optimality conditions for the relaxed problem, satisfies complimentary slackness
conditions together with αk, and the multiplier αk is non-positive. Thus, to guarantee
that θnb,k

i is optimal, it suffices that Ei[Bi+1] is the same as under the optimal portfolio

policy, which is the case if θnb,k−1
i is optimal.

4 The Algorithm

Estimating Derivatives of Conditional Expectations

In order to compute the upper bound on the true value function using our approxi-
mation, Ṽi, it is necessary to compute partial derivatives of Ṽi. One of the advantages
of using a power utility function is that we only need to compute ∂Ṽi/∂x and do not
need higher order derivatives. It is easy to see that finding ∂Ṽi/∂x amounts to find-
ing ∂Ei[Hi]/∂x. While differentiation is an inherently unstable procedure, we obtained
satisfactory results by using the derivative of our approximation to Ei[Hi] as our ap-
proximation to ∂Ei[Hi]/∂x. This observation may be explained in part by the fact that
in our numerical examples we found the magnitude of the θ component contributing to
the market-price-of-risk to be significantly larger than the partial derivative component.

4.1 The ADP Algorithm

1. Simulate m paths of the state variables originating from X0.

2. Starting from tn = T−∆, work backwards computing (and storing: see the Section
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below on constructing the policy) approximately optimal θ̂i’s. We do this at time
ti for each of the m paths by:

(a) We choose a feasible starting point of θ0
i for each sample path. Set k = 0.

(b) We estimate Ei[Ai+1], Ei[Bi+1], Ei[Ci+1(θ
k
i )] and Ei[Di+1(θ

k
i )] for each sample

path using the across-path regression approach. Then using (5) (or (15) in
the no-borrowing case), we obtain θk+1

i for each sample path.

(c) If max1≤j≤m ||θj,k+1
i − θj,k

i ||∞ is sufficiently small, we terminate at this time
step. Otherwise we continue iterating using equation (5), or equation (15) in
the no-borrowing case.

Constructing an Approximate Portfolio Policy

The ADP algorithm generates an approximate optimal policy along each sample path.
In order to evaluate the overall quality of the approximate policy, as well as for practical
applications of the algorithm, one must be able to extrapolate the approximate trading
policy to arbitrary points in the state space. Clearly, there are many ways to perform
such an extrapolation. We use a simple method, based on an idea of local averaging.
In particular, we generate nj equal intervals along the jth dimension of the state space.
Together with I equal intervals, this creates a total of In1n2 · · ·nM (M +1)-dimensional
rectangles, which cover the parts of the state space most likely to be visited by the
state vector Xt. Then, if a point (t, Xt) falls inside one of the rectangles, we define the
corresponding extrapolated value of the portfolio policy as an arithmetic average over
the values at all the points used by the ADP algorithm that happen to fall inside the
same rectangle. If a point (t,Xt) happens to be outside of the pre-defined rectangles, or if
we cannot find a single path used in the ADP algorithm with a point inside the rectangle
corresponding to (t,Xt), then we simply assign the value of the approximate portfolio
policy based on a simple analytical approximation (e.g., a myopic approximation, see
below). In our numerical experiments, we found that we end up using such an analytical
approximation infrequently, typically less than 2% of the time.

5 Numerical Experiments

We perform several numerical experiments, in which we illustrate the performance of the
ADP algorithm. Based on the results in Haugh, Kogan and Wang (2006), we know that
the myopic portfolio policy often provides a good approximation to the optimal policy.
The main promise of the ADP algorithm is that it can be used to obtain high-quality
approximate solutions in situations where the optimal policy is far from myopic, i.e., the
hedging component of the optimal policy is significant. With that in mind, we design
some of our experiments so that, a priori, the myopic component of the optimal policy
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is small relative to the hedging component. As we shall see below, the ADP algorithm
captures the hedging demand quite well. In order to further evaluate the performance of
the ADP algorithm in our experiments, we compare the resulting lower and upper bounds
on the value function with those corresponding to simple analytical approximation, the
myopic policy defined below. In the numerical experiments in Haugh, Kogan and Wang
(2006), the bounds based on the myopic policy are relatively tight. This indicates that
for the portfolio choice problems considered there the hedging demand can be safely
ignored, resulting in little loss of utility. Below we consider settings in which capturing
the hedging demand is crucial, and the ADP algorithm is able to accomplish that with
significant accuracy.

5.1 The Data-Generating Process

Recall that there are N risky securities and one short-term risk-free bond (a bank ac-
count) with M state variable processes driving their short term returns. We vary the
numbers of assets and state variables in our experiments, but the general structure of
the data-generating process is always the same.

We define all the processes in continuous time, and then generate the corresponding
discrete-time dynamics using Euler approximations. Euler approximations add a certain
amount of numerical error to the estimates of the upper bound on the value function
of the discrete-time problem, since the theoretical results in Haugh, Kogan and Wang
(2006) apply to continuous-time models. However, by shrinking the time between trading
periods, we ensure that numerical approximation errors are quite small. The reported
results where obtained by applying the ADP algorithm with a time-step equal to 1/15,
and using a time-step of 1/100 in out-of-sample simulations to estimate the bounds on
the true value function.

In continuous time, the vector of state variables Xt is characterized by a linear sto-
chastic differential equation, driven by a J-dimensional vector of independent standard
Brownian motions zt:

dXt = −K Xt dt + σXdzt, (17)

where Xt is an M by 1 vector, K is an M by J matrix, and σX is an M by J matrix.

We assume that the instantaneously risk-free rate is stochastic and given by rt = δ0 +
δ1Xt, where δ0 and δ1 are constant. In order to define return processes for the risky
assets, we first introduce their market price of risk:

Λt = λ1 + λ2Xt, (18)

where λ1 is a constant N by 1 vector and λ2 is a constant N by M matrix. Then, returns
on the risky assets satisfy

dPit

Pit

= (rt + σiΛt) dt + σi dzt, (19)

10



where σi is the 1 by N diffusion vector for asset i. We allow σi to be a deterministic
function of time.

Our definition of risky assets is quite general and can be used to describe returns on
both stocks and bonds. In fact, in some of our numerical experiments, we assume that
the portfolio consists of both stocks and bonds and use this to calibrate our model.

Calibration

We now consider two special cases of our general data-generating process. Our first
model corresponds to the market with two assets: a risk-free short-term bond (a bank
account) and a risky long-term bond. We define parameter values so that the myopic
component of the optimal policy is identically equal to zero. We then evaluate the ability
of the ADP algorithm to recover the hedging component, which completely characterizes
the optimal portfolio policy.

Model I: There are three state variables and one risky asset in our first model, therefore
M = 3 and N = 1. The risky asset is a long-term bond maturing at time T . Given
that the risk-free rate is an affine function of the state vector Xt, it follows that the
market price of risk in (18) is also an affine function of the state vector Xt. The risk-
neutral process for the risk-free rate is therefore Gaussian, and hence the term structure
of interest rates is affine (e.g., Duffie 2001, Chapter 7). Specifically, the diffusion matrix
of the long-term bond, σ1, is an explicit function of time, given by

σ1 = b (1− e−τ M),

b = −δ1Q
−1, (20)

Q = K + σX λ2,

where e−τ Q denotes matrix exponentiation and τ = T − t.

To calibrate the model, we adopt parameter values for the state-variable process from
Wachter and Sangvinatsos (2005). We deviate in one respect: we set the market price
of risk to zero, to guarantee that the myopic component of demand is identically equal
to zero. Our parameter values are summarized in Table 1.

Model II: Our second model is a more realistic example, in which we construct an
optimal portfolio of the risk-free short-term bond, two bonds of three- and ten-year
maturity, and a stock index. The three- and ten-year bonds are in fact dynamic roll-
over strategies, according to which one must constantly reinvest the funds to maintain
the duration of the bonds at three and ten years respectively. Specifically, an investment
at time t into a three-year bond maturing at t + 3 must be liquidated at time t + ∆t
and reinvested in another bond, maturing at t + ∆t + 3. Both stock and bond returns
are predictable by a vector of state variables. The vector of state variables is now four-
dimensional. Its first three components are the same as in our first model and are taken
from Wachter and Sangvinatsos (2005). The fourth component represents the logarithm
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of the dividend yield on the NYSE value-weighted portfolio, which we use to predict
returns on the stock market, the first risky asset in our model. We assume a Gaussian
model for stock returns and, furthermore, we assume that the shocks driving changes
in the dividend yield and stock returns are independent of the shocks to the first three
components of the state vector and are not priced. This assumption is justified mostly
by its convenience: since we are not striving to have an empirically accurate model of the
joint behavior of stocks and bonds, the simplifying assumption allows us to use parameter
estimates of Wachter and Sangvinatsos (2005) to describe the behavior of bonds in our
model. The diffusion coefficients of bond returns can be computed according to (20).
The diffusion coefficients of stock returns, denoted by σS, are give in Table 2, together
with other model parameters.

5.2 Numerical Results

We first define formally the myopic portfolio policy, which we use to initiate the iterative
solution procedure described in Section 4.1. We also compare the performance of the
portfolio strategy generated by the ADP algorithm, captured by the resulting bounds
on the maximal expected utility, to the bounds corresponding to the myopic strategy.

Let Σt denote the diffusion matrix of returns on the risky assets. Let µt denote the vector
of instantaneous expected returns. Given our linear specification of the market prices
of risk, µt = µ1 + µ2Xt. When no-borrowing constraints are imposed, we limit feasible
portfolios to the set K = {ı>θt ≤ 1}. Then, the myopic portfolio policy is defined as

θmyopic
t = arg max

θt∈K
θ>t (µt − rt)− 1

2
θ>t ΣtΣ

>
t θt. (21)

The results for Model I are summarized in Table 3. We choose a rather high value of
risk aversion, γ = 15, to make sure that the myopic policy is far from the optimum.
As we know from prior literature (e.g., Wachter, 2003), long-horizon investors with
high risk aversion tend to gravitate towards holding a bond with maturity matching
their investment horizon. Thus, for comparison, we include the results for a strategy of
investing 100% of the portfolio into the long-term bond. As we see, the ADP algorithm
produces a relatively tight set of bounds on the optimal expected utility. In contrast,
the myopic policy performs rather poorly, as expected: due to the lack of risk premium,
the myopic policy prescribes holding 100% of the portfolio in the short-term risk-free
instrument, which is pretty much the opposite of what a long-horizon highly risk-averse
investor would like to do. Another aspect of the results in Table 3 is that the duality-
based method for estimating upper bounds on the value function performs well when the
optimal solution is far from the myopic approximation. This provides further evidence
of the method’s potential.

The results for Model II are summarized in Table 4. Our calibration implies a signifi-
cant degree of predictability in stock returns, therefore the certainty-equivalent returns
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achievable by the constructed portfolios are quite high. We see a clear pattern across the
different risk aversion values: the ADP policy outperforms the myopic policy in terms of
the achieved expected utility, which is expressed as a lower bound on the optimal value.
The difference is not large, due to the fact that expected returns on the stock index in
our model are quite volatile and capturing this predictability through a myopic policy
seems to have a first-order affect on expected utility. Moreover, the variable predicting
stock returns is not well hedged by any of the risky assets, diminishing the importance
of the hedging component of demand. It is interesting that the upper bound obtained
from the ADP policy is not always superior to the one based on the myopic policy.
This must be due to the fact that to evaluate the upper bound one must approximate
the partial derivatives of the value function with respect to the state variables. If such
approximation turns out to be inaccurate, one can obtain tighter bounds by using the
myopic strategy and simply setting the above partial derivatives to zero.

6 Conclusion

As our results indicate, the ADP algorithm is a viable tool for solving practically inter-
esting portfolio choice problems. The method is accurate in the considered examples,
whether the myopic policy is close to optimality or not. As our numerical experiments
demonstrate, the accuracy of the ADP-based approximate solutions can be reliably
gauged by the duality-based simulation method of HKW. Together, the two algorithms
form a powerful set of tools which can be used to tackle difficult, high-dimensional
problems.
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Parameter Values

K 0.5760 0 0
0 3.3430 0

-0.4210 0 0.0830

σX 1.0000 0 0
0 1.0000 0
0 0 1.0000

δ0 0.0560

δ1 0.0180 0.0070 0.010

λ>1 0 0 0

λ2 0 0 0
0 0 0
0 0 0

Table 1: Model I, calibrated parameters. The market consists of the risk-free asset and
a long-term bond. The data-generating process is Gaussian. See Section 5.1 for details.
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Parameter Values

K 0.5760 0 0 0
0 3.3430 0 0

-0.4210 0 0.0830 0
0 0 0 0.0800

σX 1.0000 0 0 0 0
0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 -0.1985 0.3473

σS -0.0126 0.0057 -0.0295 0.0143 0.000

δ0 0.0560

δ1 0.0180 0.0070 0.0100 0

λ>1 -0.5630 -0.2450 -0.2190 0.4400 0

λ2 0 1.7540 0 0
0 -1.8150 0 0

0.5370 0.3760 -0.0820 0
0.1110 0.3050 -0.0170 0.200

0 0 0 0

Table 2: Model II, calibrated parameters. The market consists of the risk-free asset,
two long-term bonds, and a stock index. Stock returns are predictable and the process
for the predictive variable is independent of the processes driving the term structure of
interest rates. The data-generating process is Gaussian. See Section 5.1 for details.
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Incomplete Markets

LBADP 5.22
[5.22,5.23]

UBADP 5.53
[5.53,5.54]

LBm 4.42
[4.41,4.42]

UBm 5.59
[5.58,5.60]

LBLT 5.51
[5.51,5.51]

UBLT 5.53
[5.52,5.53]

No-borrowing

LBADP 5.29
[5.28,5.29]

UBADP 5.67
[5.65,5.69]

LBm 4.42
[4.41,4.42]

UBm 6.87
[6.80,6.94]

LBLT 5.51
[5.51,5.51]

UBLT 5.58
[5.57,5.59]

Table 3: Model I, portfolio performance. The parameter set is defined in Table 1 and
the problem horizon is T = 5 years. The risk aversion coefficient is γ = 15. All results
are computed for the initial value of the state variable X0 = 0. The rows marked LBADP

and UBADP report the estimates of the bounds on the expected utility achieved by using
the ADP portfolio strategy. The ADP algorithm uses fourth-order approximations and
relies on a myopic policy for initial approximation and extrapolation. The rows marked
LBm and UBm report the corresponding results based on the myopic portfolio strategy.
Expected utility is reported as a continuously compounded certainty equivalent return.
Approximate 95% confidence intervals are reported in brackets. The rows marked LBLT

and UBLT report the bounds based on the policy of holding all of the portfolio in a
long-term bond maturing at time T . We report the results both for incomplete markets
and the case of no-borrowing constraints.
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γ = 1.5 γ = 3 γ = 5

Incomplete Markets

LBADP 56.85 34.73 24.26
[56.78,56.91] [34.66,34.81] [24.18,24.34]

UBADP 60.43 37.86 28.77
[60.31,60.56] [37.45,38.28] [27.85,29.73]

LBm 56.95 34.39 23.80
[56.88,57.03] [34.33,34.45] [23.75,23.85]

UBm 60.43 37.55 27.84
[60.31,60.56] [37.14,37.98] [26.82,28.90]

No-borrowing

LBADP 31.72 19.72 15.23
[31.67,31.77] [19.69,19.76] [15.14,15.32]

UBADP 33.47 21.59 16.58
[33.39,33.55] [21.41,21.76] [16.34,16.83]

LBm 30.57 19.46 14.69
[30.52,30.61] [19.44,19.49] [14.67,14.71]

UBm 33.09 21.19 15.91
[33.01,33.18] [21.01,21.38] [15.57,16.26]

Table 4: Model II, portfolio performance. The parameter set is defined in Table 2 and the
problem horizon is T = 5 years. The risk aversion coefficient takes values γ = 1.5, 3, 5.
All results are computed for the initial value of the state variable X0 = 0. The rows
marked LBADP and UBADP report the estimates of the bounds on the expected utility
achieved by using the ADP portfolio strategy. The ADP algorithm uses fourth-order
approximations and relies on a myopic policy for initial approximation and extrapolation.
The rows marked LBm and UBm report the corresponding results based on the myopic
portfolio strategy. Expected utility is reported as a continuously compounded certainty
equivalent return. Approximate 95% confidence intervals are reported in brackets. We
report the results both for incomplete markets and the case of no-borrowing constraints.
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A Upper bound on expected utility: a quadratic

subproblem

In this section we derive explicit solutions to constrained quadratic optimization prob-
lems involved in estimating an upper bound on the optimal expected utility. See HKW
for a general formulation and definitions related to the dual formulation. We consider
here the case of incomplete markets and no-borrowing constraints.

We start with a simpler case of Model I. The quadratic programming problem that needs
to be solved repeatedly during Monte Carlo simulations is

min
1

2
||Λ̃− Λ̂ν ||2

s.t σ1Λ̂
ν = σ1Λ + ν

ν is feasible

Above, Λ̃ is the candidate for a market price of risk in a fictitious market, obtained
from an approximate value function produced by the ADP algorithm (see HKW for

definitions). Λ̂ν is the market price of risk in a fictitious complete market, which we use
to compute an upper bound on the expected utility. ν is a scalar in this case, which
parameterizes feasible fictitious markets.

When markets are incomplete, the only feasible value of ν is zero. We are thus faced
with a simple projection problem,

min
1

2
||Λ̃− Λ̂ν ||2

s.t σ1(Λ̂
ν − Λ) = 0

which has an explicit solution:

Λ̂ν = Λ̃−
[
(σ1σ

>
1 )−1σ1(Λ̃− Λ)

]
σ>1 . (22)

In the case of no-borrowing constraints, the feasible set is ν ≤ 0. Therefore, we are
solving

min
1

2
||Λ̃− Λ̂ν ||2

s.t σ1(Λ̂
ν − Λ) ≤ 0.

We are thus faced with two possibilities. If σ1(Λ̃−Λ) ≤ 0, then Λ̂ν = Λ̃. Otherwise, Λ̂ν

is given by (22).
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We now consider Model II. The quadratic subproblem has a similar form. Let Σ denote
the diffusion matrix of returns on risky assets and define variables y = Λ̂ν − Λ̃ and
b = Σ(Λ− Λ̃). Then, the quadratic subproblem takes form

min
1

2
||y||2

s.t. Σy − νı = b

ν is feasible

ı is a vector of ones of the same dimension as the number of risky assets and, again, ν is
a constant. When markets are incomplete, ν = 0 and the optimization problem reduces
to

min
1

2
||y||2

s.t. Σy = b

which has the solution
y = Σ>(ΣΣ>)−1b.

In the case of no-borrowing constraints, the feasible set is given by ν ≤ 0. We are now
facing two distinct cases. Relaxing the equality constraints with Lagrange multipliers π,
we see that if the system of linear equations

y − Σ>π = 0

ı>π = 0

Σy − νı = b

has a solution with ν ≤ 0, then we have an optimal y. Otherwise, we must set ν = 0,
and the optimal y is given by the solution for the case of incomplete markets.
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