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Abstract

This chapter describes how duality and approximate dynamic programming (ADP)
methods can be used in financial engineering. It focuses on American option pric-
ing and portfolio optimization problems when the underlying state space is high-
dimensional. In general, it is not possible to solve these problems exactly due to the
so-called “curse of dimensionality” and as a result, approximate solution techniques
are required. ADP and dual-based methods have been proposed for constructing and
evaluating good approximate solutions to these problems. In this chapter we describe
these methods. Some directions for future research are also outlined.

1 Introduction

Portfolio optimization and American option pricing problems are among
the most important problems in financial engineering. Portfolio optimization
problems occur throughout the financial services as pension funds, mutual
funds, insurance companies, endowments and other financial entities all face
the fundamental problem of dynamically allocating their resources across dif-
ferent securities in order to achieve a particular goal. These problems are often

I This chapter is a revised and extended version of Haugh [Haugh, M.B. (2003). Duality theory and sim-
ulation in financial engineering. In: Chick, S., Sanchez, PJ., Ferrin, D., Morrice, D.J. (Eds.), Proceedings
of the 2003 Winter Simulation Conference, IEEE Press, Piscataway, NJ, pp. 327-334].
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very complex owing to their dynamic and stochastic nature, their high dimen-
sionality and the complexity of real-world constraints. While researchers have
developed a number of sophisticated models for addressing these problems,
the current state-of-the-art is such that explicit solutions are available only in
very special circumstances. (See, for example, Merton, 1990; Cox and Huang
1989; Karatzas and Shreve, 1997; Liu, 1998.)

American option pricing has also presented several challenges to the field
of financial engineering. Even in the simple Black—Scholes framework (Black
and Scholes, 1973), a closed form expression for the price of an American
put option is not available and so it must therefore be computed numerically.
This does not present a challenge when there is just one or two underlying
securities. However, as pricing an American option amounts to solving an
optimal stopping problem, Bellman’s curse of dimensionality implies that pric-
ing high-dimensional American options using standard numerical techniques
is not practically feasible. Unfortunately, the same conclusion also applies to
solving general high-dimensional portfolio optimization problems.

Because these high-dimensional problems occur frequently in practice, they
are of considerable interest to both researchers and practitioners. In recent
years there has been some success in tackling these problems using approx-
imate dynamic programming (ADP) and dual-based methods. ADP methods
(see, for example, Bertsekas and Tsitsiklis, 1996) have had considerable success
in tackling large-scale complex problems and have recently been applied suc-
cessfully to problems in financial engineering (Brandt et al., 2005; Longstaff
and Schwartz, 2001; Tsitsiklis and Van Roy, 2001). One difficulty with ADP,
however, is in establishing how far the sub-optimal ADP solution to a given
problem is from optimality. In the context of optimal stopping problems and
pricing American options, Haugh and Kogan (2004) and Rogers (2002) de-
veloped dual formulations?> which allows one to evaluate sub-optimal strate-
gies, including those obtained from ADP methods (see, for example, Haugh
and Kogan, 2004; Anderson and Broadie, 2004; Glasserman and Yu, 2004;
Chen and Glasserman, 2007). A stochastic duality theory also exists for portfo-
lio optimization problems and this has been developed by many researchers in
recent years (see, for example, Shreve and Xu, 1992a, 1992b; He and Pearson,
1991; Cvitanic and Karatzas, 1992; Karatzas and Shreve, 1997). While this the-
ory has had considerable success in characterizing optimal solutions, explicit
solutions are still rare (see Rogers, 2003). Recently Haugh et al. (2003) have
shown how some of these dual formulations can be used to evaluate subopti-
mal policies by constructing lower and upper bounds on the true optimal value
function. These suboptimal policies could be simple heuristic policies or poli-
cies resulting from some approximation techniques such as ADP.

2The dual formulation in these papers relies on an alternative characterization of an optimal stopping
problem, which can be traced back to Davis and Karatzas (1994).
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Another promising approach to approximate solution of dynamic portfolio
choice problems is based on the equivalent linear programming formulation of
the dynamic program (see, for example, de Farias and Van Roy, 2003, 2004).
The approximate linear programming formulation provides an approximation
to the portfolio policy as well as an upper bound on the value function. This
approach is computationally intensive and its ability to handle large-scale prac-
tical problems still needs to be evaluated. Some encouraging results in this
direction are obtained by Han (2005).

Simulation techniques play a key role in both the ADP and dual-based eval-
uation methods that have been used to construct and evaluate solutions to
these problems. While it has long been recognized that simulation is an indis-
pensable tool for financial engineering (see the surveys of Boyle et al., 1997;
Staum, 2002), it is only recently that simulation has begun to play an important
role in solving control problems in financial engineering. These control prob-
lems include portfolio optimization and the pricing of American options, and
they are the focus of this paper.

The remainder of the paper is outlined as follows. Section 2 describes the
American option pricing problem. We briefly describe the ADP methods in
Section 2.1 after which we will focus on the duality theory for optimal stop-
ping in Section 2.2. Section 2.3 discusses extensions and other applications of
these dual-based ideas. We then conclude Section 2 by outlining some direc-
tions for future research in Section 2.4. Section 3 concentrates on portfolio
optimization. In Sections 3.1 and 3.2, respectively, we describe the portfo-
lio optimization framework and review the corresponding duality theory. In
Section 3.3 we show how an upper bound on the portfolio optimization prob-
lem can be obtained and we summarize the algorithm for obtaining lower and
upper bounds in Section 3.4. We conclude by outlining directions for future
research in Section 3.5. Results will not be presented in their full generality,
and technical details will often be omitted as we choose to focus instead on the
underlying concepts and intuition.

2 Pricing American options

The financial market. We assume there exists a dynamically complete fi-
nancial market that is driven by a vector-valued Markov process, X; =
(X tl, ..., X". In words, we say a financial market is dynamically complete
if any random variable, Wr, representing a terminal cash-flow can be attained
by using a self-financing trading strategy. (A self-financing trading strategy is a
strategy where changes in the value of the portfolio are only due to accumu-
lation of dividends and capital gains or losses. In particular, no net addition
or withdrawal of funds is allowed after date + = 0 and any new purchases of
securities must be financed by the sale of other securities.) X, represents the
time ¢ vector of risky asset prices as well as the values of any relevant state
variables in the market. We also assume there exists a risk-free security whose
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time ¢ price is B; = e"!, where r is the continuously compounded risk-free rate
of interest.? Finally, since markets are assumed to be dynamically complete,
there exists (see Duffie, 1996) a unique risk-neutral valuation measure, Q.

Option payoff. Let #; = h(X;) be a nonnegative adapted process representing
the payoff of the option so that if it is exercised at time ¢ the holder of the
option will then receive #;.

Exercise dates. The American feature of the option allows the holder of
the option to exercise it at any of the pre-specified exercise dates in 7 =
{0,1,...,TH*

Option price. The value process of the American option, V;, is the price
process of the option conditional on it not having been exercised before ¢. It
satisfies

Bh
V,:supEtQ|: ! } (1)
T>t B:

where 7 is any stopping time with values in the set 7 N [¢, T.

If X, is high-dimensional, then standard solution techniques such as dy-
namic programming become impractical and we cannot hope to solve the
optimal stopping problem (1) exactly. Fortunately, efficient ADP algorithms
for addressing this problem have recently been developed independently by
Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001).> We now
briefly describe the main ideas behind these algorithms, both of which rely on
the ability to simulate paths of the underlying state vectors.

2.1 ADP for pricing American options

Once again, the pricing problem at time ¢ = 0 is to compute

h
1 = su EQ[—T]
’ ’TE'ZP— 0 BT

3 Note that we can easily handle the case where r; = r(X}) is stochastic.

4 Strictly speaking, we consider Bermudan options that may only be exercised at one of a finite number
of possible dates. While American options can be exercised at any time in a continuum of dates, in prac-
tice it is necessary to discretize time when pricing them numerically. As a result, we do not distinguish
between Bermudan and American options in this chapter.

3 See also Carriére (1996) for the original introduction of regression-based ideas for pricing American
options.
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and in theory this problem is easily solved using value iteration. In particular,
a standard recursive argument implies

B
Vr=h(Xr) and V;= max(h(Xn, E?[B—’lvtmxm]).
1+

The price of the option is then given by Vy(X) where X is the initial state of
the economy. As an alternative to value iteration we could use Q-value itera-
tion. If the Q-value function is defined to be the value of the option conditional
on it not being exercised today, i.e. the continuation value of the option, then
we also have

B,
Byt

The value of the option at time ¢ + 1 is then

Vig1 (Xpg1) = max(h(X41), Q1 (Xi41))

so that we can also write

QX)) = E?[ V,H(Xtm]

B,

Qi(Xy) = E,Q|:B

" max(h(X41), Qt+1(Xt+l))i|- ()
Equation (2) clearly gives a natural analog to value iteration, namely Q-value
iteration. As stated earlier, if n is large so X; is high-dimensional, then both
value iteration and Q-value iteration are not feasible in practice. However, we
could perform an approximate and efficient version of Q-value iteration, and
this is precisely what the ADP algorithms of Longstaff and Schwartz (2001)
and Tsitsiklis and Van Roy (2001) do. We now describe their main contribu-
tion, omitting some of the more specific details that can nevertheless have a
significant impact on performance.

The first step is to choose a set of basis functions, d1(-), ..., dm(-). These
basis functions define the linear architecture that will be used to approximate
the Q-value functions. In particular, we will approximate Q,(X;) with

O X)) =rld1(X) + -+ 1" dm(X)),

where r; := (rtl, ..., ) is a vector of time ¢ parameters that is determined by
the algorithm which proceeds as follows:

Approximate Q-value iteration

generate N paths of state vector, X, conditional on initial state, X
set Qr(Xr) =0foralli=1to N
fort =T —1downto 1 . .

regress B,V,H(X;_H)/Bt_H on (¢1(X)), ..., dpm(X[)) where

I;vf-l-l(‘)(ti-fl) = max(h(XfH), Q(le-i-l))
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set Qi(XH) = > ki (XT) where the ks are the estimated regression
coefficients

end for

generate M samples of state vector, X1, conditional on initial state, X

set Vo(Xo) = (LI, max(h(X?), Q1(X]))/MB.

The key idea in this algorithm is the use of regression methods to estimate
0:i(X i), In practice, standard least squares regression is used and because this
technique is so fast the resulting Q-value iteration algorithm is also very fast.
For typical problems that arise in practice, N is often taken to be on the order
of 10,000 to 50,000. Obviously, many more details are required to fully specify
the algorithm. In particular, parameter values and basis functions need to be
chosen. It is generally a good idea to use problem-specific information when
choosing the basis functions. For example, if the value of the corresponding
European option is available in closed form then that would typically be an
ideal candidate for a basis function. Other commonly used basis functions are
the intrinsic value of the option and the prices of other related derivative secu-
rities that are available in closed from.

Specific implementation details can also vary. While the algorithm described
above is that of Tsitsiklis and Van Roy (2001), Longstaff and Schwartz (2001)
omit states X ,’ where h(X ti) = 0 when estimating the regression coefficients,

r,k for k =1, ..., m. They also define 17,+1(Xti+1) so that
h(X}, ), h(X,) = OXL,)),

V(XL D=1 - . : -
T T V2 (X ) B /By, (X)) < QXL ).

In particular, they take V(X t’ +1) to be the realized discounted payoff on the
ith path as determined by the exercise policy, 7, implicitly defined by Q;(+), for
I=t+1,...,T.

In practice, it is quite common for an alternative estimate, I, of | to be
obtained by simulating the exercise strategy that is defined by 7. Formally, we

define 7 = min{t € 7: O, < h;} and

h=
to=tf[5 ]
V, is then an unbiased lower bound on the true value of the option. That
the estimator is a lower bound follows from the fact 7 is a feasible adapted
exercise strategy. Typically, 1/, is a much better estimator of the true price
than V,(X() as the latter often displays a significant upwards bias. Glasserman
(2004, Section 8.7) provides a very nice intuition for determining when 7 (Xj)
performs poorly as an estimator and, using the duality ideas of Section 2.2, he
relates the quality of V(X)) to the quality of the chosen basis functions.
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These ADP algorithms have performed surprisingly well on realistic high-
dimensional problems (see Longstaff and Schwartz, 2001 for numerical exam-
ples) and there has also been considerable theoretical work (e.g. Tsitsiklis and
Van Roy, 2001; Clemént et al., 2002) justifying this. Clemént et al. (2002), for
example, show that the Longstaff and Schwartz algorithm converges as the
number of paths, N, goes to infinity and that the limiting price, V0(X0), equals
the true price, Vg, if Q; can be written as a linear combination of the chosen
basis functions. _

Haugh and Kogan (2004) also show that for any approximation, Q;, the
quality of the lower bound, V', satisfies

T ~
h-vo<ef[ LT
t=0 !

While this may suggest that the quality of the lower bound deteriorates linearly
in the number of exercise periods, in practice this is not the case. The quality
of V, for example, can be explained in part by noting that exercise errors

are never made as long as Q,(-) and Q,(-) lie on the same side of the optimal
exercise boundary. This means in particular, that it is possible to have large
errors in O(-) that do not impact the quality of Vo

More recently, it has been shown (see Glasserman, 2004; Glasserman and
Yu, 2004) how the ADP - regression methods relate to the stochastic mesh
method of Broadie and Glasserman (1997). In addition, Glasserman and Yu
(2004) also study the trade-off between the number of paths, NV, and the num-
ber of basis functions, m, when there is a finite computational budget available.

To complete this section, it is worth mentioning that there is an alternative to
approximating the value function or Q-value function when using ADP meth-
ods (or indeed any other approximation methods). That is, we could choose
instead to approximate the optimal exercise frontier. The exercise frontier is
the boundary in X-space whereby it is optimal to exercise on one side of the
boundary and to continue on the other side. It is possible to construct ADP
methods that directly approximate this exercise boundary without directly ap-
proximating the value function. These methods often require work that is
quadratic in the number of exercise periods. That said, in general it is very
difficult to conduct a formal comparison between methods that approximate
the exercise frontier and methods that approximate the value function.

2.2 Duality theory for American options

While ADP methods have been very successful, a notable weakness is their
inability to determine how far the ADP solution is from optimality in any given
problem. Haugh and Kogan (2004) and Rogers (2002) independently devel-
oped duality-based methods that can be used for constructing upper bounds
on the true value function. Haugh and Kogan showed that any approximate
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solution, arising from ADP or other® methods, could be evaluated by using it
to construct an upper’ bound on the true value function. We also remark that
Broadie and Glasserman (1997) were the first to demonstrate that tight lower
and upper bounds could be constructed using simulation techniques. Their
method, however, does not work with arbitrary approximations to the value
function and does not appear to be as efficient as the dual-ADP techniques.
We now describe these duality-based methods.

For an arbitrary adapted supermartingale, 7, the value of an American op-
tion, 1, satisfies

h; h;
W= supEOQ[B—] = sup EOQ|:B— — 7T+ 77{|

TeT T TeT T
<su EQE—’TT + 7y < ES| max E—W + (3)
b Teg 0B ! 0= %0 teT \ B ! 0>

where the first inequality follows from the optional sampling theorem for su-
permartingales. Taking the infimum over all supermartingales, 7, on the right-
hand side of (3) implies

h
i eRQ -t
W < U := 11;on [%?(Bt 7T;>:| + . 4
On the other hand, it is known (see e.g. Duffie, 1996) that the process V;/B; is
itself a supermartingale, which implies

h: VW
o) t t
< eS| )|+

Since V; > h, for all t, we conclude that Uy < V. Therefore, 1y = Uy, and
equality is attained when 7; = V;/B;.

It is of interest to note that we could have restricted ourselves to the case
where 71, is a strict martingale, as was the case with Rogers (2002). In that case,
the Doob—Meyer decomposition theorem and the supermartingale property of
V;/B; imply the existence of a martingale, M,, and an increasing, predictable
process, A;, satisfying Ap = 0 and

4 =M; — A;.

B;
Taking m; = M, in (4) we again obtain Uy < Vj implying once again that
o = Up. These results demonstrate that an upper bound on the price of the
American option can be constructed simply by evaluating the right-hand side

6See, for example, the iterative technique of Kolodko and Schoenmakers (2006) who construct upper
as well as lower bounds on the true option price using the dual formulations we describe in this section.
7 As we saw in Section 2.1, a lower bound is easy to compute given an approximation to the value
function.
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of (3) for a given supermartingale, ;. In particular, if such a supermartingale
satisfies 7; > h;/B;, the option price 1 is bounded above by .

When the supermartingale ; in (3) coincides with the discounted option
value process, V;/B;, the upper bound on the right-hand side of (3) equals
the true price of the American option. This suggests that a tight upper bound
can be obtained by using an accurate approximation, V;, to define ;. One
possibility? is to define 7, as the following martingale’

w0 = Vo, ) ) ) ) (5)
Viei Vi Et|:Vt+l Vt:| ()

Bt+1 a Et a Bt+1 B,

Tl = T +

Let Vy denote the upper bound we obtain from (3) corresponding to our
choice of supermartingale in (5) and (6). Then it is easy to see that the up-
per bound is explicitly given by

- L v
Vo =1, EQ t Vi EQ J J
0=707T %0 [ItlelzTU((Bt B, /Z] H[Bj B,_l])}‘ )

As may be seen from (7), obtaining an accurate estimate of I/ can be com-
putationally demanding. First, a number of sample paths must be simulated to
estimate the outermost expectation on the right-hand side of (7). While this
number can be quite small in practice, we also need to accurately estimate a
conditional expectation at each time period along each simulated path. This
requires some effort and clearly variance reduction methods would be useful
in this context. Alternatively, if the initial value function approximation comes
from ADP methods then, as suggested by Glasserman and Yu (2004), it might
be possible to choose the basis functions in such a way that the conditional
expectations in (7) can be computed analytically. In that case the need for con-
ducting nested simulations would not arise.

2.3 Extensions

A number of variations and extensions of these algorithms have also been
developed recently and are a subject of ongoing research. Andersen and
Broadie (2004), for example, construct upper bounds by using an approxi-
mation to the optimal exercise frontier instead of an approximation to the
Q-value function, while Meinshausen and Hambly (2004) use similar ideas to
price options that may be exercised on multiple occasions. Jamshidan (2003)

8 See Haugh and Kogan (2004) and Andersen and Broadie (2004) for further comments relating to the
superiority of taking 7, to be a strict martingale.

9 Haugh and Kogan (2004) also propose an alternative where m; is constructed from V; in a multiplica-
tive manner.
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developed a multiplicative dual approach for constructing upper bounds and
Chen and Glasserman (2007) compare this multiplicative dual approach with
the additive approach of Haugh and Kogan (2004) and Rogers (2002). In this
section we briefly describe these extensions. All of them, with the exception
of Meinshausen and Hambly (2004), deal with pricing American options, or
equivalently, optimal stopping problems. Brandt et al. (2005) extended the
ADP ideas for optimal stopping to portfolio optimization problems. Haugh
et al. (2003) showed how a duality theory that had already existed for port-
folio optimization problems could be used in practice to create upper bounds
on the solutions to these problems. These extensions to portfolio optimization
problems will be described in Section 3.

2.3.1 Upper bounds from stopping rules

Approximations to the optimal exercise frontier can also be used to con-
struct upper bounds. For example, suppose 7; fori =1, ..., T is a sequence of
stopping times with the property 7; > i for all i. We interpret 7; as the time at
which the American option should be exercised (under some policy) given that
it has not already been exercised before time i. These stopping times might, for

example, be constructed from an approximation, Qy, to the Q-value function
so that 7; ;= min{t € 7, t > i: Q; < h;}. Alternatively, 7; may derive from a
direct approximation to the exercise frontier. In this case,

Tio=min{t e T, t > i: g =1}, ®)

where g, = 1 if the policy says “exercise” and g, = 0 if the policy says “con-
tinue.” Note that it is not necessary to have an approximation to the value
function available when 7; is defined in this manner.

Regardless of how 7; is defined we can use it to construct martingales by

setting M, := Z; A;j where
Aj:=ER[hy ] = B2 [h ] =V - Qj 1. 9)

We can then take 7, := M, in (4) to construct upper bounds as before. It is
necessary to simulate the stopping time 7; as defined by (8) to estimate the
Ajs. This additional or nested simulation is required at each point along each
simulated path when estimating the upper bound. This therefore suggests that
the computational effort required to compute /y when a stopping time is used
is quadratic in the number of time periods. In contrast, it appears that the

computational effort is linear when Q; is used to construct the upper bound
of Section 2.2. However, an approximation to the optimal exercise frontier is
likely to be more ‘accurate’ than an approximation to the Q-value function and
so a more thorough analysis would be required before the superiority of one
approach over the other could be established.

The stopping rule approach was proposed by Andersen and Broadie (2004)
but see also Glasserman (2004) for further details. It is also worth mention-
ing that it is straightforward to combine the two approaches. In particular, an
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explicit approximation, Q;, could be used in some regions of the state space

to estimate M, while a nested simulation to estimate the A;s could be used in
other regions.

2.3.2  The multiplicative dual approach

An alternative dual formulation, the multiplicative dual, was recently formu-
lated by Jamshidian (2003) for pricing American options. Using the multiplica-
tive Doob—Meyer decomposition for supermartingales, Jamshidan showed that
the American option price, Vj, could be represented as

. hy . h,
Vo= inf EM L 1.= inf EZ m 10
0= prepg 0 |:0I<nta<XT M[} Mep 0 [Orgntang M, T}’ (10)

where M is the set of all positive martingales, M;, with M, = 1. Equa-
tion (10) suggests that if we choose a ‘good’ martingale, M, € M™ with
My =1, then

should provide a good upper bound on V4. As was the case with the additive
approaches of Section 2.2, it is possible to construct a candidate martingale,
M., using an approximation, V,, to the true value function, V. As usual, this
upper bound can be estimated using Monte Carlo methods.

Chen and Glasserman (2007) compare this multiplicative dual formulation
with the additive-dual formulations of Rogers (2002) and Haugh and Kogan
(2004). They show that neither formulation dominates the other in the sense
that any multiplicative dual can be improved by an additive dual and that any
additive dual can be improved by a multiplicative dual. They also compare the
bias and variance of the two formulations and show that either method may
have a smaller bias. The multiplicative method, however, typically has a vari-
ance that grows much faster than the additive method. While the multiplicative
formulation is certainly of theoretical interest, in practice it is likely to be dom-
inated by the additive approach.

Bolia et al. (2004) show that the dual formulation of Jamshidian may be in-
terpreted using an importance sampling formulation of the problem. They then
use importance sampling techniques and nonnegative least square methods for
function approximation in order to estimate the upper bound associated with
a given approximation to the value function. Results are given for pricing an
American put option on a single stock that follows a geometric Brownian mo-
tion. While they report some success, considerable work remains before these
ideas can be applied successfully to high-dimensional problems. In addition,
since the multiplicative dual formulation tends to have a much higher vari-
ance than the additive formulation, importance sampling methods might have
more of an impact if they could be successfully applied to additive formula-
tions. More generally, importance sampling methods should also be of interest
when constructing value function approximations in the first place.
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2.3.3  Multiple exercise opportunities

In an interesting extension, Meinshausen and Hambly (2004), extend the
ADP-dual techniques to multiple exercise options. If 7 = {0, 1, ..., T} are the
possible exercise dates, then a multiple exercise option with # exercise oppor-
tunities may be exercised at any of n dates in 7. Clearly n < T + 1 and the case
where n = 1 corresponds to a standard American option. The standard exam-
ples of a multiple exercise option is a swing option that is traded in the energy
derivatives industry. A swing option gives the holder a fixed number of exercise
opportunities when electricity may be purchased at a given price. Meinshausen
and Hambly (2004) apply ADP methods to construct an approximation to (and
lower bound on) the price of swing options.'” They then use this approximation
and a dual formulation to construct an upper bound on the true price of the op-
tion. This is completely analogous to the methods for pricing high-dimensional
American options though the computational requirements appear to be much
greater.

2.4 Directions for future research

There are many possible directions for future research. First, it should be
possible to employ ADP and duality ideas to other classes of problems. There
has of course already been some success in this direction. As described in
Section 2.3.2, Meinshausen and Hambly (2004) have extended these results
to option pricing problems where multiple exercises are permitted. Haugh et
al. (2003) also developed analogous results for dynamic portfolio optimiza-
tion problems.'! It should therefore be possible to extend and develop these
techniques for solving other classes of control problems. Of particular interest
are real options problems, which typically embed American-style or multiple-
exercise features.

Because ADP-dual techniques require simulation methods and therefore
often demand considerable computational effort, it is clear that variance re-
duction techniques should be of value, particularly as ever more complex
problems are solved. We expect importance sampling to be especially useful
in this regard. First, it may be used for estimating the value associated with a
given approximately optimal policy.'?> Second, and perhaps more interesting,
it should prove especially valuable in actually constructing the approximately
optimal policy itself. This is because importance sampling ideas can be used
to focus the computational effort on the more ‘important’ regions of the state
space when approximating the value function. While these ideas are not new,
they have certainly not been fully explored within the ADP literature.

10 They also price chooser flexible caps, fixed income derivative securities that give the holder the right
to exercise a given number of caplets over a given horizon.

H gee Section 3.

12 See Bolia et al. (2004) and Section 2.3.2.
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Estimating the so-called ‘greeks’ is also a particularly interesting prob-
lem. While ADP-dual ideas have now been very successful for pricing high-
dimensional American options, efficiently computing the greeks for these
problems remains a difficult'? task.

Another future research direction is to use the dual formulation, possibly
in conjunction with the primal formulation, to construct approximate value
functions or exercise frontiers. The resulting ‘dual’ or ‘primal-dual’ algorithms
would be of theoretical interest and we expect they would, in some instances,
be superior to ‘primal’ algorithms that have already been developed. While it
is straightforward to design admittedly simple primal-dual style algorithms, !4
there appears to have been little work done on this topic. This, presumably, is
due to the great success that ADP-regression algorithms have had in quickly
generating good approximations to the true option price. It is possible, how-
ever, that this will become a more active research area as more challenging
classes of problems are tackled with ADP techniques.

3 Portfolio optimization

Motivated by the success of ADP methods for pricing American options,
Brandt et al. (2005) apply similar ideas to approximately solve a class of high-
dimensional portfolio optimization problems. In particular, they simulate a
large number of sample paths of the underlying state variables and then work-
ing backwards in time, they use cross path regressions (as we described in the
approximate Q-value iteration algorithm) to efficiently compute an approxi-
mately optimal strategy. Propagation of errors is largely avoided, and though
the price for this is an algorithm that is quadratic in the number of time peri-
ods, their methodology can comfortably handle problems with a large number
of time periods. Their specific algorithm does not handle portfolio constraints
and certain other complicating features, but it should be possible to tackle
these extensions using the ADP methods that they and others have developed.

As was the case with ADP solutions to optimal stopping problems, a prin-
cipal weakness of ADP solutions to portfolio optimization problems is the
difficulty in determining how far a given solution to a given problem is from
optimality. This issue has motivated in part the research of Haugh et al. (2005)
who use portfolio duality theory to evaluate the quality of suboptimal solutions
to portfolio optimization problems by constructing lower and upper bounds on
the optimal value function. These bounds are evaluated by simulating the sto-
chastic differential equations (see Kloeden and Platen, 1992) that describe the
evolution of the state variables in the model in question. In Section 3.2 we

13 See Kaniel et al. (2006) for an application where dual methods are employed to estimate the greeks
of Bermudan-style options.
14 See, for example, Haugh and Kogan (2004).
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describe the particular portfolio duality theory that was used in Haugh et al.
(2005) and that was developed by Xu (1990), Shreve and Xu (1992a, 1992b),
Karatzas et al. (1991), and Cvitanic and Karatzas (1992).

Before doing so, we remark that the duality theory of Section 3.2 applies
mainly to problems in continuous time. ADP techniques, on the other hand,
are generally more suited to a discrete time framework. This inconsistency
can be overcome by extrapolating discrete-time ADP solutions to construct
continuous-time solutions.

3.1 The model

We now state a portfolio choice problem under incomplete markets and
portfolio constraints. The problem is formulated in continuous time and stock
prices follow diffusion processes.

The investment opportunity set. There are N stocks and an instantaneously
riskfree bond. The vector of stock prices is denoted by P, = (Piy, ..., Pny)
and the instantaneously riskfree rate of return on the bond is denoted by ;.
Without loss of generality, stocks are assumed to pay no dividends. The in-
stantaneous moments of asset returns depend on the M-dimensional vector of
state variables X;:

re =r(Xy), (11a)
dP; = Pi[up(X;)dt + 3p(X;) dB], (11b)
dX; = ux(X,)dt + Sx(X,) dB;, (11c)

where Py = 1, Xog = 0, B = (By, ..., Bnt) is a vector of N independent
Brownian motions, up and wx are N-and M-dimensional drift vectors, and 3p
and Yy are diffusion matrices of dimension N by N and M by N, respectively.
The diffusion matrix of the stock return process 3p is lower-triangular and
nondegenerate: xTZPE}T,x > €|/x||? for all x and some € > 0. Then, one can
define a process 7, given by

N = EEQ(MPt —71).

In a market without portfolio constraints, 1, corresponds to the vector of
instantaneous market prices of risk of the N stocks (see, e.g., Duffie, 1996,
Section 6.G). The process 7, is assumed to be square-integrable so that

T
EOU ||m||2dr] < 0.
0

Portfolio constraints. A portfolio consists of positions in the N stocks and the
riskfree bond. The proportional holdings of risky assets in the total portfolio
value are denoted by 6; = (014, ..., On;). The portfolio policy is assumed to
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satisfy a square integrability condition: fOT 16,>dt < oo almost surely. The
value of the portfolio changes according to

dw, = I’I/t{[rt+9tT(MPz—rt)] df‘i‘etTEPz dBt}- (12)

The portfolio weights are restricted to lie in a closed convex set, K, containing
the zero vector:

0; e K. (13)

For example, if short sales are not allowed, then the constraint set takes the
form K = {#: 6 > 0}. If in addition to prohibiting short sales, borrowing is not
allowed, then K = {6: 6 >0, 170 < 1}where 1" = (1,..., 1). The set K can
be constant, or it can depend on time and the values of the exogenous state
variables.

The objective function. For simplicity, the portfolio policy is chosen to maxi-
mize the expected utility of wealth at the terminal date 7', Eq[U (Wr)]. Pref-
erences over intermediate consumption would be easy to incorporate. The
function U(W) is assumed to be strictly monotone with positive slope, con-
cave, and smooth. Moreover, it is assumed to satisfy the Inada conditions at
zero and infinity: limy o U (W) = oo and limyy_, o, U’ (W) = 0. For instance,
a common choice is a constant relative risk aversion (CRRA) utility function
UW)=W"7/(1-y).
In summary, the portfolio choice problem is to solve for

Vo :==supEg[U(Wr)] subjectto (11), (12) and (13), (P)
{0}
where 1}y denotes the value function at 0.

3.2 Review of the duality theory

In this section we review the duality theory for the constrained portfolio
optimization problem. In particular, the version of duality used in Haugh et al.
(2005) is based on the work of Cvitanic and Karatzas (1992).

Starting with the portfolio choice problem (P), one can define a fictitious
problem (P), based on a different financial market and without the portfolio
constraints. First, define the support function of K, 8(-) : RN — R U oo, by

8(v) := sup(—»'x). (14)
xeK

The effective domain of the support function is given by
K:={r: (v) < o0}. (15)

Because the constraint set K is convex and contains zero, the support function
is continuous and bounded from below on its effective domain K. Then, one



940 M.B. Haugh and L. Kogan

can define the set D of F;-adapted R" valued processes to be
T

D= {Vt, 0<t<T: v EK, E0|:/5(Vt)dtj|
0

T
+Eo[/ ||Vt||2dt:| < oo}. (16)
0

For each process, » € D, consider a fictitious market, M), in which the N
stocks and the riskfree bond are traded. There are no constraints in the ficti-
tious market. The diffusion matrix of stock returns in M is the same as in the
original market. However, the riskfree rate and the vector of expected stock re-
turns are different. In particular, the riskfree rate process and the market price
of risk in the fictitious market are defined respectively by

= r+ 8w, (172)

0" =mi+ 3p v, (17b)
where 6(v) is the support function defined in (14). Assume that ng") is square-
integrable.

Because the number of Brownian motions, N, is equal to the number of
stocks in the financial market described by (11) and the diffusion matrix is
nondegenerate, it can be shown that the unconstrained fictitious market is
dynamically complete. Dynamic completeness would imply the existence of a
unique market-price-of-risk process, n; and a unique state-price-density (SPD)
process, 7. m(w) may be interpreted as the price per-unit-probability of $1 at
time ¢ in the event w occurs. (See Duffie, 1996 for further details.) It so hap-
pens that a portfolio optimization problem in complete markets is particularly
easy to solve using martingale methods. Following Cox and Huang (1989), the

state-price density process 7Tt(V) in the fictitious market is given by

t t
v v 1 v T v ! v T
wf>=exp(—/r; s b [T as [ dss), a®)
0 0
and the vector of expected returns is given by

) = S

The dynamic portfolio choice problem in the fictitious market without posi-
tion constraints can be equivalently formulated in a static form (e.g., Cox and
Huang, 1989; Karatzas and Shreve, 1997, Section 3):

V") = sup Eo[U(Wr)] subject to EO[W(TV)WT] < W. (P™)
Wr})
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Once the optimal terminal wealth is computed, it can then be supported by a
dynamic trading strategy. Due to its static nature, the problem (P™) is easy
to solve. For example, when the utility function is of the CRRA type with rel-
ative risk aversion vy so that U(W) = W1=7/(1 — y), the corresponding value
function in the fictitious market is given explicitly by

I—y _
W =177
») 0 »)
I/OV = EEO[WTD Y :| . (19)
It is easy to see that for any admissible choice of v € D, the value function in
(19) gives an upper bound for the optimal value function of the original prob-
lem. In the fictitious market, the wealth dynamics of the portfolio are given
by
daw” =W [(r” + 6] Spn”) dt + 6] 3p,dB/], (20)
so that

aw” ; ,
W(tv) B VV[Z = [(rt( )~ rt) + otTZPt(ng )~ nt)] dr
t

= [5(1/;) + 0?1},] dt.

The last expression is nonnegative according to (14) since 6; € K. Thus,
W™ > W, Vt € [0, T] and

V" = 1. (21)

Results in Cvitanic and Karatzas (1992) and Schroder and Skiadas (2003)
imply that if the original optimization problem has a solution, then the up-
per bound is “tight,” i.e., the value function of the fictitious problem (P®))
coincides with the value function of the original problem (P) at an optimally
chosen v*:

V" = infr® =1, (22)
{v}

(see Schroder and Skiadas, 2003, Proposition 3(b) and Theorems 7 and 9). The

above equality holds for all times, and not just at time 0, i.e., Vt(”*) = V;. Cvi-
tanic and Karatzas (1992) have shown that the solution to the original problem
exists under additional restrictions on the utility function, most importantly
that the relative risk aversion does not exceed one. Cuoco (1997) proves a more
general existence result, imposing minimal restrictions on the utility function.

3.3 The performance bound
The theoretical duality results of Section 3.2 suggest that one can construct

an upper bound on the value function of the portfolio choice problem (P) by
computing the value function of any fictitious problem (P®)). The fictitious
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market is defined by the process v; as in (17). Of course, one can pick any
fictitious market from the admissible set D to compute an upper bound. Such
a bound is uninformative if it is too loose. Since the objective is to evaluate a
particular candidate policy, one should construct a process 7, based on such a
policy to obtain tighter bounds. The solution to the portfolio choice problem
under the fictitious market defined by #; then provides a performance bound
on the candidate policy.

In order to construct the fictitious market as defined by 7;, Haugh et al.
(2005) first use the solution to the dual problem to establish the link between

the optimal policy, 6*, and value function, Vy = VO(V*), and the correspond-
ing fictitious asset price processes, as defined by v*. Not knowing the optimal
portfolio policy and value function, they instead use approximations to obtain
the candidate process for v*, which is denoted by ». This candidate process in
general does not belong to D and cannot be used to define a fictitious prob-
lem. Instead, one must search for a qualified process » € D, which is close to .
Haugh et al. (2005) then use ¥ as an approximation to v* to define the fictitious
problem (P®). Since » € D, the solution to the corresponding unconstrained
problem in M® provides a valid performance bound for the candidate policy.

The state-price density process is related via an envelope theorem to the
value function by

Vi

din7") =dIn i (23)
t

In particular, the stochastic part of d In 7Tt(V*) is equal to the stochastic part of
d1n gV /oW;. If V; is smooth, It6’s lemma and Equations (18) and (12) imply

that
. ) PV)IWE g7 o (Ve 7 (Vi
N =1 = _VVt(7>ZP10z - <—) 2Xt<—)7
Vi /oW, oW; W9 X,

(24)

where 67 denotes the optimal portfolio policy for the original problem. In the

special but important case of a CRRA utility function the expression for ni"*)

simplifies. In particular, the first term in (24) simplifies to 3/2;0;“, where vy is

the relative risk aversion coefficient of the utility function, and one only needs

to compute the first derivative of the value function with respect to the state

variables X; to evaluate the second term in (24). This simplifies the numerical

implementation, since it is generally easier to estimate first-order than second-

order partial derivatives of the value function.

Given an approximation to the optimal portfolio policy 6;, one can com-
pute the corresponding approximation to the value function, V;, defined as
the conditional expectation of the utility of terminal wealth, under the port-
folio policy ;. One can then construct a process » as an approximation to v*,
using (24). Approximations to the portfolio policy and value function can be
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obtained using a variety of methods, e.g., the ADP method (see Brandt et al.,
2005). Haugh et al. (2005) take 6, as given and use it to construct an upper
bound on the unknown true value function V5.

Assuming that the approximate value function ¥ is sufficiently smooth, one
can replace V; and 67 in (24) with V, and 6, and obtain

217 2 7N\ —1 217
ﬁg:ﬁ”:—mcﬂﬂﬂﬁ)$@—<ﬂ?)z;(ﬁll)
WV ) OW, IW; IWid Xy
(25)
v, is then defined as a solution to (17b).

Obviously, 7, is a candidate for the market price of risk in the fictitious mar-
ket. However, there is no guarantee that 7, and the corresponding process 7,
belong to the feasible set D defined by (16). In fact, for many important classes
of problems the support function 6(v;) may be infinite for some values of its
argument. Haugh et al. (2005) look for a price-of-risk process 7, € D that is
close to 7;. They choose a Euclidian norm as the measure of distance between
the two processes to make the resulting optimization problem tractable.

The requirement that 7, € D is not straightforward to implement computa-
tionally. Instead, Haugh et al. (2005) impose a set of tighter uniform bounds,

7 —nll < 41, (26a)
8(9) < Az, (26b)

where A1 and A, are positive constants that can be taken to be arbitrarily
large. The condition (26a) implies that the process ?; is square-integrable, since

A

7, is square integrable and |4 — 1|2 = 7T (3p ) T3p 19 > A|9|? for some
A > 0. Haugh et al. (2005) provide a discussion on the choice of constants A
and A,.

In summary, 7; and ?; are defined as a solution of the following problem:

@gnﬁ—ﬁw, 27)
subject to

f=n+3p', (28a)

8(v) < o0, (28b)

I —mnll < A, (28¢)

8(p) < Aj. (28d)

The value of 7, and » can be computed quite easily for many important
classes of portfolio choice problems. The following two examples are taken
from Haugh et al. (2005).
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Incomplete markets. Assume that only the first L stocks are traded so that the
positions in the remaining N — L stocks are restricted to the zero level. In this
case the set of feasible portfolio policies is given by

K=1{0]6;=0forL <i<N)} (29)

and hence the support function 6(v) is equal to zero if v; = 0,1 < i < L and is
infinite otherwise. Thus, as long as v; = 0, 1 < i < L, the constraint (26b) does
not need to be imposed explicitly. To find 7 and », one must solve

min || — 717, (30)
0
subject to
f=n+3p"'0,
v;=0, 1<i<L,
17— nl* < A47.
The diffusion matrix 3p is lower triangular and so is its inverse. Using this, the
solution can be expressed explicitly as

ni=mni, 1<i<L,
nj=mj+a(nj—mj), L<j<N,
f/ZZP(”AI_”I),

A3 1A —nlE, V2 <

. 1 L ~ ~

a:mm[l,( — 3 - ()2 ) ], ||TI||%L)=ZTI;2-
7 —=nl* = lln =l im1

where

Incomplete markets, no short sales, and no borrowing. The market is the
same as in the previous case, but no short sales and borrowing are allowed.
Then the set of admissible portfolios is given by

K=1{010>0,1"0<1, 6;=0forL <i<N}. (31)
The support function is given by 8(v) = max(0, —vy, ..., —vy ), which is finite
for any vector v. Because in this case 8(v) < |v||, the relation ||v| = | 2p(7) —

n)|l < || 2p|| A1 implies that as long as A is sufficiently large compared to A1,
one only needs to impose (26a) and (26b) is redundant. We therefore need to
solve the following problem:

min |5 — 7, (32)
n,v

subject to
A=n+3p b,

19— nl? < A3
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Then the fictitious market is described by

. ) Aq -
n=n+mn|l, —— )(n—n),
Im—ml

b=23p(—m).
3.4  Summary of the algorithm

Bounds on the optimal value function can be computed by simulation in
several steps.

1. Start with an approximation to the optimal portfolio policy of the origi-
nal problem and the corresponding approximation to the value function.
Both can be obtained using an ADP algorithm, as in Brandt et al. (2005)
or Haugh et al. (2005). Alternatively, one may start with an approximate
portfolio policy and then estimate the corresponding value function by
simulation.

2. Use the approximate portfolio policy and partial derivatives of the ap-
proximate value function to construct a process 7; according to the ex-
plicit formula (25). The process 7, is a candidate for the market price of
risk in the fictitious market.

3. Construct a process 7, that is close to 7; and satisfies the conditions for
the market price risk of a fictitious market in the dual problem. This in-
volves solving the quadratic optimization problem (27).

4. Compute the value function from the static problem (P*)) in the result-
ing fictitious market defined by the market price of risk process 7;. This
can be accomplished efficiently using Monte Carlo simulation. This re-
sults in an upper bound on the value function of the original problem.

The lower bound on the value function is obtained by simulating the termi-
nal wealth distribution under the approximate portfolio strategy.

Successful practical implementation of the above algorithm depends on ef-
ficient use of simulation methods. For instance, the expectation in (19) cannot
be evaluated explicitly and so it has to be estimated by simulating the underly-
ing SDE’s. This is a computationally intensive task, particularly when 7, cannot
be guaranteed in advance to be well-behaved. In such circumstances it is neces-
sary to solve a quadratic optimization problem at each discretization point on

each simulated path in order to convert nﬁ“) and 7; into well-behaved versions
that can then be used to construct an upper bound on V4. (See Haugh et al.,
2005 for further details.)

Besides the actual ADP implementation that constructs the initial approx-
imate solution, simulation is also often necessary to approximate the value
function and its partial derivatives in (25). This occurs when we wish to eval-
uate a given portfolio policy, 6;, but do not know the corresponding value
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function, I7t In such circumstances, it seems that it is necessary to simulate
the policy, 6;, in order to approximate the required functions. Once again, this
is computationally demanding and seeking efficient simulation techniques for
all of these tasks will be an important challenge as we seek to solve ever more
complex problems.

Haugh, Kogan and Wu (2005) present several numerical examples illustrat-
ing how approximate portfolio policies can be evaluated using duality tech-
niques. While relatively simple, these examples illustrate the potential useful-
ness of the approach. Haugh et al. (2005) apply the above algorithm to evaluate
an ADP solution of the portfolio choice problem in incomplete markets with
no-borrowing constraints. Haugh and Jain (2006) use these duality techniques
to evaluate other classes of portfolio strategies and to study in further detail
the strategies studied by Haugh et al. (2005). Finally, Haugh and Jain (2007)
show how path-wise Monte Carlo estimators can be used with the cross-path
regression approach to estimate a given portfolio policy’s value function as well
as its partial derivatives.

3.5 Directions for further research

There are several remaining problems related to the use of duality-based
methods in portfolio choice. On the theoretical side, there is room for devel-
oping new algorithms designed to tackle more complex and realistic problems.
For example, the results summarized above apply to portfolio choice with
constraints on proportions of risky assets. However, some important finance
problems, such as asset allocation with illiquid/nontradable assets do not fit in
this framework. Additional work is required to tackle such problems.

Another important class of problems involve a different kind of market fric-
tions: transaction costs and taxes. Problems of this type are inherently difficult,
since the nature of frictions often makes the problem path-dependent and
leads to a high-dimensional state space. Some duality results are known for
problems with transaction costs (see Rogers, 2003 for a review), while prob-
lems with capital gains taxes still pose a challenge. However, note that it is not
sufficient to have a dual formulation in order to derive a useful algorithm for
computing solution bounds. It is necessary that a high-quality approximation
to the optimal dual solution can be recovered easily from an approximate value
function. Not all existing dual formulations have such a property and further
theoretical developments are necessary to address a broader class of problems.

On the computational side, there is a need for efficient simulation algo-
rithms at various stages of practical implementation of the duality-based al-
gorithms. For instance, motivated by the promising application of importance
sampling methods to pricing American options, one could conceivably develop
similar techniques to improve performance of portfolio choice algorithms.
In particular, in a problem with dynamically complete financial markets and
position constraints, approximation errors would tend to accumulate when
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portfolio constraints are binding. By sampling more frequently from the “prob-
lematic” areas in the state space, one could achieve superior approximation
quality.

The above discussion has been centered around the problem of evaluat-
ing the quality of approximate solutions. A major open problem both on the
theoretical and computational fronts is how to use dual formulations to di-
rect the search for an approximate solution. While a few particularly tractable
problems have been tackled by duality methods, there are no efficient general
algorithms that could handle multi-dimensional problems with nontrivial dy-
namics and constraints or frictions. Progress on this front may be challenging,
but would significantly expand our ability to address outstanding problems in
financial engineering theory and practice.
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