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ABSTRACT

Risk-based asset allocation models have received considerable attention in recent
years. This increased popularity is due in part to the difficulty in estimating expected
returns, as well as to the 2008 financial crisis, which helped reinforce the key role
of risk in asset allocation. We propose a generalized risk budgeting (GRB) approach
to portfolio construction. In a GRB portfolio, assets are grouped into possibly over-
lapping subsets, and each subset is allocated a prespecified risk budget. Minimum
variance, risk parity and risk budgeting portfolios are all special instances of a GRB
portfolio. The GRB portfolio optimization problem is to find a GRB portfolio with an
optimal risk–return profile, where risk is measured using any positively homogeneous
risk measure. When the subsets form a partition, the assets all have the same expected
return, and we restrict ourselves to long-only portfolios; then, the GRB problem can
in fact be solved as a convex optimization problem. In general, however, the GRB
problem is a constrained nonconvex problem, for which we propose two solution
approaches. The first approach uses a semidefinite programming relaxation to obtain
an (upper) bound on the optimal objective function value. In the second approach,
we develop a numerical algorithm that integrates augmented Lagrangian and Markov
chain Monte Carlo methods in order to find a point in the vicinity of a very good local
optimum. This point is then supplied to a standard nonlinear optimization routine
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with the goal of finding this local optimum. The merit of this second approach is in
its generic nature: in particular, it provides a strategy for choosing a starting point for
any nonlinear optimization algorithm.

Keywords: risk parity; risk budgeting; Markov chain Monte Carlo (MCMC); augmented Lagran-
gian (AL); portfolio optimization; semidefinite programming.

1 INTRODUCTION

Risk-based asset allocation models have received considerable attention in recent
years. Some of this attention has been motivated by the difficulty in estimating
expected returns. Mean–variance optimization, for example, is very sensitive to
expected asset returns and, if applied naively, generally results in portfolios with
extreme portfolio weights that are unstable over time. While there are now many meth-
ods for addressing these problems (see, for example, Black and Litterman 1992), there
has been a trend of late to focus on approaches that are more robust to any assumptions
on expected returns. The “1=N ” approach of DeMiguel et al (2009) is notable in this
regard, as are the recent developments in risk-based asset allocation models, which
are the focus of this paper.

As the term “risk-based” suggests, risk generally plays an important role in risk-
based portfolio construction models. Examples of these models include the classic
minimum variance approach of Markowitz and the more contemporary risk parity
and risk budgeting approaches. In this study, we propose a generalized risk budgeting
(GRB) approach to portfolio construction.

The concept of risk parity goes back to 1996, when Bridgewater Associates
launched a risk parity fund called the All Weather Fund, although the term “risk
parity” was only later coined by Qian (2006), who formalized the definition in terms
of a risk budget, where weights of assets are determined in such a way that they
all contribute equally to the overall portfolio risk. Maillard et al (2010) referred to
such a portfolio as an equal risk contribution (ERC) portfolio. They analyzed prop-
erties of an unconstrained long-only ERC portfolio and showed that its volatility lies
between the volatilities of the long-only minimum variance and equally weighted
portfolios. We note here that the terms “risk parity” and “equal risk contribution” are
used interchangeably in the literature, but hereafter we will use the former.

A risk parity portfolio is not always desirable, however. An investor may prefer to
allocate different risk budgets to each asset, and this preference would require a more
general risk budgeting portfolio. Theoretical properties of risk budgeting portfolios
were analyzed by Bruder and Roncalli (2012). Extending the result of Maillard et al
(2010), they showed that the volatility of a long-only risk budgeting portfolio lies
between the volatilities of a long-only minimum variance portfolio and a long-only
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weighted portfolio whose weights are proportional to their risk budgets. They further
demonstrated that, when the portfolio risk is computed using a convex risk measure
and risk budgets are defined to be strictly positive, a long-only risk budgeting portfolio
exists and is unique.

Since the introduction of this approach, there have been many additional studies
on risk parity and risk budgeting approaches. Most of them, however, have focused
on seeking a long-only minimal risk portfolio that satisfies (predefined) risk bud-
geting constraints. Most of these methods, therefore, lack flexibility. For example,
by disregarding the expected asset returns in their problem formulations, many of
these methods make the implicit assumption that all asset returns are identical in
expectation. Regardless of whether disregarding expected returns results in a better-
performing portfolio, such an assumption does not hold in practice. In addition, it is
clearly desirable that investors be able to freely express their views on expected asset
returns when constructing a portfolio.1

In this paper, we propose a GRB problem formulation that leads in general to
a nonconvex optimization problem. We refer to this problem as the GRB portfolio
optimization problem (or the GRB problem). We then develop solution approaches
for this GRB problem. The key advantage of our formulation over the prevailing risk
parity or risk budgeting approaches is that it offers a much greater degree of flexibility
in the way risk-based portfolios are constructed. It allows short sales of assets and the
use of risk factors to model asset returns and, most importantly, it allows investors to
define risk budgets for overlapping subsets of assets.

When the subsets form a partition, the assets all have the same expected return
and we restrict ourselves to long-only portfolios, we show that the problem can be
formulated as a convex optimization problem and, therefore, easily solved. This result
generalizes the approach of Bruder and Roncalli (2012) for constructing a long-only
risk budgeting portfolio with minimum variance. For the more general GRB problem,
we propose two solution approaches. The first is a semidefinite programming (SDP)
relaxation of the problem, which allows us to obtain an (upper) bound on the optimal
objective function of the GRB problem. We remark that the solution to this SDP
problem is also often a very good starting point for a generic nonlinear optimization
solver. To the best of our knowledge, there are no other studies that apply an SDP

1 Research that addresses the issue of incorporating expected asset returns into risk constrained
portfolio selection includes Zhu et al (2010, 2011) and Boudt et al (2012). Zhu et al (2010) studied
optimal mean–variance marginal risk constrained portfolio selection with the purpose of controlling
relative risk contribution of individual assets. Zhu et al (2011) presented a factor-risk-constrained
mean–variance portfolio optimization model, and Boudt et al (2012) proposed a minimum condi-
tional value-at-risk (CVaR) concentration portfolio that balances the investor’s return objective and
the diversification of risk across portfolio constituents.

www.risk.net/journal Journal of Computational Finance



32 M. Haugh et al

relaxation to the risk parity or risk budgeting problems. Our second approach develops
a numerical algorithm that combines augmented Lagrangian (AL) and Markov chain
Monte Carlo (MCMC) methods, with the goal of finding a point in the vicinity of
a very good local optimum. This point is then supplied to a nonlinear optimization
routine to compute this local optimum. The merit of this second approach is in its
generic nature: in particular, it provides a strategy for choosing a starting point for
any nonlinear optimization algorithm.

The remainder of the paper is organized as follows. In Section 2, we formally
define the GRB problem and describe our two solution approaches as well as a spe-
cial case that can be solved as a convex optimization problem. We provide numerical
and empirical results for the SDP relaxation and the AL–MCMC approach in Sec-
tion 3, and discuss some of the practical challenges associated with applying the latter
approach in Section 4. We then conclude in Section 5.

2 THE GENERALIZED RISK BUDGETING PROBLEM

In portfolio construction and analysis, it is often preferable to group assets according
to their attributes, such as asset class, country, sector and industry. In the case of an
investment portfolio with a broad coverage of asset classes, for example, it may be
more insightful and therefore preferable to look at the marginal risk contribution of
each asset class rather than each individual asset in the portfolio. Similarly, in the case
of a large-scale stand-alone asset class portfolio, it may be preferable to control the
risk contributions of assets at an aggregate level such as country or market sector. The
GRB strategy is based on this very idea of managing the marginal risk contributions
of subsets of assets to the total portfolio risk. In a GRB portfolio, the risk contribution
from each (prespecified) subset of assets is set equal to some prespecified risk budget.
Note that we are using the term “subset” rather than“partition” since, depending on the
attributes used for the asset classification, assets may belong to more than one group.
We will see later that minimum variance, risk parity and risk budgeting portfolios are
all special instances of a GRB portfolio.

The objective of the GRB problem is to find a GRB portfolio that is optimal on
the basis of its risk–return profile. Portfolio risk in the GRB problem is computed
via a positively homogeneous risk measure, for which we can use Euler’s theorem
to provide a risk decomposition. Examples of positively homogeneous risk measures
include portfolio volatility, value-at-risk (VaR) and any coherent risk measures such
as CVaR (Artzner et al 1999).

Toward this end, let R.x/ W Rd ! R denote a generic risk measure that is a pos-
itively homogeneous function of degree 1 in the portfolio weight vector, x. Euler’s
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theorem then provides the following additive risk decomposition:

R.x/ D
dX
iD1

xi
@R.x/

@xi
; (2.1)

where the marginal risk contribution of the i th asset is

RCi .x/ D xi
@R.x/

@xi
:

If M1; : : : ;Ms � f1; : : : ; dg denote s subsets of portfolio assets,2 then the marginal
risk contribution of the kth subset is

RCMk
.x/ WD

X
i2Mk

RCi .x/:

Let ˇ1; : : : ; ˇs now denote the risk budgets for M1; : : : ;Ms , respectively. We can
then formulate the GRB problem as

max
x2X

�0x � �R.x/; subject to
X
i2Mk

RCi .x/ D ˇkR.x/; k D 1; : : : ; s; (GRB)

where � 2 R
d is a vector of expected returns, � is a risk aversion parameter and

X WD fx 2 R
d W 10x D 1g. Note that the constraint

P
i2Mk

RCi .x/ D ˇkR.x/
implies that

Ps
kD1 ˇk D 1 when the Mk form a partition. We note that the GRB

problem becomes a minimum variance problem when � D �01; there is only one
subset, M1, which is equal to the universe of assets, and the risk measure is portfolio
volatility. It is a risk parity problem when � D �01, the Mk are all singletons and
all risk budgets, ˇk , are equal. Finally, it is a risk budgeting problem when � D �01
and the Mk are again all singletons.

The GRB problem is a constrained nonconvex optimization problem for which
efficient solution algorithms are unavailable. Although there are numerous methods
available for computing risk parity portfolio weights (see, for example, Bai et al
2016; Spinu 2013), these methods are in general not applicable to the GRB problem.
In Section 2.1, we consider a special case of the GRB problem that can be solved as a
convex optimization problem. We then proceed to discuss our solution approaches for
the general nonconvex case. Note that the parameter and variable notation introduced
in this section will be used throughout the paper unless otherwise stated.

2 In practice, the subsets Mk would typically correspond to the different asset classes included in
an investment portfolio. For example, AQR Risk Parity funds contain approximately ninety assets
from six different asset classes: fixed income, treasury inflation protected securities, equity, currency,
commodity and credit. The size of each asset class in these funds ranges from five to twenty-five
securities. For the complete holdings of AQR Risk Parity funds, we refer the reader to http://bit.ly/
2iAGIiK.
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2.1 A special case of the GRB problem

We now consider a special case of the GRB problem in which all assets have the same
expected return, ie, � D �01, each asset belongs to one and only one subset, ie, the
Mk form a partition of the asset space, and nonnegativity constraints are imposed at
the partition level. We can then reformulate the GRB problem as follows:

min
x2X

R.x/; subject to
X
i2Mk

RCi .x/ D ˇkR.x/;
X
i2Mk

xi > 0; k D 1; : : : ; s:

(2.2)
Assuming also that each ˇk > 0, we then have the following result that extends
Bruder and Roncalli (2012).

Theorem 2.1 Assuming R.y/ ¤ 0 for nonzero y, (2.2) is equivalent to the convex
optimization problem:

min
y

R.y/; subject to
sX

kD1

ˇk ln

� X
i2Mk

yi

�
> c; (2.3)

where c is an arbitrary constant. In particular, the normalized optimal solution Qy�

to (2.3) is also the optimal solution to (2.2). (A normalized solution is one wherePd
iD1 Qy

�
i D 1; see the discussion after the proof.)

Proof Let L.y; �/ denote the Lagrangian of the optimization problem (2.3), so that

L.y; �/ D R.y/ � �

� sX
kD1

ˇk ln

� X
i2Mk

yi

�
� c

�
:

At optimality, the solution y� satisfies the Karush–Kuhn–Tucker conditions. That is,
y� satisfies

(i) the first-order conditions

@L.y; �/

@yi
D
@R.y/

@yi
� �

�
ˇkP

j2Mk
yj

�
D 0 (2.4)

for i D 1; : : : ; d , where k is the index of the subset Mk containing i ;

(ii) the complementary slackness conditions

�

� sX
kD1

ˇk ln

� X
i2Mk

yi

�
� c

�
D 0: (2.5)
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Note that, as ln W RC ! R, we must have
P
i2Mk

yi > 0 for k D 1; : : : ; s, and hence
y cannot be 0. Then, since R.y/ ¤ 0 for nonzero y, at least one of @R.y/=@yi must
be nonzero by (2.1). The strict positivity of the ˇk and (2.4) then imply � > 0. We
therefore have

@R.y/

@yi
D �

�
ˇkP

j2Mk
yj

�
(2.6)

for i D 1; : : : ; d , and where � > 0. Multiplying both sides of (2.6) by yi and then
summing over i 2Mk yields

X
i2Mk

yi
@R.y/

@yi
D �

�
ˇkP

j2Mk
yj

� X
i2Mk

yi

D �ˇk

fork D 1; : : : ; s.We therefore see that the risk contribution of each Mk is proportional
to its risk budget, ˇk . The normalized optimal solution Qy� is then the optimal solution
x� to (2.2), as claimed. �

Note that as
sX

kD1

ˇk ln

� X
i2Mk

yi

�
D c

by (2.5), we could directly obtain x� from (2.3) if we used c� D c � ln.
Pd
iD1 yi /,

rather than the original c that led to the solution y. Note also that we recover the
results of Bruder and Roncalli (2012) if the Mk are all singletons.

2.2 An SDP relaxation for the general GRB problem

Our first approach to the GRB problem uses a semidefinite programming relaxation
to obtain an upper bound on the optimal objective function value. There are two
advantages of the SDP approach:

(i) the solution to the SDP problem (which is generally infeasible for the GRB
problem) can be used as a (hopefully very good) starting point for a standard
nonlinear optimization routine;

(ii) the SDP solution can often provide a “certificate” of near-optimality when the
SDP solution has an objective function that is close to the objective function of
the best local optimal solution that we have found.

In our development of the SDP approach, we will assume initially that our risk measure
is portfolio volatility, so that

R.x/ WD
p
x0˙x;
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where ˙ 2 R
d�d is the covariance matrix of asset returns. The marginal risk

contributions of the individual assets then satisfy

RCi .x/ D xi
.˙x/i
p
x0˙x

; i D 1; : : : ; d:

With this measure of risk, we can rewrite the GRB problem in the following equivalent
form:

max
x;X

�0x � �R.x/;

subject to
X
i2Mk

tr.�iX/ D ˇk tr.˙X/; k D 1; : : : ; s; X D xx0; 10x D 1;

(2.7)

where �i D eie0i˙ . Here, ei denotes the i th column of the identity matrix I 2 R
d�d ,

x 2 R
d , and tr.�/ denotes the trace of a matrix. SinceX D xx0 is the only nonconvex

constraint in (2.7), we obtain a convex relaxation of the GRB problem by relaxing
this constraint toX � xx0. We then obtain the following SDP relaxation of our GRB
problem:

max
x;X

�0x � �R.x/; (2.8)

subject to

X
i2Mk

tr.�iX/ D ˇk tr.˙X/; k D 1; : : : ; s;

"
X x

x0 1

#
� 0; 10x D 1;

where we have used the Schur complement to reformulate the semidefinite constraint
X � xx0 as a linear matrix inequality. Note that we can recover (2.7) from (2.8) by
imposing an additional (nonconvex) constraint that the left-hand-side of the linear
matrix inequality in (2.8) be a rank-1 matrix. The SDP relaxation can be solved
efficiently and the SDP solution provides an upper bound on the optimal objective
function of the GRB problem. For example, we can easily implement and solve (2.8)
using CVX (Grant and Boyd 2008, 2014).3

SDP relaxations can also be formulated for the GRB problem with other risk
measures. Suppose the risk measure is either the VaR or CVaR of a portfolio. Let
Fr.z/ WD P fr 6 zg denote the cumulative distribution function of the portfolio
return r . Then, the VaR and CVaR at the confidence level ˛ 2 .0; 1/ are defined as

VaR˛ WD minfz j Fr.z/ > ˛g

3 A special SDP mode in CVX allows positive (negative) semidefinite constraints � (�) to be
imposed using MATLAB’s standard inequality operators >D (<D).
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and

CVaR˛ WD EŒr j r > VaR˛.r/�:

Suppose the asset returns are, as before, normally distributed, with mean vector� and
covariance matrix˙ . Then, for a portfolio with the weight vector x, it easily follows
that

VaR˛.x/ D �
0x C �1.˛/

p
x0˙x

and

CVaR˛.x/ D �
0x C �2.˛/

p
x0˙x;

where (see McNeil et al 2005)

�1.˛/ D
p
2 erf�1.2˛ � 1/;

�2.˛/ D .
p
2� exp.erf�1.2˛ � 1//2.1 � ˛//�1;

erf.z/ D

�
2
p
�

�Z z

0

e�t
2

dt:

Likewise, the respective marginal VaR and CVaR contributions of the i th asset are
given by4

RCi;VaR˛ .x/ D �i C xi
.˙x/i
p
x0˙x

�1.˛/

and

RCi;CVaR˛ .x/ D �i C xi
.˙x/i
p
x0˙x

�2.˛/:

Without loss of generality, let us consider the risk budgeting constraints that arise
when we use VaR as our risk measure. These take the formX
i2Mk

�
�iCxi

.˙x/i
p
x0˙x

�1.˛/

�
D ˇk.�

0xC�1.˛/
p
x0˙x/; k D 1; : : : ; s: (2.9)

The VaR version of the GRB problem is given by

max
x;X

�0x � �VaR˛.x/; (2.10)

subject toX
i2Mk

.�i
p
x0˙x C xi .˙x/i�1.˛// D ˇk.�

0x
p
x0˙x C �1.˛/x

0˙x/;

k D 1; : : : ; s;

X D xx0; 10x D 1:

4 See Boudt et al (2012), who also studied portfolio selection under CVaR budgets.
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Note that the risk budgeting constraints of (2.10) are obtained by multiplying both
sides of (2.9) by

p
x0˙x. Let t D

p
x0˙x. Then, the optimization problem (2.10)

can be reformulated as follows:

max
t;ı;w;x;y;X;Z

�0x � �VaR˛.x/; (2.11)

subject toX
i2Mk

.�i t C tr.�iX/�1.˛// D ˇk.�
0ı C �1.˛/ tr.˙X//; k D 1; : : : ; s;

Z D

2
641 t x0

t y ı0

x ı X

3
75 ; rank.Z/ D 1;

t D
p
x0˙x; t; y > 0; x; ı 2 R

d ; X 2 R
d�d ; Z � 0;

where we use the fact that rank.Z/ D 1 implies that ı D tx, and X D xx0. There
are two nonconvex constraints in (2.11): rank.Z/ D 1 and t D

p
x0˙x. We can

obtain a semidefinite relaxation for the feasible set by dropping the rank.Z/ D 1

constraint and relaxing the other constraint to t >
p
x0˙x.5 Since VaR˛.x/ is not a

convex function of x, we will have to replace VaR˛.x/ by a concave function that is
pointwise larger in order to obtain a valid relaxation for (2.11). This last step would
not be necessary if we used CVaR as our risk measure because CVaR.x/ is already a
convex function of x. We also note that, while we have assumed normally distributed
asset returns here, other distributions such as the t -distribution could be used instead.
See Boyd andVandenberghe (1997) for SDP relaxations of nonconvex problems more
generally.

2.3 An AL–MCMC approach

Our second approach to solving the GRB problem involves combining the AL
approach with MCMC sampling to generate a point in the proximity of the global
optimum of the GRB problem. This can then be used as a starting point for a nonlinear
optimization routine to converge to a globally optimal GRB portfolio. The underlying
idea of the algorithm is to effectively sample points with a higher objective function
value and simultaneously drive the sample path in the direction of the feasible region
using the AL terms.

Let˝ be the state space and let p.x/ D C�1p�.x/ denote some target probability
distribution on ˝, where C WD

R
˝
p�.x/ dx is the normalization constant. The

MCMC method is an approach used to sample from p.x/ when the normalizing

5 This is a second-order cone constraint that can in turn be reformulated as a semidefinite constraint.
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constant is hard to compute. In this approach, we construct a Markov chain on ˝
using a “proposal” distribution q.xtC1 j xt / in such a way that p.x/ is the unique
stationary distribution for the Markov chain. Modulo some technical conditions, the
main requirement of MCMC is that the unnormalized distribution, p�.x/, should
be easy to compute.6 Given a current sample xt at time t , the proposal distribution,
q.� j xt /, is used to generate a candidate sample, xtC1, which is then accepted with
probability

˛.xt ; xtC1/ WD min

�
1;
q.xt j xtC1/p

�.xtC1/

q.xtC1 j xt /p�.xt /

�
: (2.12)

If the candidate point xtC1 is rejected, we then set xtC1 D xt and continue sampling
in this manner.

Since our goal is to solve the GRB problem, one possibility would be to set

p�.x/ D exp .�F.x//IF .x/;

where F.x/ WD �0x � �R.x/ denotes the objective function of the GRB problem,
� is an annealing parameter that is used to concentrate the p�.x/ in the proximity of
the global optimum and IF .�/ denotes the indicator function of the set

F D

�
x 2 X

ˇ̌̌
ˇ hk.x/ WD X

i2Mk

RCi .x/ � ˇkR.x/ D 0; k D 1; : : : ; s

�
:

Since the feasible region F of the GRB problem is, typically, very “small”, p�.xtC1/
is likely to be zero for most candidate points xtC1, and these points will be rejected in
the acceptance–rejection step (2.12). Therefore, using MCMC to sample only from
the feasible region is very difficult, particularly for high-dimensional problems.

One possible approach to overcoming these difficulties is to allow the MCMC
iterates xt to be infeasible, but to “direct” them toward the feasible region by adding a
term that penalizes infeasibility to our definition of p�. In particular, we could define

Pc.x/ WD F.x/C
1
2
ckh.x/k22;

where c is a negative constant, and now use p�.x/ D e�Pc.x/ as the unnormalized
density. The main difficulty with the penalty approach is that it is very sensitive to the
value of the penalty parameter, c. This is a well-known phenomenon, and the aug-
mented Lagrangian algorithm was introduced in order to circumvent this numerical
instability.

6 See Robert and Casella (2004) for further technical details on MCMC algorithms.
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The AL-MCMC algorithm

In the augmented Lagrangian approach, we define the time-t target distribution7 to
be p�t .x/ WD exp.�tLct .ut ; x//, where the augmented Lagrangian function of the
GRB problem is defined as

Lct .ut ; x/ WD F.x/C u
0
th.x/C

1
2
ctkh.x/k

2
2

D �0x � �R.x/C
sX

kD1

ut;k

�
ˇkR.x/ �

X
i2Mk

RCi .x/

�

C
ct

2

� sX
kD1

�
ˇkR.x/ �

X
i2Mk

RCi .x/

�2�
;

where ut D .ut;1; : : : ; ut;s/ 2 R
s is a vector of time-t Lagrange multipliers.8 Let

dct .u/ WD maxx2X Lct .u; x/ denote the dual objective.
The initial vector of Lagrange dual multipliers, u0, and the penalty parameter, c0,

are specified exogenously. The values for dual multipliers, ut , and the nonincreasing
penalty parameter, ct , for t > 1 are chosen adaptively during the course of the
simulation. In particular, we decrease ct by a predetermined value "c when there is
no improvement in constraint violations over a particular iteration. When there is
an improvement in constraint violation, we do not update ct , but instead update the
Lagrange multipliers using the first-order conditions, ie, we set

utC1 D ut � "urdct .ut /; (2.13)

where dct .u/ denotes the dual function, and "u is a given step size. We chose not to
update both ct and ut in every iteration in order to ensure that we leave the current
location only after adequately exploring its neighborhood. The update of duals ut
or the penalty parameter ct occurs at every iteration, whether the candidate xtC1
is accepted or not. We note that (2.13) represents the steepest descent iteration for
minimizing dct , but we may choose other methods, such as Newton’s method, for
updating the Lagrange multipliers (see Appendix A online). Furthermore, we can use
other criteria for updating ct . See Bertsekas (1996) for a detailed discussion of the
augmented Lagrangian method.

To generate a candidate value of xtC1, we use a proposal distribution based on a
random walk chain. In particular, we generate z�t � N.0; 	

q
t I / and take

xtC1 D xt C z
�
t

7 We note that, since p�t now changes with each iteration, there is no longer a fixed target stationary
distribution for our algorithm.
8 See Appendix A for further details on the augmented Lagrangian functions.
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as our candidate point, which is then accepted with probability ˛.xt ; xtC1/. The
standard deviation of the proposal distribution 	qt can be thought of as a tuning
parameter that we can adjust to increase the acceptance probability when the current
location is near a feasible region. This is done by decreasing 	qt by a factor of 
,
where 0 < 
 < 1, only if the percentage drop in the size of the constraint violations
is larger than a predetermined value, ı.9 The value of 
 can thus be interpreted as the
rate at which we decrease 	qt when the current location is considered favorable. If 

is too small, then 	qt decreases too fast and moves become small too quickly. Small
moves are generally accepted (high acceptance probability), and as a result the chain
is prone to get trapped in the current region prior to exploring other regions. On the
contrary, if 
 is too big, then 	qt decreases too slowly and moves remain large. This
leads to many rejections, resulting in an inefficient chain.10

In each iteration, irrespective of whether the proposed sample xtC1 is accepted or
rejected, the annealing parameter �t is increased according to

�t D 	��t�1; (2.14)

where 	� D .�max=�0/
1=T and �max is the maximum permitted value of �t . Note

that (2.14) is known as the geometric annealing schedule.11 Thus, the AL-MCMC
algorithm is a simulated annealing algorithm (see Van Laarhoven and Arts (1987) for
further details) where, by forcing limt!1 �t D1, we hope to drive samples toward
the global optimum of the GRB problem.

The AL-MCMC algorithm attempts to combine the best aspects of the augmented
Lagrangian method and the MCMC method. The augmented Lagrangian term guides
the Markov chain toward a feasible region, while the acceptance–rejection step in the
MCMC method attempts to ensure that the iterates do not get trapped in poor local
maxima of the GRB problem.

9 See Algorithm 2.2 for precise details. Depending on the specific problem under consideration, we
may choose to modify this step or simply to keep 	qt constant across all t . However, considering
that choosing the acceptance rate is important for a good numerical performance of the algorithm,
it is recommended that 	qt is allowed to vary with t . Also, instead of having the annealing schedule,
we can directly adjust 	qt based on the acceptance rate at time t . This is in fact considered common
practice for adjusting the mixing and the acceptance probability of the chain. The basic idea is to
increase 	qt when the acceptance rate is too high and decrease 	qt when the acceptance rate is too
low. We refer the reader to Roberts et al (1994) for further details.
10 In choosing 
, we generated a training data set for each test case presented in Section 3, and tested
multiples of 0.25 as candidate values of 
. Based on this, we selected 
 D 0:75 across all test cases.
11 The geometric annealing schedule, the most commonly used annealing schedule in practice, was
also suggested by the originators of the simulated annealing algorithm (Kirkpatrick et al 1983).
Depending on the specific problem under consideration, we may choose to use a different annealing
schedule. For a comparison of different annealing schedules, we refer the reader to Nourani and
Andresen (1998).
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A complete specification of our AL-MCMC algorithm is given in Algorithm 2.2.
A feasible sample point with the highest value of F.�/ is probably most suitable to be
used as a starting point for a nonlinear optimization routine. However, as the direct
sampling of a feasible point is overly difficult for the GRB problem, the last point
obtained by the algorithm is then fed to a nonlinear optimization routine with the goal
of quickly finding a good nearby local maximum.

We note that our algorithm is a heuristic algorithm that we hope is capable of
producing good starting points for a nonlinear optimization solver. We expect this
algorithm to be useful for general nonconvex optimization problems beyond the GRB
problem of this paper. There is also further scope for improvement. For example,
we could use a more sophisticated MCMC algorithm compared with Metropolis–
Hastings. For example, if we suspect that F.�/ or Lct .�/ is multimodal, then hybrid
MCMC methods such as the Hamiltonian MCMC should be superior. It is also possible
to tailor the proposal distributions, q.xtC1 j xt /, for the problem at hand. Note also
that, while not stated explicitly, it of course makes sense to keep track of the best
feasible sample that has been obtained during the execution of the algorithm.

We therefore propose the following procedure to solve the GRB problem.

Step 1 Generate an initial vector x0 to be used as the starting point of the Markov
chain and choose values of �0, 	� , "c , "u, ı, 	q0 , c0, u0 and 
 to be used as parameters
for the AL-MCMC algorithm (Algorithm 2.2).

Step 2 Perform the AL-MCMC algorithm to obtain an initial point xs to be fed to
a nonlinear optimization routine.

Step 3 Solve the GRB problem using a nonlinear optimization solver with xs
obtained from step 1 as the initial guess.

The AL-MCMC algorithm described in this section can be further enhanced by
using a set of different random starting points x0 for generating Markov chains. For
instance, in our numerical experiments we used antithetic starting points to generate
several values of xs .12

Algorithm 2.2 (AL-MCMC)

1. Choose x0, �0, 	� , "c , "u, ı, 	q0 , c0, u0, 


2. for t D 0 W T do

3. Draw a candidate sample xtC1 from the proposal q.xtC1 j xt /

12 Readers interested in antithetic variates in Monte Carlo techniques can refer to Robert and Casella
(2004).
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4. Let ˛.xt ; xtC1/ D min

�
1;
q.xt j xtC1/p

�.xtC1/

q.xtC1 j xt /p�.xt /

�
,

where
p�.xtC1/

p�.xt /
D e�t .Lct .ut ;xtC1/�Lct .ut ;xt //.

5. if ˛ > 1 then

6. xtC1  xtC1 # Accept the candidate

7. else

8. Draw p � UŒ0; 1�

9. if p 6 ˛ then

10. xtC1  xtC1 # Accept the candidate

11. else

12. xtC1  xt # Reject the candidate

13. end if

14. end if

15. �tC1  	��t # Update the annealing parameter

16. if kh.xtC1/k22 < kh.xt /k
2
2 then

17. utC1  ut � "urdct .ut /, where dct .u/ D max
x2X

Lct .u; x/

# Update the Lagrange multipliers

18. if
kh.xt /k

2
2

kh.xt C 1/k
2
2

� 1 > ı then

19. 	
q
tC1  
	

q
t # Update the jump size

20. end if

21. else

22. ctC1  ct C "c # Update the penalty parameter

23. end if

24. end for
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3 NUMERICAL RESULTS

We now present numerical results for the two proposed approaches: the SDP relaxation
and the AL-MCMC algorithm. We first describe a simple example to illustrate the
potential effectiveness of theAL-MCMC algorithm.We then discuss the performances
of the two approaches when they are tested on GRB problems with the number of
assets ranging from 7 to 200. All the results presented in this section are based on
percentage returns, ie, returns are multiplied by 100, unless otherwise stated. Note
also that the term “optimal solution” generally denotes a local optimum.

3.1 Numerical results for a small example

Our first problem13 is a five-asset problem with a variance–covariance matrix of
percentage returns:

˙ D

2
666664

94:868 33:750 12:325 �1:178 8:778

33:750 445:642 98:955 �7:901 84:954

12:325 98:955 117:265 0:503 45:184

�1:178 �7:901 0:503 5:460 1:057

8:778 84:954 45:184 1:057 34:126

3
777775 :

We also assumed that the expected returns of these assets are identical, so that � D
�01. Suppose now we want to compute a long-only risk parity portfolio with minimum
variance, and that we apply the AL-MCMC algorithm to solve this problem. We used
a single Markov chain of 5000 points, ie, T D 5000 in Algorithm 2.2, and x0 was
generated uniformly from the five-dimensional unit cube. We also used the following
parameters:

� initial annealing parameter �0 D 1 with 	� D 1:0007;

� initial penalty parameter c0 D �10 000 with "c D 0;

� jump size 	q0 D 0:5 with 
 D 0:75;

� threshold parameter for updating 	qt , ı D 0:01;

� initial Lagrange multipliers u0 D 0 with "u D 0:01.

Since this problem is relatively simple with just five constraints, we did not
need to update c during the course of the algorithm. x5000 D Œ0:1245I 0:0467I

0:0833I 0:6133I 0:1323� is the last point obtained from the AL-MCMC algorithm.
If we specify the feasibility tolerance to 10�4, this point is, in fact, the optimal risk

13 This is the example presented in Bai et al (2016).
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parity solution.14 Without the use of a nonlinear optimization routine, the AL-MCMC
algorithm was therefore able to discover a good risk parity solution. The running time
for the algorithm was 1.31 seconds.15

When the algorithm was applied without the penalty parameter, ie, ct D 0 for all t ,
or without the Lagrange multipliers, ie, ut D 0 for all t , it failed to converge to a risk
parity solution. All of its sampled points violated the risk parity constraints by more
than 10�4, and hence the help of a nonlinear optimization routine was necessary
for finding an optimal risk parity solution. When its last point was supplied to a
nonlinear optimization routine, the optimal risk parity solution was found successfully.
These results demonstrate the potential advantage of incorporating the augmented
Lagrangian method into the MCMC algorithm.

3.2 Numerical results for the GRB problem

For more general GRB problems we focused on the portfolio volatility risk measure
R.x/ WD

p
x0˙x and assumed a risk aversion parameter � D 1. Expected asset

returns �, covariance matrixes ˙ and risk budgets ˇ were all generated randomly.
In particular, we sampled � from N.0; I /, and for ˙ we first generated a matrix
V 2 R

d�d using a standard normal distribution and then converted it into a symmetric
positive semidefinite matrix by multiplying it by its transpose, ie, ˙ D V 0V . We
generated risk budgets ˇ D .ˇ1; : : : ; ˇs/ from U

s.0; 1/ and normalized them such
that

Ps
kD1 ˇk D 1.

We considered the five test cases listed in Table 1 under two different scenarios. In
the first scenario, we assumed that� D �01, ie, all assets have identical returns. In the
second scenario, we allowed the assets to have different returns. Also, within each of
these five test cases, we considered two test sets. In the first test set (set 1) the subsets of
assets form a partition, whereas in the second test set (set 2) we considered overlapping
subsets of assets that did not form a partition. The subsets Mk , k D 1; : : : ; s, for each
test set were chosen randomly by generating an s 	d -matrixM of zeros and ones. A
nonzero entry, say M.i;j /, then indicates that the j th asset belongs to the i th subset
(Mi ). In the case of the first test set, nonzero entries that result in overlapping subsets
of assets were simply set to zero so that the resulting subsets formed a partition.

In order to evaluate the AL-MCMC algorithm, we generated five antithetic pairs
of random points. For each pair .x; x0/ of random points, we first sampled x D
.x1; : : : ; xd / from U

d .0; 1/ and set x0 D .1 � x1; : : : ; 1 � xd /. We used each of
these ten points as the starting point x0 to generate T D 1000 samples from the

14 It can readily be checked that x� is indeed the optimal risk parity solution by solving Problem 2.3
directly.
15 All our experiments were performed using MATLAB on an Intel Core i5-680 (3.60 GHz), 64-bit
operating system.
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TABLE 1 Test case descriptions.

Test case d s fmincon

1 7 3 3 000
2 30 5 5 000
3 50 5 7 000
4 100 10 20 000
5 200 10 60 000

d denotes number of assets. s denotes number of subsets. fmincon denotes the maximum number of function
evaluations for the MATLAB fmincon parameter.

Markov chain. Therefore, we simulated a total of N D 10 Markov chains.16 The
final point,17 ie, the T th point, from each chain is then used as the starting point
of a nonlinear optimization solver. In our experiments we used the fmincon solver
with the interior point method in MATLAB as our nonlinear optimization solver. The
maximum number of function evaluations allowed for fmincon for each test case is
specified in the final column of Table 1. We also used MATLAB and CVX (Grant and
Boyd 2008, 2014) for solving the SDP relaxation of the GRB problem (2.8).

3.2.1 Identical returns: � D �01

In this scenario, we assume � D �01. In this case, the GRB problem reduces to the
minimum risk problem subject to the risk budgeting constraints.

We solved the GRB problem using four different approaches. First, we solved the
SDP relaxation to obtain the lower bound. Next, we used the possibly infeasible
solution of the SDP relaxation as the initial point for fmincon. We refer to this as
the SDP-fmincon approach. Next, we solved the problem using the AL-MCMC-
fmincon approach, ie, we simulated ten Markov chains starting from ten random
initial points generated using the antithetic random variate method, and used the
T D 1000th iterate of each chain as the initial point for a call to fmincon. In order
to benchmark the contribution of the MCMC algorithm, we solved the GRB problem
using fmincon starting from 10 	 T D 10 000 random starting points distributed

16 The values of N and T were chosen by testing various combinations on a training data set for
each test case. In practice, the number of MCMC iterations typically ranges from 1000 to 10 000
combined across all chains used; eg, N D 10 chains with a length of T D 1000 each corresponds
to N 	 T D 10 000 total iterations. We refer the reader to Section 4 for a discussion on how to
choose chain lengths, T , and the number of chains, N .
17 The rationale behind choosing the final point is that due to risk budgeting constraints, sampled
points are most likely to be infeasible, and an infeasible sample point attaining the highest value of
F.�/ is not necessarily the best point in terms of its proximity to the optimum solution.
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according to U
d .0; 1/.18 In addition, we also considered the alternating linearization

backtracking (ALM-BTKR) approach to solve risk parity problems. TheALM-BTKR
approach was introduced in Bai et al (2016), where the risk parity problem was
formulated as the quadratic least-squares problem:

min
x2X;�

sX
kD1

� X
i2Mk

xi .˙x/i � �

�2
; subject to ai 6 xi 6 bi ; i D 1; : : : ; d: (3.1)

Note that risk parity is achieved when (3.1) has an optimal value of zero. This approach
can easily be extended to the case where the risks of the various asset classes Mk are
not equal by scaling � as follows:

min
x2X;�

sX
kD1

� X
i2Mk

xi .˙x/i � ˇk�

�2
; subject to ai 6 xi 6 bi ; i D 1; : : : ; d:

(3.2)
We stress that (3.1) and (3.2) are only able to identify a portfolio that satisfies the
risk-parity constraints; they do not seek a risk-parity portfolio with minimum risk.

In Table 2, we report the following metrics for each of the four solution methods:
SDP-fmincon, AL-MCMC-fmincon, fmincon and ALM-BTKR.

� min QF .x�/ denotes the objective value of the best feasible portfolio computed
by the methods. For the SDP-fmincon, we report the risk of the portfolio com-
puted by fmincon starting from the SDP solution, if feasible. For the AL-
MCMC-fmincon method we report the best objective value among all feasible
solutions resulting from the ten starting points, and for the fmincon approach
we report the best objective value among all feasible portfolios resulting from
the 10 	 T D 10 000 random starting points. For ALM-BTKR, we report

QF .x�ALM�BTKR/;

where x�ALM�BTKR is the solution obtained by solving (3.2).

� The range of objective values of all the feasible solutions computed by the
method. We do not report a solution range for ALM-BTKR and SDP-fmincon,
since these methods yield at most one feasible solution.

� The SDP lower bound.

� The number of failures.A failure occurs when fmincon does not return a feasible
solution for a feasibility tolerance of 10�6.

18 As solving GRB problems with fmincon was extremely time consuming, 1000 random starting
points were used instead of 10 000 for test case 5 with 200 assets.
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TABLE 2 Numerical results for the case of � D �01. [Table continues on next page.]

(a) Test case 1: seven assets and three subsets

Solution SDP lower # of
Set Method min QF .x�/ range bound failures t

1 SDP-fmincon 33.17 — 31.72 0 3.64
1 AL-MCMC-fmincon 33.09 [33.09, 34.16] 31.72 0 18.50
1 fmincon 33.09 [33.09, 229.82] 31.72 194 100.26
1 ALM-BTKR 111.00 — 31.72 0 16.84

2 SDP-fmincon 25.76 — 25.57 0 2.06
2 AL-MCMC-fmincon 25.78 [25.78, 31.91] 25.57 0 16.90
2 fmincon 25.77 [25.77, 98.65] 25.57 840 1764.15
2 ALM-BTKR N/A — 25.57 1 21.37

(b) Test case 2: thirty assets and five subsets

Solution SDP lower # of
Set Method min QF .x�/ range bound failures t

1 SDP-fmincon 38.59 — 38.06 0 3.44
1 AL-MCMC-fmincon 38.59 [38.59, 38.59] 38.06 0 2.54
1 fmincon 38.59 [38.59, 328.61] 38.06 968 5.48
1 ALM-BTKR 100.61 — 38.06 0 49.39

2 SDP-fmincon 40.12 — 39.55 0 1.26
2 AL-MCMC-fmincon 40.12 [40.12, 40.12] 39.55 0 0.81
2 fmincon 40.12 [40.12, 40.12] 39.55 0 0.50
2 ALM-BTKR N/A — 39.55 1 63.71

(c) Test case 3: fifty assets and five subsets

Solution SDP lower # of
Set Method min QF .x�/ range bound failures t

1 SDP-fmincon 38.24 — 36.97 0 3.65
1 AL-MCMC-fmincon 38.24 [38.24, 38.24] 36.97 0 2.68
1 fmincon 38.25 [38.25, 328.33] 36.97 2339 4.17
1 ALM-BTKR 79.89 — 36.97 0 106.72
2 SDP-fmincon 64.33 — 51.77 0 2.71
2 AL-MCMC-fmincon 64.33 [64.33, 64.33] 51.77 0 1.90
2 fmincon 64.33 [64.33, 64.33] 51.77 0 1.41
2 ALM-BTKR N/A — 51.77 1 118.22
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TABLE 2 Continued.

(d) Test case 4: one hundred assets and ten subsets

Solution SDP lower # of
Set Method min QF .x�/ range bound failures t

1 SDP-fmincon 55.33 — 53.76 0 14.84
1 AL-MCMC-fmincon 55.33 [55.33, 103.99] 53.76 0 7.98
1 fmincon 55.33 [55.33, 314.89] 53.76 3213 26.88
1 ALM-BTKR 110.39 — 53.76 0 354.29

2 SDP-fmincon 51.71 — 48.28 0 14.02
2 AL-MCMC-fmincon 51.71 [51.71, 51.71] 48.28 0 7.51
2 fmincon 51.71 [51.71, 51.71] 48.28 0 6.22
2 ALM-BTKR N/A — 48.28 1 423.02

(e) Test case 5: two hundred assets and ten subsets

Solution SDP lower # of
Set Method min QF .x�/ range bound failures t

1 SDP-fmincon 54.48 — 49.85 0 127.43
1 AL-MCMC-fmincon 54.48 [54.48, 54.68] 49.85 5 67.89
1 fmincon 54.48 [54.48, 393.48] 49.85 642 613.94
1 ALM-BTKR N/A — 49.85 1 2607.56

2 SDP-fmincon 56.02 — 49.85 0 127.69
2 AL-MCMC-fmincon 55.02 [55.02, 55.23] 49.85 0 54.87
2 fmincon 55.02 [55.02, 110.96] 49.85 58 114.84
2 ALM-BTKR N/A — 49.85 1 2378.06

Results for four methods: SDP relaxation, SDP-fmincon, AL-MCMC-fmincon, fmincon and ALM-BTKR for the case
where � D �01. The first and second columns contain the test set number and the name of the algorithm,
respectively. The third column reports the best solution obtained. For the ALM-BTKR method, this column reports
QF .x�ALM-BTKR/, where x�ALM-BTKR is the solution obtained by solving (3.2) using the ALM-BTKR method. The fourth

column reports the range of the obtained solutions.The fifth column reports the lower bound on the objective function
QF .x/ obtained by the SDP relaxation. The sixth column reports the number of failures. The last column reports the

execution time (in seconds) required to obtain the best solution.

� t (in seconds). We report the amount of time taken to obtain min QF .x�/ for the
first time over the ten trials for the AL-MCMC-fmincon algorithm and over
the 10 000 trials for the fmincon algorithm (see footnote 18). For ALM-BTKR
and SDP-fmincon, t represents the total execution time, as each only yields a
single solution.

The main issue with reporting the execution time t in the manner above is that, in
order to determine the min QF , we first need to compute all ten solutions for the AL-
MCMC-fmincon algorithm and 10 000 solutions for the fmincon algorithm. However,
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given that AL-MCMC-fmincon uses only ten random points and fmincon uses 10 000
random points, comparing the total execution time of each method is fraught with
difficulties. The advantage of reporting t in the above way is that it allows a fairer
comparison ofAL-MCMC-fmincon with fmincon. Note that all solutions are reported
with a precision of four decimal places.

From the results reported in Table 2, the portfolio x�ALM�BTKR is not the minimum
variance portfolio. In most cases, QF .x�ALM�BTKR/ is at least 50% larger than the
solutions obtained by the other two methods.Also, due to the backtracking component
of ALM-BTKR, the method may become prohibitively slow for higher-dimensional
problems. For test case 1 with seven assets the ALM-BTKR method takes less than
25 seconds, but for test case 4 with 100 assets the execution time is more than 350
seconds. In fact, for test case 5 with 200 assets, ALM-BTKR fails to find a feasible
solution even after 2350 seconds.

When all assets are assumed to have identical expected returns, the SDP relaxation
appears to provide a fairly effective lower bound, against which we can compare
solutions obtained from other methods. For example, in set 2 of test case 1, the
difference between the SDP relaxation and the AL-MCMC-fmincon solution is just
0.21, and therefore we know that the AL-MCMC solution is close to the global
optimum. Since the GRB problem is nonconvex, having an effective lower bound
on its objective function is very informative. Moreover, the SDP-fmincon method
exhibits comparable performance to the AL-MCMC-fmincon method in most cases,
except for set 1 of test case 1, in which the optimal solution of the SDP-fmincon
method is 0.08 higher than that of the AL-MCMC-fmincon method.

The AL-MCMC-fmincon method generally has better performance than fmincon.
The execution time of fmincon is inconsistent. For example, the execution time of
fmincon for test case 1 with seven assets ranges anywhere from 100 seconds to 1764
seconds to obtain the best solution. For set 1 of test cases 3 and 4, fmincon failed
over 2000 and 3000 times, respectively. Similarly, for set 1 test case 5, it failed over
64% (642=1000) of the time. In contrast, the AL-MCMC-fmincon method was able
to find an optimal solution within twenty seconds for test cases 1–4, and in most cases
this took less than ten seconds. For test case 5, we observe a significant increase in
execution time across all four methods. However, AL-MCMC-fmincon’s increased
execution time of about a minute is still superior to the other methods. In addition, for
test cases 1–4, the AL-MCMC-fmincon method never failed, suggesting that the AL-
MCMC approach is able to generate a good starting point for fmincon. The magnitude
of constraint violations that caused its failures in set 1 test case 5 was, moreover, less
than 10�4. The range of values of the solutions computed by fmincon is also much
wider than the range for AL-MCMC-fmincon. The test cases in which subsets form a
partition, ie, set 1, clearly highlight the fact that fmincon significantly underperforms
AL-MCMC-fmincon. For instance, in set 1 test case 4, the fmincon solution range is
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TABLE 3 Numerical results for the SDP relaxation.

Max.
Test Upper constraint

Set case d s bound violation t

1 1 7 3 103.82 0.76 0.38
2 1 7 3 33.68 0.39 0.38

1 2 30 5 �22.73 0.24 0.58
2 2 30 5 28.38 0.63 0.98

1 3 50 5 5.41 0.52 0.92
2 3 50 5 �3.51 0.39 0.87

1 4 100 10 �15.62 0.10 6.29
2 4 100 10 3.25 0.23 6.66

1 5 200 10 24.05 0.27 87.38
2 5 200 10 24.05 0.35 70.21

The table presents the upper bound on the objective function, F.x/ D �0x �R.x/, of the GRB problem obtained
via the SDP relaxation. The first and second columns contain the test set and case number, respectively. The third
and fourth columns contain the number of assets (d ) and the number of subsets (s) considered in each test case,
respectively. The sixth column contains the maximum constraint violation of the optimal SDP solution, ie, (3.3), and
the final column reports the execution time (in seconds) of CVX for solving the SDP relaxation.

Œ55:33; 314:89�, whereas the AL-MCMC-fmincon solutions range is Œ55:33; 103:99�.
This is actually the widest solution range we see for AL-MCMC-fmincon. In other
test cases, solution ranges are very narrow for the AL-MCMC-fmincon algorithm.

We also compared the performance of the AL-MCMC algorithm against AL-
MCMC but with the Lagrange multipliers ut 
 0 for all t , ie, a pure penalty method,
and AL-MCMC with the penalty parameter ct 
 0 for all t , ie, a pure dual method.
We found that the AL-MCMC-fmincon algorithm performed better overall than both
of these alternatives. These results further demonstrate the merit of integrating the
augmented Lagrangian method with the MCMC algorithm. We report the results for
the AL-MCMC algorithm with ut 
 0 and ct 
 0 in Appendix B online.

3.2.2 General expected returns

The next set of results are for the case where expected returns are not identical across
assets. Table 3 presents upper bounds for the GRB problem that were obtained using
the SDP relaxation. We also report the maximum constraint violation of the optimal
SDP solution, x�SDP:

max
kD1;:::;s

ˇ̌̌
ˇ X
i2Mk

RCi .x�SDP/

R.x�SDP/
� ˇk

ˇ̌̌
ˇ: (3.3)

Unlike in the previous section, we see that the maximum constraint violation of the
solution of the SDP relaxation is quite large in certain cases. For example, it is 0.76
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TABLE 4 Numerical results for the case of � ¤ �01. [Table continues on next page.]

(a) Test case 1: seven assets and three subsets

Solution SDP upper # of
Set Method max QF .x�/ range bound failures t

1 SDP-fmincon N/A — 103.82 1 2.03
1 AL-MCMC-fmincon 63.89 [49.42, 63.89] 103.82 0 4.48
1 fmincon 63.88 [�235.38, 63.88] 103.82 990 6398.85

2 SDP-fmincon 30.31 — 33.68 0 0.88
2 AL-MCMC-fmincon 30.31 [30.31, 30.31] 33.68 0 0.58
2 fmincon 30.31 [�83.04, 30.31] 33.68 568 2.17

(b) Test case 2: thirty assets and five subsets

Solution SDP upper # of
Set Method max QF .x�/ range bound failures t

1 SDP-fmincon �25.33 — �22.73 0 1.91
1 AL-MCMC-fmincon �25.33 [�25.33, �25.33] �22.73 0 2.37
1 fmincon �25.33 [�309.20, �25.33] �22.73 640 15.13

2 SDP-fmincon 14.89 [14.89, 14.89] 28.37 0 1.50
2 AL-MCMC-fmincon 14.89 [14.89, 14.89] 28.37 0 0.68
2 fmincon 14.89 [�14.05, 14.89] 28.37 0 0.42

(c) Test case 3: fifty assets and five subsets

Solution SDP upper # of
Set Method max QF .x�/ range bound failures t

1 SDP-fmincon N/A — 5.41 1 N/A
1 AL-MCMC-fmincon �0.30 [�0.30, �0.30] 5.41 0 2.52
1 fmincon �0.30 [�345.38, �0.30] 5.41 2253 2.30

2 SDP-fmincon �20.72 [�20.72, �20.72] 28.38 0 2.42
2 AL-MCMC-fmincon �20.72 [�20.72, �20.72] 28.38 0 2.00
2 fmincon �20.72 [�20.72, �20.72] 28.38 0 1.35

for set 1 test case 1, 0.63 for set 2 test case 2 and 0.52 for set 1 test case 3.19 In these
cases, the SDP upper bound is likely to be slack since the SDP solutions are far from
being feasible.

19 Recall that the ˇk are all positive and sum to 1, so a violation of 0.76 is indeed quite large.
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TABLE 4 Continued.

(d) Test case 4: one hundred assets and ten subsets

Solution SDP upper # of
Set Method max QF .x�/ range bound failures t

1 SDP-fmincon �17.28 — �15.62 0 13.97
1 AL-MCMC-fmincon �17.27 [�17.28, �17.27] �15.62 0 7.43
1 fmincon �17.27 [�302.76, �17.27] �15.62 1878 8.43

2 SDP-fmincon �0.46 [�0.46, �0.46] 28.38 0 13.26
2 AL-MCMC-fmincon �0.46 [�0.46, �0.46] 28.38 0 7.61
2 fmincon �0.46 [�43.29, �0.46] 28.38 0 6.87

(e) Test case 5: two hundred assets and ten subsets

Solution SDP upper # of
Set Method max QF .x�/ range bound failures t

1 SDP-fmincon 8.41 — 24.05 0 135.16
1 AL-MCMC-fmincon 8.41 [�172.35, 8.41] 24.05 4 47.55
1 fmincon 8.42 [�379.73, 8.42] 24.05 535 735.36

2 SDP-fmincon 7.50 — 24.05 0 106.25
2 AL-MCMC-fmincon 7.52 [7.51, 7.52] 24.05 0 40.66
2 fmincon 7.52 [�98.34, 7.52] 24.05 6 296.05

Numerical results for the three methods: SDP-fmincon method, AL-MCMC-fmincon method and fmincon, when
� ¤ �01. The first and second columns contain the test set number and the name of the algorithm, respectively.
The third column reports the best solution, ie, maxF.x�/, and the fourth column reports the range of the obtained
solutions. The fifth column reports the upper bound on the objective function F.x/ obtained by the SDP relaxation.
The sixth column reports the number of failures. The final column reports the execution time (in seconds).

In Table 4, we report the following metrics for SDP-fmincon, AL-MCMC-fmincon
and fmincon starting from 10 000 random points.

� max F.x�/ denotes the objective value of the best feasible solution computed
by the three solution methods.

� The range of values for all feasible solutions. Note that we do not report a
solution range for SDP-fmincon since this method produces only one solution.

� The SDP upper bound.

� A failure occurs when fmincon does not return a feasible solution at a feasibility
tolerance of 10�6.

� t (in seconds). We report the amount of time taken to obtain maxF.x�/ for the
first time in the ten trials for the AL-MCMC-fmincon algorithm and the 10 000
trials (see footnote 18) for the fmincon algorithm.
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All solutions are reported with a precision of four decimal places. It is clear that
the overall performance of the AL-MCMC-fmincon method is superior to the other
two methods. In comparison with the SDP-fmincon approach, we note that the AL-
MCMC-fmincon method was able to find an optimal solution to all test cases. The
SDP-fmincon method failed to find even a feasible solution for set 1 test cases 1 and 3.
It is interesting to note that these failures occurred when the maximum constraint
violations of the SDP relaxation solutions were noticeably large (see Table 3). This
suggests that an upper bound obtained from the SDP relaxation may turn out to be
slack when the optimal SDP solution violates the risk budgeting constraints by a large
amount. In the previous section, we saw that the SDP relaxation provides a relatively
tight bound when all assets have identical expected returns.

In comparison with fmincon, AL-MCMC-fmincon exhibits a more stable and con-
sistent performance. It is apparent from Table 4 that the solution ranges given by
fmincon are very wide in general. For example, the objective values of the solutions
obtained from fmincon for set 1 of test case 1 range from �235:38 to 63.89, and
it took 6398.85 seconds to discover the best of these solutions, despite test case 1
being a low-dimensional problem with only seven assets. This suggests that when
fmincon uses an unfavorable starting point the solution it obtains can be very far from
a good local optimum. The results of set 1 test case 3 further demonstrate this. Of the
10 000 random starting points, fmincon failed to find a feasible solution 2253 times.
In many cases, the stand-alone fmincon has a relatively large number of failures com-
pared with AL-MCMC-fmincon, and hence we need to try a very large number of
random starting points. In contrast, the AL-MCMC-fmincon method yields solutions
with much narrower ranges. Except for set 1 of test cases 1 and 5, all the solutions
obtained are very close to the best solution. Moreover, except for set 1 test case 5,
the AL-MCMC-fmincon method never fails to produce a feasible point. This means
that the starting points generated by the AL-MCMC algorithm are much more favor-
able than random starting points. Note that even the failures in set 1 test case 5 were
caused by the constraint violations, which were less than 10�4. Also note that in most
cases AL-MCMC-fmincon finds an optimal solution in less than ten seconds. For test
case 5, AL-MCMC-fmincon solves the GRB problem within fifty seconds, which is
quite exceptional compared with the other two methods. Based on these observations,
we can conclude that AL-MCMC-fmincon appears to be a much more reliable tool
for solving the general GRB problem with nonidentical expected asset returns.

3.3 Empirical results for the GRB problem

As noted in Section 2, when evaluating the risk of a large-scale equity portfolio it is
often advisable to group stocks according to attributes, such as market sector. Accord-
ingly, risk-based sector weighting is a good example of a risk budgeting strategy that
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TABLE 5 Empirical testing results.

# of Mean % deviation Average Average
Method successes from v� failure rate (%) time (s)

SDP-fmincon 5 — 77.50 109.94
AL-MCMC-fmincon 120 77.16 21.33 137.19
fmincon 96 97.31 49.92 192.21

Empirical testing results for the three methods: SDP-fmincon, AL-MCMC-fmincon and fmincon, when � D �01.
The first column contains the name of the algorithm. The second column reports the number of successes, and the
third column reports the mean percentage deviation of a feasible solution from the optimal objective value v�. The
fourth column reports the average failure rate (in percent), and the final column reports the average execution time
(in seconds).

can be built using GRB models in practice. We now present some empirical results
for such an application.

We took our security universe to be the 200 largest (by market capitalization) stocks
in the Standard & Poor’s 500. We assigned these stocks to ten sectors (consumer dis-
cretionary; consumer staples; energy; financials; healthcare; industrials; information
technology; materials; telecommunications services; utilities) according to the Global
Industry Classification Standard (GICS) and estimated the monthly covariance matrix
over the past ten years (520 weeks) from August 5, 2005 to July 17, 2015.20 Our goal
in each month was to compute a minimum variance portfolio that satisfies the prede-
fined risk budgeting constraints at a market sector level.21 We therefore have a total
of 120 empirical test cases. We note that these test cases are equivalent to set 1 test
case 5 presented in Section 3.2.1. We also note that, due to the large number of test
cases, we use ten instead of 10 000 randomly generated starting points for fmincon,
and keep all other testing parameters the same as those used in our earlier numerical
experiments.

In Table 5, we report the following metrics for each of the three solution methods
(SDP-fmincon, AL-MCMC-fmincon and fmincon).22

The number of successes. The i th trial is deemed a success for a given method if
the method achieves the minimum objective value v�i on that trial. For SDP-
fmincon the objective value is defined as the risk of the portfolio computed by
fmincon starting from the SDP solution, provided the SDP solution is feasible. For

20 To estimate the covariance matrix in any given month, we used the previous two years of weekly
returns and fitted a one-factor model based on the first principal component of the return data. For
further details on the covariance matrix estimation using factor models, see Ruppert (2010).
21 Risk budgets ˇ D .ˇ1; : : : ; ˇ10/ are generated as U

10.0; 1/ and then normalized so thatP10
kD1 ˇk D 1.

22 ALM-BTKR is not included in our empirical testing as its execution time for the 200-asset case
exceeded 2350 seconds, and despite such an execution time it failed to find a feasible portfolio.
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AL-MCMC-fmincon and fmincon the objective value is defined as the lowest risk
of all feasible solutions resulting from the ten starting points.

The mean percentage deviation (MPD) from the optimal objective value v�. The
MPD is defined as

MPD D
1

120

120X
iD1

1

jPi j

X
j2Pi

QF .xi;j / � v
�
i

v�i
;

where Pi is the set of feasible portfolios, xi;j , computed by the method under
consideration from the ten starting points and v�i is the best objective value on the
i th test case. We do not report this metric for SDP-fmincon since this method yields
at most one feasible solution.

The average failure rate (in percent). A failure occurs when fmincon does not return
a feasible solution for a feasibility tolerance of 10�6. For AL-MCMC-fmincon
and fmincon, we report the average percentage of times feasible solutions were
not found in the ten trials across 120 test cases. For SDP-fmincon, we report the
average percentage of times feasible solutions were not found across 120 test cases.

The average time (in seconds). For AL-MCMC-fmincon and fmincon, we report the
average amount of time taken to obtain the optimal objective value for the first time
in the ten trials across 120 test cases. For SDP-fmincon, t represents the average
execution time across 120 test cases, as each only yields a single solution.

AL-MCMC-fmincon is successful in all test cases, ie, the risk of the solution com-
puted by AL-MCMC-fmincon is the lowest for each test case. Moreover, for most test
cases, AL-MCMC-fmincon found an optimal solution in the shortest time. Although
the reported average execution time for SDP-fmincon is less than that of AL-MCMC-
fmincon, it does not account for the fact that SDP-fmincon failed to find a feasible
solution ninety-three times out of 120 test cases. The failure rate of AL-MCMC-
fmincon (21.33%) is significantly lower than that of the other two methods (77.50%
and 49.92% for SDP-fmincon and fmincon, respectively). In terms of solution quality,
the MPD from v� for AL-MCMC-fmincon is approximately 20% lower than that for
fmincon. This shows that AL-MCMC-fmincon is better suited for solving the GRB
than fmincon.

The empirical results presented here are consistent with the numerical results pre-
sented in Section 3. TheAL-MCMC-fmincon method is a more robust and dependable
approach for solving the GRB problems.
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4 DISCUSSION

It is well known that nonlinear optimization methods perform poorly, and can even
fail, if the starting point is poorly chosen. When solving a multimodal problem, in
particular, these methods could get easily trapped by a (poor) local optimum due
to an unfavorable starting point. The AL-MCMC approach proposed in this study
combines the augmented Lagrangian, MCMC and simulated annealing to avoid this
phenomenon. We expect that the AL-MCMC method can be adapted to solve other
multimodal problems.

TheAL-MCMC method has several parameters that need to be specified, including,
but not limited to, the chain length, the number of chains, the variance 	qt of the
proposal distribution and the annealing schedule. As with any numerical method,
the performance of AL-MCMC depends on the choice of parameters. For example,
the selection of 	qt can greatly affect the performance of the sampler. The most
widely used approach to choosing 	qt is the trial-and-error approach. In this approach,
initial values of the tuning parameters are chosen and then modified based on the
examination of the mixing properties of the chains.23 For instance, although the overall
acceptance rate in our numerical experiments was around 85%, we initially explored
the parameter space more freely by allowing (relatively) large jumps and gradually
decreasing 	qt as we made progress toward the feasible region, ie, we adjusted the
acceptance probability by allowing the tuning parameter to vary with t . According
to Bounds (1987), “choosing an annealing schedule for practical purposes is still
something of a black art” despite the simple principle underlying the choice of a
suitable annealing schedule: the initial temperature should be low enough to “freeze”
the system and should be increased toward its boiling point as the search progresses.
Nevertheless, for some parameters we can certainly make a more informed decision.
For multimodal problems, for example, using multiple (relatively) short chains would
yield a better performance than using a single long chain.24

5 CONCLUSIONS

In this paper, we proposed a GRB approach to portfolio construction. Our approach
provides investors with more flexibility than the existing risk-based asset allocation
techniques, in that it allows investors to optimize a risk–return profile and to define

23 For a discussion of this procedure in the context of MCMC, we refer the reader to Gelman et al
(2004).
24 Using multiple highly dispersed initial values to start several different chains is the most
straightforward approach to solving a multimodal problem (Gelman and Rubin 1992), and has
a computational advantage for parallel processing machines.
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risk budgets for possibly overlapping subsets of assets. Minimum variance, risk parity
and risk budgeting strategies are therefore special cases of GRB strategies.

Although we show that the GRB problem can be formulated as a convex optimiza-
tion problem in an important special case, the general GRB problem is a nonconvex
optimization problem. We introduce an SDP relaxation for bounding the optimal value
of the GRB problem. When all assets have identical expected returns, our numerical
results suggested that this SDP bound was quite tight, and could therefore be used to
assess the quality of solutions produced by other approaches. Our main contribution
in this paper is a simulation-based algorithm that combines augmented Lagrangian
optimization ideas with MCMC methods. The goal of this algorithm is to compute
a candidate solution in the neighborhood of the optimum, or a very good local opti-
mal solution of the GRB problem. This candidate solution could then be used as
the starting point for a standard nonlinear optimization solver. In several numerical
experiments our AL-MCMC algorithm was indeed successful in finding very good
starting points.

We also note that our AL-MCMC approach is a general solution approach for solv-
ing nonconvex optimization problems. The augmented Lagrangian algorithm is a very
popular algorithm for computing local optimum solutions for nonconvex problems.
Combining this algorithm with the MCMC method opens up the possibility of con-
verging to the global optimal solution, or at least providing a good starting point for
a nonlinear optimization routine. In addition, this approach can be implemented very
easily and is computationally fast.

We expect it to be of particular use for nonconvex problems with small feasible
regions, where computing a good starting point is challenging. We intend to apply
this approach to such problems in future research.
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