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B. Further Examples

We provide some additional instructive examples in this online appendix. In Appendix B.1 we consider a
classic DP problem where the optimal policy is easy to find. The goal here is to provide explicit recursions for
the inner problems under perfect and imperfect information relaxations for both controlled and uncontrolled
formulations. We also demonstrate here the potential of the truncated horizon approach that was discussed
in Section 4.4. In Appendix B.2 we consider a simple die-throwing example and a particular information
relaxation that renders the inner problem non-Markovian in the original state variables. We therefore need
to expand the state space in order to obtain a Markovian inner problem that is amenable to value iteration.
This example simply makes the point that an injudicious choice of information relaxation can result in an
inner problem that is harder to solve than the original primal problem. In Appendix B.3 we provide a
simple two-period example which shows (perhaps surprisingly) that uncontrolled formulation bounds can be
superior to controlled formulation bounds given the same information relaxation and penalties.

B.1. A Simple Example: Machine Repair
We consider a classical example in which a decision maker is trying to determine the optimal repair policy
for a machine that deteriorates over time. The machine can be in any one of n states, denoted by 1, . . . , n.
In each period the decision maker can either attempt to repair the machine or not. The cost of attempting
to repair the machine is R ≥ 0. In addition, if x is the state in a given period then a cost of c(x) ≥ 0 is
incurred for that period in addition to the possible repair cost. Costs are increasing in x. We let P r and P r̄

denote the transition probability matrices corresponding to the actions “repair” (r) and “do not repair” (r̄),
respectively. The objective is to minimize the total expected discounted cost over an infinite horizon. If n
is not too large, solving for the optimal value function can be done easily (e.g., value iteration or by solving
a linear program with n variables). Nonetheless, the example is instructive. The optimal value function v⋆

satisfies
v⋆(x) = min{R + c(x) + δP rxv⋆, c(x) + δP r̄xv⋆} ,

where P rx and P r̄x denote the xth rows of P r and P r̄, respectively, and v⋆ ≡ (v⋆(1) . . . v⋆(n))⊺.
In our examples, we use n = 10 states, with c(x) = x, R = 10 and δ = 0.75. If a repair attempt is made,

the next state will be state 1 with probability .9. The repair fails with probability .1, in which case the
machine remains in its current state. Thus, P r(1,1) = 1, and P r(x,1) = .9 and P r(x,x) = .1 for x > 1. If a
repair attempt is not made, the machine may deteriorate to a worse (higher) state. We use P r̄(x,x) = .8,
P r̄(x,x + 1) = P r̄(x,x + 2) = .1 for x ≤ n − 2, P r̄(n − 1, n − 1) = .8, P r̄(n − 1, n) = .2 and P r̄(n,n) = 1.

Information Relaxation Bounds Via the Controlled Formulation
We calculate lower bounds using two information relaxations with the absorption time formulation. For
both information relaxations, we use penalties based on approximate value functions calculated from value
iteration. Specifically, we take v = v(k) ∶= Bk0 for some number k ≥ 0 of iterations of the Bellman operator,
B, starting with the zero vector 0 when k = 0. Since costs are nonnegative, the choice v(0) = 0 ∈ Rn
is a subsolution; from monotonicity and convergence of the Bellman operator (e.g., Puterman 1994), v
constructed in this way is a sub-solution for any k ≥ 0.

In an earlier version of this paper, we showed a strengthened version of Proposition 4.1 with slightly
stronger guarantees in some special cases. In particular, if v is a subsolution that satisfies v + ε ≤ Bv in all
states for some ε ≥ 0, it can be shown that

E[vG
0 (x0)] ≥ v(x0) +

ε

1 − γδ , (1)

where γ ∶= min{t,x≠xa,y≠xa,a∈A(x)} p(y∣x, a)/qt(y∣x, a). Thus, if v is a subsolution with “slack” ε > 0 and we
construct a penalty from v in the information relaxation approach, we are guaranteed to obtain a strict
improvement of ε/(1 − γδ) in the lower bound v(x0). This result also depends on the discount factor as
well as the reformulation: if we use a controlled formulation (i.e., qt = p), then γ = 1 and the guarantee is
stronger. For uncontrolled formulations, γ may be close to zero, and the guarantee may be weak. We will
include these bound guarantees from (1) in the example results that follow.

With a perfect information relaxation, the decision maker knows both the time horizon τ as well as the

1



1 2 3 4 5 6 7 8 9 10

State

0

5

10

15

20

25

30

C
os

t

(a) k=0

1 2 3 4 5 6 7 8 9 10

State

0

5

10

15

20

25

30

C
os

t

v
⋆

Absorption Time
Perfect Information

v
(k) Guarantee

v
(k)

(b) k=3

Figure B.1: Lower bounds for the machine repair example using the controlled formulation and perfect and absorption
time relaxations.

scenario (w1, . . . ,wτ−1). An inner problem (8) is therefore obtained by first sampling τ from a geometric
distribution with parameter 1 − δ and then sampling w = (w1, . . . ,wτ−1). Here (and without any loss of
generality) we take the wt’s to be IID uniform [0,1] random variables and use inverse transforms on the
state transition matrices P r̄ and P r to generate state transitions for each action in each time period. We use
Πr̄
t and Πr

t to denote the associated (deterministic) state transition matrices in each scenario, and again use
the subscript x to denote the xth row of these matrices. Solving the inner problem (8) in this case reduces
to solving the deterministic DP

vG
t (x) = min{c(x) +R + (δP rx −Πr

x,t) v
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

repair penalty

+ Πr
x,tv

G
t+1, c(x) + (δP

r̄
x −Πr̄

x,t) v
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

do not repair penalty

+ Πr̄
x,tv

G
t+1}

for t = 0, . . . , τ − 1, with vG
τ = 0.

We also consider an imperfect information relaxation in which the decision maker knows τ at all times
but does not know any machine state transitions after time t, i.e., Gt = σ (Ft, τ) for t = 0, . . . , τ . We call
this the absorption time relaxation. This is a tighter information relaxation than perfect information and
therefore must lead to better lower bounds. (This follows from a simple extension of Proposition 2.3(i) in
BSS 2010). Generating inner problems under this relaxation reduces to only sampling τ from a geometric
distribution with parameter 1 − δ and then solving the τ -period inner problem. The inner problems (given
by the right-hand side of (6)) are now finite horizon stochastic DPs and have the form

vG
t (x) = min{c(x) +R + (δ − 1)P rxv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
repair penalty

+ P rxv
G
t+1, c(x) + (δ − 1)P r̄xv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
do not repair penalty

+ P r̄xv
G
t+1}

for t = 0, . . . , τ − 1, with vG
τ = 0.

Figure B.1 shows the bounds for all initial states. The optimal value function is indicated in blue, and
the black line indicates v = v(k) for some number k of iterations of value iteration, starting from the zero
vector. Since v(k) is a subsolution, we know from part (i) of Proposition 4.1 that the lower bounds from
both information relaxations will be at least as good as the lower bounds v(k); the green line shows the
bound improvement guarantee in (1). The solid and dashed red lines correspond to the lower bounds from
the perfect and absorption time information relaxations, respectively.

There are several noteworthy features in these results. First, even when the penalties are constructed from
poor approximations to the optimal value function, the information relaxation bounds are relatively good.
Second, the bound improvement guarantee ranges from being quite slack in the k = 0 case to (relatively) tight
in the k = 3 case. Third, even though the absorption time relaxation bounds are tighter than the perfect
information bounds (as they must be) there is little difference in these bounds, particularly as k increases.
In this example, it appears the benefit of additional information comes largely from knowing the absorption
time: if the absorption time is relatively short in a given scenario and the penalty is somewhat weak, then
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Figure B.2: Lower bounds for the machine repair example using an uncontrolled formulation and the perfect and
absorption time relaxations.

regardless of the specific machine state transitions, it may never be optimal to repair in that scenario.

Information Relaxation Bounds Via Uncontrolled Formulations

We now demonstrate uncontrolled formulation dual bounds and work directly with the state transition
probability matrix (rather than the state transition function), which we denote by Q. Since this is an
uncontrolled formulation, state transition probabilities do not depend on actions (i.e., whether a repair
attempt is made or not). We assume that absorption occurs with probability 1 − δ under Q from every
non-absorbing state. With a perfect information relaxation the uncontrolled formulation inner problems
(17) take the form

vG
t (xt) = min

⎧⎪⎪⎨⎪⎪⎩
c(xt) + δP r̄xt

v + P
r̄(xt, xt+1)
Q(xt, xt+1)

(vG
t+1(xt+1) − v(xt+1)) ,

R + c(xt) + δP rxt
v + P

r(xt, xt+1)
Q(xt, xt+1)

(vG
t+1(xt+1) − v(xt+1))

⎫⎪⎪⎬⎪⎪⎭

for 0 ≤ t ≤ τ − 1 with vG
τ = 0. Under the absorption time relaxation, the lower bounds under the controlled

formulation and these uncontrolled formulations coincide. This follows from the fact that only τ is known
under the absorption time relaxation and we are using the same distribution of τ in these uncontrolled
formulation examples.

Figure B.2 shows the lower bounds. The optimal value function is indicated in blue, and the black line
indicates v = v(k) for some number, k, of value iterations beginning with the zero vector. Since v(k) is
a subsolution, the results of Proposition 4.1 apply. In particular, the lower bounds from each information
relaxation must be strictly better than v(k); the guaranteed improvement over v(k) is indicated with the green
line. The red lines represent the lower bounds using the perfect and absorption time information relaxations.
The plotted lower bounds are in fact an average of ten separate uncontrolled formulation examples, each
resulting from a randomly generated state transition matrix Q. For each uncontrolled formulation example,
we used stratified sampling on τ in generating scenarios to help reduce sample variance; for each example, Q
is generated uniformly and normalized so that rows sum to one (since every element of each Q was strictly
greater than zero, the absolute continuity condition in Theorem 4.1(i) holds relative to any feasible policy;
thus even with penalties that were not constructed from subsolutions, we would be ensured lower bounds on
the optimal value function here).

A notable feature of Figure B.2 is that the perfect information bound only provides a modest improvement
over the aforementioned improvement guarantee, somewhat in contrast to the controlled formulation case
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in Figure B.1. This is perhaps not surprising given that the bound improvement guarantee (1) is generally
weaker for uncontrolled formulations. It is interesting to observe that, unlike upper bounds from any primal
feasible policy, the perfect information lower bounds depend on Q. In Figure B.3 we show the perfect
information lower bounds for each of the uncontrolled formulation examples, each corresponding to a different
Q. The blue line again indicates the optimal value function. More variation in the perfect information lower
bounds are apparent in the k = 0 case (corresponding to zero penalties) than in the k = 3 case. We should
expect an interaction between the approximate value function forming the penalties and the uncontrolled
formulation’s state transition probabilities. In particular, when we have relatively poor approximations to
the optimal value function, differences in these state transition probabilities can have a more pronounced
effect on the quality of the lower bounds than when the approximations are relatively good. The example in
Section B.3 demonstrates explicitly how the state transition probabilities in uncontrolled formulations can
affect the lower bounds.
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Figure B.3: Lower bounds associated with different state transition matrices for the uncontrolled formulation.

Information Relaxation Bounds Via Truncated Horizons
We can also illustrate the results of Section 4.4 using the machine repair example. In Figure B.4, we show
perfect information lower bounds based on a truncated horizon model with T = 3 and T = 25 periods.
Relative to the discount factor of δ = 0.75, the horizon T = 3 is short and the horizon T = 25 is long. We take
v = 0 in these examples. We see that that the lower bound from the T = 3 truncated model is not as good
as the lower bound from the controlled formulation, which uses a geometric absorption time with parameter
0.25. When we increase the horizon to T = 25, however, the truncated model fares better than the controlled
formulation bounds in all states.

As k increases, v = v(k) converges to the optimal value function, v⋆. If v = v⋆, Theorem 4.1(ii) implies
that, no matter what distribution of absorption we use, we would obtain tight lower bounds (e.g., even
truncated models with very short horizons). When v is a subsolution, the corresponding lower bound can
never fall below v, and in general whether or not longer horizons will be worthwhile will depend on the
quality of the approximation v.

B.2. Inner Problems May Require Larger State Spaces

Here we provide an illustrative example that shows that for some information relaxations, it may be necessary
to expand the state space to solve the inner problems. This example introduces a new imperfect information
relaxation, and the calculations with this relaxation can be instructive in terms of the mechanics of the inner
problems with imperfect information. For simplicity, we present the example in a finite horizon setting with
zero penalty. The example is the following: you can throw a fair n-sided die up to a maximum of T times.
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Figure B.4: Perfect information bounds for machine repair: controlled formulation vs. truncated horizon formulation.

After each throw, you must choose to stop or continue. If you choose to stop, then the game terminates
and you obtain a prize equal in dollars to the value you just threw. For example, if you throw a 4 and then
choose to stop, then you obtain 4 dollars and the game is over; otherwise, you continue and can throw again
(if you have not already thrown T times). We want to compute the optimal expected value of this game.

We denote by xt the value of the tth throw, which represents both the uncertainty in the problem as well
as the state variable. This problem is a simple dynamic programming problem with an optimal policy that
has a threshold structure. When n = 6 and T = 3, for example, it is easy to show the optimal t = 0 value
(i.e., the value before the first throw) is v⋆0 = 4.667.

Suppose now that we wish to calculate an information relaxation (upper) bound for this problem using
the information relaxation G, where Gt ∶= σ (Ft, xt+1) for t < T and GT ∶= FT . That is, the relaxed filtration
allows us to see the outcome of the die one period ahead at all times t < T . In solving the inner problem
recursion under this G, we need to account for both the value xt (known under F) as well as the value xt+1.
This can be handled by augmenting the state space to be all values of yt ∶= (xt, xt+1) for each period t < T .
We then can solve a stochastic DP on this increased state space that takes an expectation over xt+2 at all
periods t ≤ T − 2. Note that because only x1 is revealed under G at t = 0, we would average over x1 in
calculating the optimal t = 0 value under G; the remaining uncertainty over (x2, . . . , xT ) would be “averaged
out” in the expectations conditional on G0 and there is no Monte Carlo simulation that is needed. (We
omit the detailed calculations but leave it as an instructive exercise to verify that under this information
relaxation with n = 6 and T = 3, the optimal value at t = 0 is 4.870. It is also instructive to confirm that
strong duality holds – as it must– when we use a penalty constructed from the optimal value function.)

We emphasize that this example is illustrative: the primary motivation for information relaxations is to
lead to problems that are much easier to solve than the primal DP. Thus although information relaxations
can in theory lead to problems that are harder than the primal DP itself, it would be unusual to consider
such relaxations in applications.

B.3. Bounds from Uncontrolled Formulations Can Outperform Bounds from Controlled Formulations

Given the results of the machine repair example, it is natural to conjecture that, for the same distribution
of absorption time, information relaxation, and penalty, the lower bounds from controlled formulations are
always at least as good as those from uncontrolled formulations. We now provide a simple counterexample
to this conjecture. We consider a simple problem for which there are two periods, t = 0 and t = 1, two
possible states, “good” (g) and “bad” (b), and two possible actions, 1 and 2. Costs are given by c(g,1) = 0,
c(g,2) = 0.2, c(b,1) = 1 and c(b,2) = 1. The initial state is g and if the time t = 0 action is 1, then the time
t = 1 state will be g with probability p1 = 0.6 and b otherwise; if the time t = 0 action is 2, then the time
t = 1 state will be g with probability p2 = 0.7 and b otherwise. In time t = 1, we can select either action 1 or
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2 one final time and the problem then ends. The objective is to minimize the expected costs. The optimal
cost c∗ is

c∗ = min
i=1,2

{c(g, i) + pi min
j=1,2

c(g, j) + (1 − pi) min
j=1,2

c(b, j)}

= min{0 + .6 ⋅ 0 + .4 ⋅ 1,0.2 + 0.7 ⋅ 0 + 0.3 ⋅ 1}
= 0.4,

an an optimal policy is to always select action 1. (It is irrelevant which action is taken at time t = 1 if the
state is b). In each of the lower bound calculations below we use a perfect information relaxation and the
zero penalty.

Bound from the Controlled Formulation
Using the controlled formulation with a perfect information relaxation, we learn the outcome of the state
transition from t = 0 to t = 1 under each action. With probability p1 = 0.6 we discover that both actions
lead to g. With probability p2 − p1 = 0.1 we learn that action 1 leads to b but action 2 leads to g. With
probability 1 − p2 = 0.3 we learn that both actions lead to b. In each of these three scenarios, we can choose
the best action. The resulting lower bound is thus

ccontrolled = p1 min
i=1,2

{2c(g, i)} + (p2 − p1)min{c(g,1) + c(b,1), c(g,2) + min
j=1,2

c(g, j)}

+(1 − p2)min{c(g,1) + min
j=1,2

c(b, j), c(g,2) + min
j=1,2

c(b, j)}

= 0.6(2 ⋅ 0) + 0.1(0.2) + 0.3(1)
= 0.32.

Bound from an Uncontrolled Formulation
With an uncontrolled formulation, we draw from an action-independent distribution that transitions to the
time t = 1 state g with probability q, and b with probability 1 − q where 0 < q < 1. We can therefore express
the lower bound in this case as

cuncontrolled = q min
i=1,2

{c(g, i) + pi
q

min
j=1,2

c(g, j)} + (1 − q) min
i=1,2

{c(g, i) + (1 − pi)
(1 − q) min

j=1,2
c(b, j)}

= 0 +min{0.2(1 − q) + 0.3,0.4}

=
⎧⎪⎪⎨⎪⎪⎩

0.4 if q ≤ 0.5

0.2(1 − q) + 0.3 otherwise.

We thus have cuncontrolled = c∗ for all q ≤ 0.5 and cuncontrolled > ccontrolled for all q < 0.9. It is interesting
to note that even with zero penalty for information, the uncontrolled formulation is capable (with a well-
chosen q, i.e. q ≤ 0.5) of providing a tight lower bound. This observation helps highlight the fact that the
performance of the lower bounds from uncontrolled (or more generally partially controlled) formulations may
depend on both the penalty as well as the way the problem is formulated.
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