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Abstract. We consider the information relaxation approach for calculating performance
bounds for stochastic dynamic programs (DPs), following Brown et al. [Brown DB, Smith
JE, Sun P (2010) Information relaxations and duality in stochastic dynamic programs.
Oper. Res. 58(4, Part 1):785–801]. This approach generates performance bounds by solving
problems with relaxed nonanticipativity constraints and a penalty that punishes viola-
tions of these constraints. In this paper, we study infinite horizon DPs with discounted
costs and consider applying information relaxations to reformulations of the DP. These
reformulations use different state transition functions and correct for the change in state
transition probabilities by multiplying by likelihood ratio factors. These reformulations
can greatly simplify solutions of the information relaxations, both in leading to finite hori-
zon subproblems and by reducing the number of states that need to be considered in these
subproblems. We show that any reformulation leads to a lower bound on the optimal cost
of the DP when used with an information relaxation and a penalty built from a broad
class of approximate value functions. We refer to this class of approximate value func-
tions as subsolutions, and this includes approximate value functions based on Lagrangian
relaxations as well as those based on approximate linear programs. We show that the
information relaxation approach, in theory, recovers a tight lower bound using any refor-
mulation and is guaranteed to improve on the lower bounds from subsolutions. Finally,
we apply information relaxations to an inventory control application with an autoregres-
sive demand process, as well as dynamic service allocation in a multiclass queue. In our
examples, we find that the information relaxation lower bounds are easy to calculate and
are very close to the expected cost using simple heuristic policies, thereby showing that
these heuristic policies are nearly optimal.

Keywords: infinite horizon dynamic programs • information relaxations • Lagrangian relaxations • inventory control • multiclass queues

1. Introduction
Dynamic programming provides a powerful frame-
work for analyzing sequential decision making in sto-
chastic systems. The resulting problems are often very
difficult to solve, however, especially for systems that
can evolve over many states. When dynamic programs
(DPs) are too difficult to solve, wemust resort to heuris-
tic policies that are generally suboptimal. In evaluat-
ing these heuristic policies, bounds on suboptimality
can be very helpful: given a good bound on the per-
formance of the (unknown) optimal policy, we may
find that a heuristic policy is nearly optimal and thus
conclude that efforts to improve the heuristic are not
worthwhile.
In this paper, we consider the information relax-

ation approach for calculating performance bounds for
stochastic dynamic programs (DPs), following Brown
et al. (2010, hereafter referred to as BSS). In BSS, bounds
are generated by (i) relaxing the nonanticipativity con-
straints that require the decision maker to make deci-
sions based only on the information available at the

time the decision is made and (ii) incorporating a
penalty that punishes violations of these nonanticipa-
tivity constraints. For a general class of finite horizon
DPs, BSS show how to construct penalties that are dual
feasible and lead to lower bounds using this approach,
and they refer to this as weak duality. BSS also show
strong duality in that there exists an “ideal” penalty
for which the resulting lower bound equals the opti-
mal cost. As an illustrative example, later in this paper
we study a multiclass queueing application in which a
server allocates service to different customer classes in
a queue. A perfect information relaxation in this prob-
lem involves making service decisions with advance
knowledge of all future arrivals and service times; by
repeatedly sampling arrival and service scenarios and
solving a perfect information “inner problem” in each
scenario, we can obtain a lower bound on the cost asso-
ciated with an optimal service policy.

Our first goal in this paper is to study the use of infor-
mation relaxations for a class of infinite horizon DPs
with discounted costs. We show that weak and strong
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duality also go through in this setting. This is concep-
tually straightforward: for example, a perfect informa-
tion relaxation corresponds to revealing an infinitely
long sample path of all future uncertainties. In prac-
tice, however, we need to account for the fact that we
cannot simulate infinitely long sequences. One resolu-
tion to this is to consider applying information relax-
ations to a standard, equivalent formulation (see, e.g.,
Puterman 1994, Chapter 5) in which there is no dis-
counting, but rather an absorbing, costless state that is
reached with probability 1− δ in each period (δ is the
discount factor). With perfect information, the result-
ing inner problems are finite horizon problems.
We illustrate the approach on an infinite horizon in-

ventory control problem where the demand distribu-
tion in each period depends on past demands over sev-
eral periods (e.g., when demands follow autoregressive
processes). The resulting DPmay havemany states as a
result of the need to include past demand realizations
over several periods as part of the state. In a perfect
information relaxation, all demands are revealed (up
to the absorbing time), and the problem is much easier
to solve, as only the inventory level needs to be tracked
as an explicit state in every period. In our examples, we
evaluate the performance of a myopic policy that only
considers costs one period ahead. With a perfect infor-
mation relaxation and a penalty based on the myopic
approximate value function, we find in our examples
that the myopic policy is nearly optimal.

The inventory control application represents an ex-
ample where direct application of information relax-
ations can work well, as much of the complexity in
the problem results from a high-dimensional stochas-
tic process (demands) that does not depend on actions.
When demands are revealed, this greatly reduces
the number of states. In other problems, however, a
direct application of information relaxations can be
challenging—e.g., when a high-dimensional compo-
nent of the state space is endogenously affected by
actions. This is the case in the multiclass queueing
application we later study. We address this challenge
byworkingwith reformulations of the primal DP. Specif-
ically, we allow for general reformulations of the state
transition function with changes in state transition
probabilities corrected through multiplication by like-
lihood ratio terms. This idea is motivated by the work
of Rogers (2007), who studies reformulations in which
state transitions do not depend on actions. We general-
ize this idea by allowing, for instance, reformulations
in which states have a partial dependence on actions.
These reformulations can greatly simplify solving

the information relaxation inner problems while still
leading to high-quality lower bounds. Many reformu-
lations are possible, and we show that even reformula-
tions that are not equivalent to the original DP (in that
the expected costs for some policies may be different

under the reformulation) lead to lower bounds on
the optimal cost of the original DP. Specifically, weak
duality holds for any reformulation of the state tran-
sition function, provided we generate penalties from
approximate value functions that are subsolutions to
the optimal value function (a subsolution is a func-
tion that satisfies the Bellman optimality equation with
an inequality in place of equality). It is well known
that subsolutions provide lower bounds on the opti-
mal value function in every state, and we show that
by using the information relaxation approach with a
penalty built from a subsolution, we improve the lower
bound from the subsolution. We also show that strong
duality continues to hold for arbitrary reformulations.

Finally, we apply the approach to the problem of
service allocation in a multiclass queue. Such models
are well studied and of significant practical interest.
The particular model we study is complicated because
delay costs are assumed to be convex: good service
policies need to judiciously balance serving customers
with shorter service times against serving those that
aremore congested in the system. Our examples are far
too large to solve exactly. We consider both uncontrolled
and partially controlled formulations of this problem; the
information relaxations of these formulations have far
fewer states to consider than the original DP. In our
examples, we obtain lower bounds that are very close
to the expected cost of the heuristic policies we study,
thereby showing that the heuristic policies are nearly
optimal.

1.1. Literature Review and Outline
BSS follow Haugh and Kogan (2004) and Rogers
(2002), who independently developed methods for
calculating performance bounds for the valuation of
American options. BSS extends these ideas to gen-
eral, finite horizon DPs with general (i.e., imperfect)
information relaxations. Rogers (2007) develops perfect
information relaxations for Markov decision processes
and uses a change of measure approach similar to
the “uncontrolled formulation” case in our approach.
Desai et al. (2011) show how to improve on bounds
from approximate linear programming with perfect
information relaxations, and Brown and Smith (2011,
2014) show that using information relaxations with
“gradient penalties” improves bounds from relaxedDP
models when the DP has a convex structure. In inde-
pendent work, Ye et al. (2014) study weakly coupled
DPs and show that improved bounds can be obtained
by combining perfect information relaxations with
Lagrangian relaxations; they do not consider reformu-
lations. We also use Lagrangian relaxations in our mul-
ticlass queueing examples and find the reformulations
to be quite useful in that application.

Information relaxationshavebeenused in avariety of
applications, including valuation of American options
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in Rogers (2002), Haugh and Kogan (2004), Andersen
and Broadie (2004), BSS, Chen and Glasserman (2007),
and Desai et al. (2012). Information relaxations are
applied to inventorymanagement problems in BSS. Lai
et al. (2010) use information relaxations in studying val-
uations for natural gas storage, as do Devalkar et al.
(2011) in an integrated model of procurement, process-
ing, and commodity trading. Information relaxations
are used in Brown and Smith (2011) for dynamic port-
folio optimization problems with transaction costs, as
well as in Haugh and Wang (2014a) for dynamic port-
folio execution problems and Haugh et al. (2016) for
dynamic portfolio optimization with taxation. Brown
and Smith (2014) apply information relaxations to net-
work revenue management problems and inventory
management with lost sales and lead times. Kim and
Lim(2016)developaweakduality result for robustmul-
tiarmed bandits. Kogan and Mitra (2013) use informa-
tion relaxations to evaluate the accuracy of numerical
solutions to general equilibriumproblems in an infinite
horizon setting; in their examples they use finite hori-
zon approximations. Haugh andWang (2014b) develop
information relaxations for dynamic zero-sum games.
A recurring theme in these papers is that relatively
easy-to-compute policies are often nearly optimal; the
bounds from information relaxations are essential in
showing that.
In Section 2, we formulate the general class of pri-

mal DPs we study and develop the basic duality re-
sults, analogous to the results in BSS. We illustrate
the method on the inventory control application in
Section 3. In Section 4, we describe the reformulation
framework, then describe the duality results applied
to the reformulations. Section 5 presents the multiclass
queueing application. Section 6 discusses directions for
future research. Most proofs and some detailed deriva-
tions are presented in Appendix A.

2. Problem Formulation and
Basic Duality Results

In this section, we first describe the class of infinite
horizon stochastic dynamic programs that we will
study, and then we describe the basic theory of infor-
mation relaxations and duality applied to these prob-
lems. Section 2.2 essentially reviews the setup in BSS
and provides infinite horizon analogues of the duality
results in BSS.

2.1. The Primal Dynamic Program
We will work with a Markov decision process (MDP)
formulation. Time is discrete and indexed by t, starting
with t � 0. We let xt and at denote the state and action,
respectively, at time t, and the initial state x0 is known.
We denote the state space by � and assume this is a
countable set. We denote the action space by� and the
feasible action set in state xt by A(xt), and we assume

A(xt) is finite for every xt ∈ �. We let p(xt+1 | xt , at)
denote the probability of a state transition to xt+1 ∈ �
when the state is xt ∈ � and a ∈ A(xt) is the action.
Costs depend on states and actions and are denoted by
c(xt , at), which we assume to be uniformly bounded.
The objective is to minimize the total expected dis-
counted costs over an infinite horizon, where δ ∈ (0, 1)
is a known discount factor. We refer to this problem as
the primal DP.
It will be useful for us to equivalently write the prob-

lem in terms of an exogenous stochastic process and a
state transition function. We let (Ω,F,�) denote a prob-
ability space, representing the full product space for a
sequence {wt}t>1 of independent and identically dis-
tributed (IID) random variables, each supported on a
set � ⊆ �. We refer to realizations of {wt}t>1 as sample
paths. We assume that the values w1 , . . . ,wt are known
at time t, and we let � � {Ft}t>0, where Ft ⊆ Ft+1 ⊆ F
for all t > 0, denote the corresponding natural filtra-
tion describing this information at time t. We take
F0 � {�,Ω}; i.e., initially “nothing is known” about the
sequence of wt ’s. States evolve as xt+1 � f (xt , at ,wt+1)
for a given state transition function f : �×�×�→�,
where, for all t, xt+1 ∈ �, xt ∈ �, and at ∈ A(xt), and
�({wt+1 ∈�: f (xt , at ,wt+1) � xt+1} | Ft) � p(xt+1 | xt , at)
holds.1 Throughout the paper, Ɛ denotes expectation
with respect to �. Thus, for any v: � 7→ �, and any
xt ∈ � and a ∈ A(xt), we have Ɛ[v( f (xt , at ,wt+1))] �∑

xt+1∈� p(xt+1 | xt , at)v(xt+1).
A policy α :� {αt}t>0 is a sequence of functions, each

mapping from {wt}t>1 to feasible actions; we will focus
on nonrandomized policies. We let A denote the set
of all policies. A policy is primal feasible if each αt
is Ft-measurable (i.e., α is �-adapted), and we let A�

denote this set of policies. We will sometimes restrict
(without loss of optimality in the primal DP) to station-
ary policies, where αt depends only on xt , and αt is con-
stant over t. We let AS denote the set of stationary poli-
cies. We denote the expected cost of a feasible policy
α ∈A� starting in state x0 by vα(x0) :�Ɛ[∑∞t�0 δ

t c(xt , αt)].
Finally, v?(x) denotes the optimal expected cost from
state x among all �-adapted policies.

The following results are standard (e.g., Puterman
1994, Theorems 6.1.1 and 6.2.10):

a. For any α ∈AS, the associated value function vα(x)
satisfies, for every x ∈�,

vα(x)� c(x , α(x))+ δƐ[vα( f (x , α(x),w))].

b. There exists an optimal stationary policy. More-
over, the optimal value function v? is bounded and
satisfies, for every x ∈�,

v?(x)� min
a∈A(x)
{c(x , a)+ δƐ[v?( f (x , a ,w))]}. (1)

We assume a countable state space and finite action
sets primarily to simplify exposition and to avoid tech-
nical issues related to measurability that are not our
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focus. All of our examples satisfy these assumptions.
The basic theory of information relaxations does not
require such assumptions. In moving to more general
state spaces, care needs to be taken to ensure the exis-
tence of optimal policies aswell as appropriatemeasur-
ability properties of value functions; see, e.g., Bertsekas
and Shreve (1996) or, for a more recent overview of key
results, Feinberg (2011).

2.2. Information Relaxations and Duality
In the primal DP, feasible policies must be �-adapted,
or nonanticipative in that they cannot depend on the
realizations of future uncertainties. We consider relax-
ations of the primal DP that relax the requirement that
policies be nonanticipative and impose penalties that
punish violations of these constraints. We define relax-
ations of the nonanticipativity constraints by consider-
ing alternative information structures.
Formally, we say that another filtration � � {Gt}t>0

is a relaxation of the natural filtration � � {Ft}t>0 if, for
each t, Ft ⊆ Gt . In other words, � being a relaxation
of � means that the decision maker knows at least as
much (and possibly more) about uncertainties in every
period under � than under �. For example, we will
often focus on the perfect information relaxation, which
is given by taking Gt �F for all t. We let A� denote the
set of policies that are adapted to �. For any relaxation
� of �, we have A� ⊆A�; thus, as we relax the filtration,
we expand the set of feasible policies.
Penalties, like costs, depend on states and actions

and are incurred in each period. BSS consider a general
set of dual feasible penalties, which are functions added
to the cost that do not have a positive expected value
for any primal feasible policy α ∈A�. BSS shows how to
construct dual feasible penalties through differences in
conditional expectations of any “generating function.”
We will essentially follow this construction.
Specifically, we generate penalties by adding the

terms πt :� δt+1(Ɛ[v( f (xt , at ,w))] − v(xt+1)) to the costs
in each period, where v: �→� is a bounded function.
For any α ∈A�, the elements of the sequence {πt}t>0 are
martingale differences under �, and therefore for any
finite T, the sum ΠT :�∑T

t�0 πt is a martingale under �.
Since v is bounded and δ ∈ (0, 1), ΠT is bounded, and
thus by the bounded convergence theorem, we con-
clude, for any α ∈A�, that

Ɛ

[ ∞∑
t�0
δt+1(Ɛ[v( f (xt , αt ,w))] − v(xt+1))

]
� 0. (2)

These terms may, however, have positive expected
value for policies that violate the nonanticipativity con-
straints, and thus they can serve as penalties in the
information relaxations.
We can obtain a lower bound on the expected dis-

counted cost associated with any primal feasible policy

by relaxing the nonanticipativity constraints on poli-
cies and imposing a penalty constructed in this way.
This is stated in the following “weak duality” result,
which is analogous to Lemma 2.1 in BSS (2010). Inwhat
follows, we letV denote the set of bounded, real-valued
functions on �.

Lemma 2.1 (Weak Duality). For any α ∈A�, any relaxation
� of �, and any v ∈V,

vα(x0) > inf
αG∈A�

Ɛ

[ ∞∑
t�0
δt(c(xt , αG, t)+ δƐ[v( f (xt , αG, t ,w))]

− δv(xt+1))
]
.

Proof. We have

vα(x0)

� Ɛ

[ ∞∑
t�0
δt c(xt , αt)

]
� Ɛ

[ ∞∑
t�0
δt(c(xt , αt)+ δƐ[v( f (xt , αt ,w))] − δv(xt+1))

]
> inf

αG∈A�

Ɛ

[ ∞∑
t�0
δt(c(xt , αG, t)+ δƐ[v( f (xt , αG, t ,w))]

− δv(xt+1))
]
.

The first equality is the definition of vα. The second
equality follows from (2). The inequality follows since
α ∈A� and A� ⊆ A�. �

Thus, any information relaxation with any penalty
constructed this way provides a lower bound on the
expected discounted cost generated by any primal fea-
sible policy and, in particular, the optimal policy.

With � as the perfect information relaxation, for
example, the set of relaxed policies A� is the set of all
policies A, where feasible actions are selected with full
knowledge of the (infinite) sample path w :� {wt}t>1. In
this case, the weak duality lemma implies that for any
v ∈V,

v?(x0) > inf
αG∈A

Ɛ

[ ∞∑
t�0
δt(c(xt , αG, t)+ δƐ[v( f (xt , αG, t ,w))]

− δv(xt+1))
]

� Ɛ

[
inf

a∈A(w)

∞∑
t�0
δt(c(xt , at)+ δƐ[v( f (xt , at ,w))]

− δv(xt+1))
]
, (3)

where a :� {at}t>0 and A(w) denotes the set of feasible
actions given the sample path w. If we take v � 0, this
lower bound is the expected value of the optimal policy
with perfect information.
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Note that the lower bound (3) is in a form that
appears convenient forMonte Carlo simulation: we can
estimate the expected value on the right side of (3) by
randomly generating sample pathsw and for each such
w solving the deterministic inner problem of choosing
a feasible action sequence a ∈ A(w) to minimize the
penalized costs:

inf
a∈A(w)

∞∑
t�0
δt(c(xt , at)+ δƐ[v( f (xt , at ,w))]− δv(xt+1)). (4)

Here, unlike the primal DP, we need only consider
actions for a particular sample path w, and we need
not consider the nonanticipativity constraints that link
actions across sample paths in the primal DP. The
inner problem (4) is an infinite horizon dynamic pro-
gram with deterministic state transitions given by
xt+1 � f (xt , at ,wt+1) for every feasible action at ∈ A(xt).
A lower bound on the optimal value of the primal DP
would then be obtained by averaging the optimal solu-
tion to (4) over simulated sample paths w.
The intuition for the “generating function” v stems

from approximating the optimal value function. If v is
a good approximation to v?, then the penalty terms in
(4) should nearly compensate for the additional infor-
mation in� by deducting the continuation value in the
next-period state and adding back in the expected con-
tinuation value under the natural filtration, �. When
v � v?, we obtain an “ideal penalty” that recovers a
tight bound. This following result, analogous to Theo-
rem 2.1 in BSS, formalizes this.

Proposition 2.1 (Strong Duality). For any relaxation �
of �,

sup
v∈V

inf
αG∈A�

Ɛ

[ ∞∑
t�0
δt(c(xt , αG, t)+ δƐ[v( f (xt , αG, t ,w))]

− δv(xt+1))
]
� v?(x0),

and v � v? attains the supremum.

Of course, we areworking under the assumption that
v? is difficult to calculate, so in such caseswewould not
be able to use this ideal penalty.Wemay, however, have
an approximation of v? given by an approximate value
function v. We could then use v to generate the penalty
and, by Lemma 2.1, we obtain a lower bound on v?(x0)
using any information relaxation. Proposition 2.1 states
that we can, in principle, get a tight lower bound with
this approach, and if v is a good approximation to v?,
intuitively, we would expect this lower bound to be
close to v?(x0).

2.3. Duality Results with
Absorption Time Formulation

The perfect information relaxation described above in-
volves simulating the infinitely long sequences {wt}t>1,

and in practice, we cannot do this. A simple way
around this issue would be to apply information relax-
ations to a finite horizon approximation of the primal
DP, where the horizon is chosen to be sufficiently long.
To ensure this approach provides a lower bound to
the infinite horizon problem, we would then need to
correct for any omitted tail costs (e.g., by adding δT

¯
c/(1− δ) to the total costs, where

¯
c is a lower bound on

c(x , a) over all feasible state-action pairs, and T is the
approximating horizon length). We will discuss finite
horizon approximations again in Section 4.4.

Another approach is to apply information relax-
ations to a well-known, equivalent formulation of
the primal DP in which there is no discounting but,
instead, � includes a costless, absorbing state xɑ that
is reached with probability 1− δ from every state and
for any feasible action. Otherwise, conditional on not
absorbing, the distribution of state transitions is as
before. In this formulation, we can equivalently express
the expected cost of any policy α ∈A� as

vα(x0)� Ɛ

[
τ∑

t�0
c(xt , αt)

]
, (5)

where τ :� inf{t: xt � xɑ} is the absorption time for
reaching xɑ and is geometric with parameter 1 − δ
and supported on �+. The expectations in (5) are over
the same probability space as before, but states evolve
according to a different state transition function, which
we denote by s, that includes a probability 1 − δ of
absorption for every feasible state-action pair but, con-
ditional on not absorbing, has the same state transi-
tion probabilities as under f . We refer to this problem
as the absorption time formulation, and the equivalence
to the discounted formulation above is standard (e.g.,
Puterman 1994, Proposition 5.3.1).

We now state the main duality results using the
absorption time formulation. These results are analo-
gous to the duality results for the discounted formu-
lation above and follow as a special case of a more
general result that we will later show (Theorem 4.1).
In everything that follows, we assume all v ∈ V satisfy
v(xɑ)� 0.
Proposition 2.2 (Duality Results, Absorption Time For-
mulation). For any relaxation� of �, the following hold:

(i) Weak duality: For any α ∈AS and any v ∈V,

vα(x0) > inf
αG∈A�

Ɛ

[
τ∑

t�0
c(xt , αG, t)+ Ɛ[v(s(xt , αG, t ,w))]

− v(xt+1)
]
. (6)

(ii) Strong duality:

sup
v∈V

inf
αG∈A�

Ɛ

[
τ∑

t�0
c(xt , αG, t)+Ɛ[v(s(xt , αG, t ,w))]− v(xt+1)

]
� v?(x0).
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In addition, with v � v?, we attain the supremum almost
surely.

Using the absorption time formulation with� as the
perfect information relaxation, the absorption time τ is
revealed along with the sample path w � (w1 , . . . ,wτ),
and the inner problem then is

min
a∈A(w)

τ∑
t�0
(c(xt , at)+ Ɛ[v(s(xt , at ,w))] − v(xt+1)). (7)

In (7), we need to solve a deterministic but finite hori-
zon dynamic program, with τ time periods and no dis-
counting. The weak duality result in Proposition 2.2(i)
then tells us that by simulating sample paths and aver-
aging the optimal costs in (7), we obtain a lower bound
on the optimal expected cost, v?(x0). In this case, the
inner problem (7) for a given sample path (w1 , . . . ,wτ)
can be solved by the recursion

v�
t (xt)� min

a∈A(xt )

{
c(xt , a)+ Ɛ[v(s(xt , a ,w))]

− v(s(xt , a ,wt+1))+ v�
t+1(s(xt , a ,wt+1))

}
(8)

for t � 0, . . . , τ−1, with the boundary condition v�
τ � 0,

which follows from the fact that xτ � xɑ, c(xɑ , a) � 0,
and v(xɑ) � 0. In expressing (7) as this recursion, we
are using the fact that xt+1 � s(xt , at ,wt+1); in particular,
note that v�

t depends on the sample path, and we have
suppressed this dependence to simplify notation. The
optimal value v�

0 (x0) equals the optimal value of the
inner problem (7). Thus, by simulating sample paths
(w1 , . . . ,wτ), solving (8), and averaging, we obtain a
lower bound on the optimal value: Ɛ[v�

0 (x0)] 6 v?(x0).
The recursion (8) also provides intuition for the

strong duality result (Proposition 2.2(ii)). When v � v?,
we can argue by induction that v�

t (xt) � v?(xt) in each
time period and for every possible state. To see this,
note that v�

τ � v?(xɑ) � 0. The induction hypothesis
is that v�

t+1(xt+1) � v?(xt+1) for all possible next-period
states at time t. Using this and v � v?, we see that the
final two terms in (8) cancel, and we have

v�
t (xt)� min

a∈A(xt )
{c(xt , a)+ Ɛ[v?(s(xt , a ,w))]}

� min
a∈A(xt )

{c(xt , a)+ δƐ[v?( f (xt , a ,w))]} � v?(xt),

where the second equality follows by the fact that
v?(xɑ) � 0 and the fact that s and f have the same
transition probabilities, conditional on absorption not
occurring; the third equality follows from (1). This veri-
fies the induction hypothesis. Note that in this case, we
get v�

0 (x0) � v?(x0) for every sample path (w1 , . . . ,wτ):
we recover a tight bound that holds almost surely and
could be estimated with zero variance.
To solve (8), the number of states that we need to

consider will depend on the problem structure and,

in particular, in the manner in which actions influ-
ence state transitions. In problems for which the primal
DP has many states because of exogenous uncertain-
ties that are not affected by actions, but a manageable
number of states to consider through actions, then (8)
will be easy to solve. This is the case in the inven-
tory control examples we discuss in Section 3: here,
the demand process is potentially high dimensional,
but in the perfect information relaxation, demands are
revealed, and we need only track inventory levels as a
state variable. In other problems, however, states may
be affected through actions in such away that recursion
(8), although deterministic, still requires us to consider
many possible states. This is the case in the multiclass
queueing application we discuss in Section 5. We will
discuss potential remedies for this issue in Section 4.

2.3.1. Suboptimality Gap Estimates. A useful feature
of the absorption time formulation is that we can si-
multaneously estimate the expected costs of primal fea-
sible policies and lower bounds from the information
relaxations via simulations using common samples. In
particular, when estimating the cost of a stationary pol-
icy α ∈ AS, we can include the penalty terms in each
period, as these have zero mean for any α ∈ A� (see
Proposition A.1). For a given sample path, evaluating
the cost of α with these terms included is equivalent
to (8) with actions fixed as those under α:

v̂t(xt) � c(xt , α(xt))+ Ɛ[v(s(xt , α(xt),w))]
− v(s(xt , α(xt),wt+1))
+ v̂t+1(s(xt , α(xt),wt+1)) (9)

for t�0, . . . ,τ−1, where v̂τ�0. Since Ɛ[v(s(xt ,α(xt),w))]
−v(s(xt ,α(xt),wt+1)) has zero mean, Ɛ[v̂0(x0)] � vα(x0);
these terms from the penalty do, however, serve as
control variates that may reduce the variance asso-
ciated with estimating the expected cost of the pol-
icy (see, for example, Henderson and Glynn 2002 for
more details on this particular form of control variates).
Moreover, since the actions selected by α are feasible in
(8), v̂0(x0) − v�

0 (x0) > 0 holds in every sample path.
Thus, we can view the random variable v̂0(x0) −

v�
0 (x0) as an estimate of the suboptimality “gap” of

the policy α: this gap value is almost surely nonnega-
tive, and, by weak duality, in expectation provides an
upper bound on the suboptimality of α (i.e., an upper
bound on vα(x0) − v?(x0)). When v is a good approxi-
mation of v? and α is a good approximation of a pol-
icy that is optimal to the primal DP, the values v̂(x0)
and v�

0 (x0)will be highly correlated, and relatively few
samples will lead to precise estimates of the subopti-
mality gap of α. When v � v? and α is an optimal policy,
by Proposition 2.2(ii), v̂0(x0) − v�

0 (x0) � 0 holds almost
surely.
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3. Application to Inventory Control
We illustrate the information relaxation approach on
an infinite horizon inventory control problem in which
the distribution of demands may depend on past real-
izations of demand. This kind of dependence can arise
in a variety of inventory management problems, such
as Bayesian demand models or autoregressive mov-
ing average (ARMA) demand processes. The resulting
DPs may be quite complex and difficult to solve, and
many researchers have studied the performance of sim-
ple heuristic policies for a variety of demand models.
A classic result due to Veinott (1965) (see Theorem 6.1
of that paper) provides sufficient conditions formyopic
policies to be optimal in a general class of inventory
control problems with demand distributions that may
depend on the entire past history of demand realiza-
tions. The result in Veinott (1965) states that if the
inventory position that is myopically optimal is reach-
able in every state, then the myopic policy is optimal
for the full DP. This result has sparked much inter-
est in the performance of myopic policies in related
models. For example, Johnson and Thompson (1975)
show that myopic policies are optimal for an inventory
model with ARMA demand and no backlogging; their
result also requires a specific truncation of the demand
shocks. Graves (1999) proposes the use of myopic poli-
cies in a problemwithARMAdemands and lead times,
although he does not claim a myopic policy is opti-
mal for that problem. Lu et al. (2006) study a finite
horizon inventory model with forecasts of all future
demands and show that a condition analogous to that
in Veinott (1965) is, in fact, necessary for myopic poli-
cies to be optimal. Here, we study an inventory model
in which the demand distribution may depend on past
realizations of demand and required conditions for the
myopic policy to be optimal need not hold. We will
use information relaxations to assess the suboptimal-
ity of myopic policies in some inventory control exam-
ples that would be difficult to solve. As mentioned
in Section 1, other researchers have used information
relaxations in inventory control, albeit for finite hori-
zon models with different demand processes.

3.1. The Model
We consider an infinite horizon, discrete-time, single-
item inventory control problem with discounted costs,
zero lead times, and backorders. At each point in time,
yt ∈ � denotes the inventory level at the start of the
period. We let Y � {−

¯
y , . . . , 0, . . . , ȳ}, where

¯
y ∈ �+,

ȳ ∈ �+ denote the set of possible inventory levels,
and the limits represent capacity limitations. In each
period, the decision maker may order at units, where
the constraint set is A(yt) � {at ∈ �+: yt + at 6 ȳ}. The
costs in each period are given by c(yt , at)� co at + ch y+

t +

cb y−t , where y+ � max{0, y} and y− � max{0,−y};
co > 0, ch > 0, and cb > 0 represent the marginal cost

associatedwith orders, held inventory, and backorders,
respectively. Immediately after an order is placed, the
order arrives, then a random demand dt+1 ∈ �+ is real-
ized, and the next-period inventory level yt+1 evolves as
yt+1 � g(yt + at − dt+1), where g(y)�max(y ,−

¯
y). In this

setup, we charge holding and backorder costs at the
start of each period based on the incoming inventory
level; this is equivalent to a model that charges holding
and backorder costs at the end of each period but with
holding and backorder costs scaled as δch and δcb .
We assume the demand distribution in each period

depends on past realizations of demands. Specifi-
cally, we assume the distribution of the demand dt+1
depends on the previous k > 1 demand realizations
dt , dt−1 , . . . , dt−k+1. In our specific examples below, we
assume the demand distribution has a known shape
(e.g., Poisson, geometric), and the expected demand in
each period follows the stochastic process

Ɛ[dt+1 | dt , . . . , dt−k+1]� β0 + β1dt + · · ·+ βk dt−k+1 (10)

for some known coefficients β0 , . . . , βk . The framework
we discuss here allows for more general dependence
structures between the current demand distribution
and past demands.2
The DP states in this problem are given by xt �

(yt ,Dt), where Dt :� (dt , . . . , dt−k+1), and the state tran-
sition function f is given by f (xt , at , dt+1) � (g(yt +

at − dt+1),D+

t (dt+1 ,Dt)), where the past demand states
evolve asD+

t (dt+1 ,Dt)� (dt+1 , dt , . . . , dt−k+2). We assume
y0 and D0 are known; the resulting DP is

v?(yt ,Dt)� min
at∈A(yt )

{
c(yt , at)+ δƐ

[
v?(g(yt + at − dt+1),

D+

t (dt+1 ,Dt)) |Dt

]}
, (11)

where Ɛ[· | Dt] denotes the expectation over next-
period demands given the past demand set Dt . Since
solving (11) may be difficult in general—the state space
is k + 1 dimensional—we will consider a suboptimal,
heuristic policy. Specifically, we consider the myopic
policy, which chooses order quantities am

t in each state
(yt ,Dt) according to

am
t � arg min

at∈A(yt )
{co at + δƐ[vm(g(yt + at − d)) |Dt]}, (12)

where vm(yt) :�−co yt + ch y+

t + cb y−t . With this approxi-
mation, the second and third terms are the next-period
holding and backorder costs, and the first term reflects
the fact that in the next period any held inventory sub-
stitutes for orders. Intuitively, the myopic policy con-
siders the impact that the current demand state Dt has
on the next-period costs but ignores the downstream
impact that Dt has on costs in later periods, as well
as the future evolution of inventory positions. Solving
(12) in a given state is easy and reduces to a critical frac-
tile calculation based on the distribution of dt+1 given
Dt , and ordering up to this level.
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Note that in this model we use the standard assump-
tion that negative order quantities are not permitted.
Thus, noting the “reachability” result from Veinott
(1965), we would expect the myopic policy to perform
well provided demand does not frequently drop sub-
stantially from one period to the next, which would
lead to incoming inventory positions that are over-
stocked relative to the myopically optimal position. In
our examples, these types of drops in demand are pos-
sible, and the myopic policy need not be optimal.

3.2. Perfect Information Relaxation and Penalties
To obtain lower bounds on the optimal cost, wewill use
the perfect information relaxation with the absorption
time formulation. In this relaxation, each sample path
corresponds to a realization of the absorption time τ,
drawn from a geometric distribution with parameter
1−δ, along with a sample path of demands (d1 , . . . , dτ),
generated by the stochastic process described above.
For a given sample path, since demands are fixed and
known, we need only keep track of the inventory level
in solving the deterministic inner problems.
We consider two penalties. First, the case with zero

penalty; i.e., v � 0. In this case, (8) takes the form

v�
t (yt)� min

at∈A(yt )
{c(yt , at)+ v�

t+1(g(yt + at − dt+1))} (13)

for t � 0, . . . , τ − 1, with v�
τ � 0. We would expect that

perfect information on demands would be quite valu-
able in this problem, so the lower bound with zero
penalty primarily serves as a benchmark.
We also consider penalties generated by the myopic

value function; i.e., we use v � vm. With this penalty,
the inner problem can be solved through the recursion

v̄�
t (yt)� min

at∈A(yt )

{
c(yt , at)+ δƐ[vm(g(yt + at − d)) |Dt]

− vm(g(yt + at − dt+1))
+ v̄�

t+1(g(yt + at − dt+1))
}

(14)

for t � 0, . . . , τ − 1, now with v̄�
τ � vm as the boundary

condition.3 Note that all demands d1 , . . . , dτ are known
from t � 0 onward in (14). Thus, although expectations
conditional on Dt are evaluated in each time period
in (14), there is no need to carry Dt as an explicit state
variable. Averaging over demand sequences, the value
Ɛ[v̄�

0 (y0)] provides a lower bound on v?(y0 ,D0).
In comparing (13) to (14), the role of this penalty

becomes apparent: with demands fully known and
zero penalty, the optimal orders in (13) will tend to
match the next-period demands dt+1 so as to keep the
next-period holding and backorder costs small. In (14),
however, matching demands may be far from optimal.
For example, if dt+1 is large (relative to its expecta-
tion conditional on Dt) in a given period, the penalty
δƐ[vm(g(yt + at − d)) |Dt] − vm(g(yt + at − dt+1)) will be

minimized at some value less than dt+1, and vice versa
if dt+1 is small. Overall, the penalty leads to less extreme
order quantities in (14) compared with the order quan-
tities with zero penalty in (13).

With or without the penalty, the perfect informa-
tion relaxation in this problem is much easier than the
primal DP because most of the complexity in the pri-
mal DP stems from the high-dimensional state space
induced by the exogenous demand process. When
demands are known, the state space collapses to the
one-dimensional space of inventory levels.

3.3. Examples
We consider two examples, each with three discount
factors of δ � 0.9, δ � 0.95, and δ � 0.99, and cost
parameters co � 1, ch � 0.2, and cb � 1. One exam-
ple has Poisson demands and the other has geometric
demands, both with means given by (10). The geomet-
ric distribution has much heavier tails than the Pois-
son distribution and leads to substantially more varia-
tion in demands. We take k � 4 in these examples, so
the previous four realizations of demands determines
the mean demand in every period. The specific num-
bers we use are Ɛ[dt+1 | Dt] � 2 + 0.36dt + 0.27dt−1 +

0.18dt−2+0.09dt−3; these numbers are chosen so that the
sum of the coefficients multiplying previous demands
equals 0.9, which implies the long-run mean of the
expected demand process is 2/(1−0.9)� 20. The initial
state in all examples is y0 � 0, and D0 � (20, 20, 20, 20).
We take

¯
y � ȳ � 250 for 501 total inventory levels pos-

sible; the limits were rarely hit by the myopic policy
in our examples. A full solution of the DP in these
examples would be challenging to compute: even if
we were to only consider demands up to 100 in each
period, which would be somewhat crude in the geo-
metric examples, a full solution of the DP would need
to consider ∼108 demand states alone.

For both distributions and for each of the three dis-
count factors, we ran a simulation of 1,000 samples,
where each sample consists of a draw of the absorp-
tion time τ, geometric with parameter 1 − δ as well
as τ demand samples drawn from the correspond-
ing demand process. For each sample, we evaluated
(i) the cost associated with the myopic policy; (ii) the
perfect information relaxation (zero penalty) cost, by
solving (13); and (iii) the perfect information relaxation
(myopic penalty) cost, by solving (14). We obtain an
upper bound on v?(y0 ,D0)with the myopic policy and
lower bounds on v?(y0 ,D0)with the information relax-
ations. The estimates for themyopic policy cost include
the myopic penalty: following the discussion in Sec-
tion 2.3.1, by taking the difference between the myopic
cost (including the penalty) and v̄�

0 , we get an estimate
of the suboptimality gap of the myopic policy that is
nonnegative in every sample path and, in expectation,
is an upper bound on the suboptimality of the myopic
policy.
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Table 1. Results for Inventory Examples

Poisson demands Geometric demands

δ Mean SE Gap % Time (s) Mean SE Gap % Time (s)

0.9
Myopic policy cost 218.28 2.10 20.06 269.20 11.57 12.23
Zero penalty gap 35.82 0.26 16.41 23.37 98.55 2.46 36.61 23.09
Myopic penalty gap 0.00 0.00 0.00 60.39 2.45 0.25 0.91 59.31

0.95
Myopic policy cost 428.80 4.28 37.85 538.19 19.78 23.23
Zero penalty gap 49.95 0.39 11.65 46.80 181.01 5.08 33.63 46.66
Myopic penalty gap 0.00 0.00 0.00 120.01 8.95 0.94 1.66 120.46

0.99
Myopic policy cost 2,150.90 31.19 186.67 2,524.40 76.96 115.75
Zero penalty gap 158.37 2.09 7.36 233.80 801.00 28.14 31.73 228.73
Myopic penalty gap 0.00 0.00 0.00 605.49 53.85 2.75 2.13 591.82

Notes. Zero (myopic) penalty gap is the difference between the myopic policy cost and the information relaxation with zero (myopic) penalty.
“Gap %” is percent relative to the myopic policy and SE denotes standard error of the mean.

The results are shown in Table 1. Regarding the gap
estimates just discussed, the values of the myopic pol-
icy cost and the information relaxations are highly cor-
related (they are affected by common demand sam-
ples), and thus these gap differences have very low
standard errors, especially with the myopic penalty. In
terms of bound quality, the perfect information relax-
ation with zero penalty provides loose bounds, rela-
tive to the relaxation with the myopic penalty (rela-
tive gaps of about 7%–16% for Poisson demands and
about 30%–35% for geometric demands): perfect infor-
mation on demands is quite valuable. With the myopic
penalty, however, we obtain gaps of 0.00% in all Pois-
son examples—Table 1 reports all values to two dec-
imal places—and gaps of 0.91%, 1.66%, and 2.13% in
the geometric examples. The information relaxation
boundswith themyopic penalty take somewhat longer

Figure 1. (Color online) Sample Values of Gaps for Inventory Control Examples with δ � 0.9

10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

350

400

Sample number

G
ap

Zero penalty

Myopic penalty

(a) Poisson demands

10 20 30 40 50 60 70 80 90 100

Sample number

0

50

100

150

200

250

300

350

400

G
ap

(b) Geometric demands

Note. “Gap” is the difference between the myopic cost and the optimal value of the information relaxation (i.e., v�
0 in (13) or v̄�

0 in (14)).

to calculate than those with zero penalty because of the
additional effort in calculating the conditional expec-
tation terms in (14). Nonetheless, these lower bounds
are still easy to calculate (about 1 minute, 2 minutes,
and 10 minutes total for each discount factor, respec-
tively), given the fact that we used far more samples
than necessary to get good estimates of the gaps, and
given the complexity of solving the full DP in these
examples. Thus, with relatively modest computational
effort, the information relaxation bounds show that on
these examples, the myopic policy is, for all practical
purposes, optimal with Poisson demands and quite
good with geometric demands.

Figure 1 shows the sample gap values for the myopic
policy on a subset of 100 samples for the δ � 0.9 case,
using both zero penalty and the myopic penalty. As
discussed, the gap estimates are nonnegative on every
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sample path, as they must be. The gap estimates with
geometric demands are more variable than those with
Poisson demands, as we might expect. These results
underscore just how well the myopic penalty works on
these examples, both in terms of providing tight gap
estimates and in terms of low sample error.

4. Information Relaxations and Duality
with Reformulations of the Primal DP

The primary motivation for the information relax-
ation approach is to obtain relaxed problems that
are easier to solve than the primal DP. For example,
with perfect information, we need to repeatedly solve
the deterministic inner problems (8), which in some
problems—such as the inventory control examples just
discussed—may be much easier to solve than the pri-
mal DP. In other problems, however, even with per-
fect information, the inner problems may be difficult to
solve. For example, in the multiclass queueing applica-
tion we study in Section 5, even if arrivals and service
outcomes are known in advance, the decisions about
which customer class to serve at each point in time can
still lead to many possible states that need to be con-
sidered over a long horizon. In this section, we discuss
one approach to addressing this issue.

4.1. Changing the State Transition Function
We consider using different state transition functions
s̃t(x , a ,w) for the evolution of states; these may depend
on time. We use the notation x̃t to indicate states gen-
erated by s̃t (and assume x̃0 � x0). As in the absorption
time formulation, we assume there is an absorbing and
costless state xɑ, and we let τ denote the (generally
random) absorption time to xɑ when state transitions
follow s̃t . As with the standard absorption time for-
mulation in Section 2.3, we assume that under s̃t that
τ is (i) almost surely finite and (ii) does not depend
on actions (but may depend on time); {s̃t} denotes the
sequence of these new state transition functions.
To relate the costs associatedwith the problemwhere

states transition according to s̃t to the costs of the pri-
mal DP, we need to correct for the change in state tran-
sition probabilities. Analgous to p(xt+1 | xt ,at), we let
qt(xt+1 | xt ,at)� �({wt+1 ∈�: s̃t(xt ,at ,wt+1)� xt+1} | Ft)
denote the probability of a time t state transition to
xt+1∈� under s̃t when the current state is xt and action
at∈A(xt) is selected. If, for all t, states x∈�, and feasible
actions a∈A(x), qt(y |x ,a)�0 implies p(y |x ,a)�0 for all
y∈�,we say {s̃t} covers s; this is our succinctwayof stat-
ing that p(· | x ,a) is absolutely continuous with respect
to qt(· |x ,a) for all times and feasible state-action pairs.
If {s̃t} covers s, then we can equivalently estimate

the expected cost with a policy α ∈ AS with state
transitions following s̃t , provided we correct for the
change in state transition probabilities. In particular,
the probability of the state trajectory x̃0 , x̃1 , . . . , x̃t is

∏t−1
τ�0 qt(x̃t+1 | x̃t , α(x̃t)) under s̃t and is ∏t−1

τ�0 p(x̃t+1 |
x̃t , α(x̃t)) under s. Thus, we can obtain an equivalent
estimate of the cost with α under s̃t by multiplying
costs in each period by the factorsΦt(α) :�

∏t−1
i�0 ϕi(x̃i+1 |

x̃i , α(x̃i)), where ϕt(y | x , a)� p(y | x , a)/qt(y | x , a), and
Φ0 :� 1. The basic idea of correcting for changes in
measure is standard and is used widely in importance
sampling in the simulation of Markov processes (e.g.,
Glasserman 2004, Section 4.6).

We refer to the DP that uses s̃t in place of s, and the
cost in each period is multiplied by the factor Φt as a
reformulation of the primal DP. From the above discus-
sion, if s̃t covers s, the reformulation is equivalent to
the primal DP in that the expected cost of a given pol-
icy α ∈AS is the same in the reformulation as it is in the
primal DP; this fact is formally established in Proposi-
tion A.2, which is used in the proof of Theorem 4.1.

Before extending our duality results, it is worth not-
ing that problem reformulations may result in lower
bound estimators with large (or even infinite) vari-
ances. This is of particular concern in infinite horizon
settings and may need to be addressed on a case-
by-case basis. We discuss this issue further in Sec-
tion 4.3.1 where we describe one approach for guaran-
teeing finite estimator variances.

4.2. Duality Results
In general, we may also consider reformulations that
are not necessarily equivalent to the primal DP. To get
lower bounds on v?(x0) using information relaxations
in such cases, we need the generating functions v ∈V in
the penalties to satisfy an additional property. Specif-
ically, we consider approximate value functions v ∈ V
that satisfy v(x)6 c(x , a)+δƐ[v( f (x , a ,w))] for all x ∈�,
a ∈ A(x). We call such a function v ∈V a subsolution.
We now state the duality results, analogous to

Lemma 2.1 (weak duality) and Proposition 2.1 (strong
duality) but applied to reformulations of the primalDP.

Theorem 4.1 (Duality Results with Reformulations). For
any relaxation � of �, the following hold:
(i) Weak duality: If either (a) {s̃t} covers s or (b) v is a

subsolution, then for any α ∈AS,

vα(x0) > inf
αG∈A�

Ɛ

[
τ∑

t�0
Φt(αG)(c(x̃t , αG, t)

+ Ɛ[v(s(x̃t , αG, t ,w))]

−ϕt(x̃t+1 | x̃t , αG, t)v(x̃t+1))
]
. (15)

(ii) Strong duality:

sup
v∈V

inf
αG∈A�

Ɛ

[
τ∑

t�0
Φt(αG)(c(x̃t , αG, t)+ Ɛ[v(s(x̃t , αG, t ,w))]

−ϕt(x̃t+1 | x̃t , αG, t)v(x̃t+1))
]
� v?(x0).
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In addition, with v � v?, we attain the supremum almost
surely.

Theorem 4.1 implies Proposition 2.2: by taking s̃t � s
for all t, the factors ϕt equal 1 for all state transitions
and actions, and we recover the duality results using
the absorption time formulation.
To understand Theorem 4.1, it is again most instruc-

tive to think of the case with � as the perfect informa-
tion relaxation. In this case, we simulate a sample path
w� (w1 , . . . ,wτ) and then solve the inner problem:

min
a∈A(w)

τ∑
t�0
Φt(a)(c(x̃t , at)+ Ɛ[v(s(x̃t , at ,w))]

−ϕt(x̃t+1 | x̃t , at)v(x̃t+1)). (16)

(Note thatΦt is almost surely finite, since we are taking
state transitions to be those under s̃t , and by definition
there is zero probability of a state transition for which
qt(x̃t+1 | x̃t , a)� 0 for any action.)
This inner problem in (16) can also be written as

a deterministic dynamic program but with state-and-
action-dependent discounting as a result of the change
of measure terms. In particular, since Φt(a) is nonnega-
tive and only depends on actions up to period t −1, we
can equivalently solve (16) using the recursion

v�
t (x̃t)� min

a∈A(xt )

{
c(x̃t , a)+ Ɛ[v(s(x̃t , a ,w))]

+ϕt(x̃t+1 | x̃t , a)(v�
t+1(x̃t+1) − v(x̃t+1))

}
(17)

for t � 0, . . . , τ − 1, and the boundary condition
v�
τ (x̃τ) � v�

τ (xɑ) � 0, and states now evolve as x̃t+1 �

s̃t(x̃t , at ,wt+1). The value v�
0 (x0) then equals the opti-

mal value of (16). The weak duality result in Theo-
rem 4.1(i) then implies that by simulating sample paths
(w1 , . . . ,wτ), solving for v�

0 (x0), and averaging, we can
obtain a lower bound on v?(x0) (i.e., Ɛ[v�

0 (x0)]6 v?(x0)),
provided one of the conditions in Theorem 4.1(i) holds.
In comparing the recursion (17) to the perfect infor-

mation recursion (8) using the absorption time formu-
lation, the only difference is the presence of the change
of measure factor ϕt . We can interpret this in terms
of state-and-action-dependent discounting: if we can
select an action that leads to a state transition that is
much less likely to occur in the primal DP than to occur
in the reformulationwith s̃t , thenwewill have substan-
tial discounting (i.e., ϕt close to zero) to compensate
for this difference in relative likelihoods.
Nonetheless, the strong duality result in Theo-

rem 4.1(ii) shows that we can, in theory, obtain tight
lower bounds using this approach. Using an inductive
argument similar to that at the end of Section 2.3, we
can show that when v � v?, the recursion (17) leads to
v�

t (x̃t) � v?(x̃t) for all time periods and in every possi-
ble state. Thus, using an ideal penalty, we again obtain
a tight lower bound that equals v?(x0) almost surely.
This is true for any reformulation.

The potential advantage of this approach is tractabil-
ity. Recall that in some problems, solving the recur-
sions (8) may still require dealing with many states:
though the problem is deterministic, many states may
still be possible through the effect actions have on
states. We could, however, take s̃t to be a function
that does not depend on actions. In this case, notice
that since x̃t+1 � s̃t(x̃t ,wt+1), the trajectory of states x̃t
in (17) is completely independent of actions. Thus, solv-
ing (17) only requires a minimization at a single state
in each period and τ states in total: namely, the states
x0 , x̃1 , . . . , x̃τ−1. We call a formulation where s̃t is inde-
pendent of actions an uncontrolled formulation. Rogers
(2007) also considers uncontrolled formulations in the
case of perfect information relaxations. Theorem 4.1
generalizes these ideas by allowing for arbitrary infor-
mation relaxations and for s̃t to depend on actions.
Finally, conditions (a) and (b) of the weak duality

result in Theorem 4.1(i) are important. If we were to
evaluate the performance of a given stationary policy
α ∈ AS using a reformulation s̃t , it would be essential
that, for any state for which we have positive probabil-
ity of visiting using the primal formulation with s, we
also have positive probability of visiting with s̃t . This
is the essence of condition (a) in Theorem 4.1(i). Theo-
rem 4.1(i) asserts that even if we do not fulfill this con-
dition, we nonetheless obtain lower bounds on v?(x0),
provided penalties are generated from a subsolution v
(i.e., condition (b) holds).

For example, we may use an uncontrolled formula-
tionwhere state transitions are given by s̃t(x̃t ,at ,wt+1)�
s(x̃t ,α(x̃t),wt+1) for agivenheuristicpolicyα∈AS whose
suboptimalitywewish to assess. Such an s̃t may violate
condition (a), as there may be zero probability of visit-
ing some states that could be visited by other feasible
policies (in particular, the optimal policy). Nonethe-
less, provided we generate a penalty from a subsolu-
tion v, condition (b) ensures that we obtain a lower
bound by applying an information relaxation to this
uncontrolled formulation. Moreover, this state transi-
tion function is a particularly attractive choice from an
implementation perspective: we can evaluate the costs
of the heuristic policy α using simulation to get an
upper bound on v?(x0). Using this uncontrolled formu-
lation and a penalty from a subsolution v, we obtain
a lower bound on v?(x0) by solving (17) on exactly the
same state trajectories. We will pursue this approach in
the multiclass queueing application in Section 5.

4.3. Quality of the Information Relaxation Bounds
A well-known fact (e.g., Puterman 1994, Proposi-
tion 6.3.2(a)) is that any subsolution provides a lower
bound on the optimal value function v? in every state.
The information relaxation approach is guaranteed to
(weakly) improve the lower bounds provided by any
subsolution, as we now show.
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Proposition 4.1 (Bound Guarantees). If v ∈ V is a subso-
lution to the primal DP, then we have the following:
(i) For any relaxation �, the lower bound on the right-

hand side of (15) is no smaller than v(x0).
(ii) If � is the perfect information relaxation, then the

recursion (17) satisfies v�
t (xt) > v(xt) almost surely for all

possible states. Moreover, v is a subsolution to the finite
horizon problem in (17).
Proposition 4.1(i) shows that if we use a penalty gen-

erated by v, then the resulting lower bound is at least
as good (i.e., as large) as v(x0) itself. In many large-
scale examples, we may already consider the use of
subsolutions to obtain lower bounds, and by using an
information relaxation with a penalty from a subso-
lution, we can improve on these lower bounds. From
Theorem 4.1(i)(b), this holds for any reformulation.
For example, in the multiclass queueing application

we study in Section 5, we obtain subsolutions by con-
sidering Lagrangian relaxations that relax the require-
ment that a server can serve at most one customer
at a time. These Lagrangian relaxations are far eas-
ier to calculate than solving the primal DP, because
they lead to problems that decouple over customer
classes. We can then use these Lagrangian relaxation
subsolutions as penalties in the information relaxation
approach and are guaranteed to obtain lower bounds
that are at least as good as the lower bound from the
Lagrangian relaxation itself. Many other problemsmay
also have a “weakly coupled” structure in which relax-
ations of certain coupling constraints lead to subso-
lutions that are easy to calculate and could be used
in this approach. Alternatively, the approximate linear
programming (ALP) approach (de Farias and Van Roy
2003) is a widely used approach in approximate DP
that involves using linear programming to calculate
subsolutions expressed as a linear combination of basis
functions. In problems where ALP can be used, Propo-
sition 4.1 tells us thatwewill improve the lower bounds
from ALP using information relaxations.

Proposition 4.1(ii) adds that, in the case when � is
the perfect information relaxation, the recursions dis-
cussed in (17) are almost surely larger than v(xt) in
all possible states: in this case do we not only get a
better lower bound than v(x0) on average but also, in
every sample path, v�

0 (x0) can never fall below v(x0).
Finally, Proposition 4.1(ii) adds that in the perfect infor-
mation case, v is also a subsolution to the finite hori-
zon DP described in (17). This result implies that even
if we only solve (17) approximately by focusing on a
set of subsolutions including v, we will still obtain
lower bounds no worse than v(x0). We will illustrate
the potential usefulness of this result in the multiclass
queueing application in Section 5.5.2.
4.3.1. Suboptimality Gap Estimates and Variance Con-
siderations. Similar to the discussion in Section 2.3.1,
we canuse information relaxationswith reformulations

to obtain an estimate on the suboptimality of a given
feasible policy. This can be done using the same sam-
ple paths that we use for evaluating the cost of the
policy. For example, we can consider an uncontrolled
formulation where state transitions follow a heuristic
policy α ∈AS (i.e., s̃t(x̃t , at ,wt+1)� s(x̃t , α(x̃t),wt+1)) and
where v is a subsolution. Again, we can add the penalty
terms as control variates to the costs when using α, as
the terms have zero mean for any α ∈ A� (see Proposi-
tion A.1 in Appendix A.1). For a given sample path, we
can then equivalently evaluate the cost of using α to be

v̂t(xt)� c(x̃t , α(x̃t))+ Ɛ[v(s(x̃t , α(x̃t),w))]
− v(s(x̃t , α(x̃t),wt+1))+ v̂t+1(s(x̃t , α(x̃t),wt+1))

for t � 0, . . . , τ−1, with v̂τ � 0. This is equivalent to (17)
with actions at fixed at α(x̃t) in each period: the change
of measure terms ϕt all equal 1 at these actions, since
the state transitions are those taken by the policy α. We
then have Ɛ[v̂0(x0)] � vα(x0). Again, since the actions
selected by α are feasible in (17), the value v̂0(x0) −
v�

0 (x0) is almost surely nonnegative, and its expectation
is an upper bound on vα(x0) − v?(x0).
As with any change of measure approach, there are

concerns about potentially large increases in variance.
With this uncontrolled formulation, however, variance
issues are substantiallymitigated: noting the above dis-
cussion and Proposition 4.1(ii), the inequalities v(x0) 6
v�

0 (x0) 6 v̂0(x0) hold almost surely. Thus, the lower
bound estimate can never fall below v(x0) and never
above the (adjusted) estimate of the costs when using
α. When v and α are nearly optimal, v̂0(x0) and v(x0)
will be close, and the variance in estimating the perfect
information relaxation lower bound will be small. We
use this uncontrolled formulation approach in themul-
ticlass queueing examples in Section 5, and in those
examples, we find very small sample errors in the lower
bound (and suboptimality gap) estimates.

4.4. The Distribution of Absorption Time
Theorem 4.1 does not place any restrictions on the dis-
tribution of τ, the time to absorption, that is used in the
reformulations other than τ being almost surely finite
and independent of actions. A natural candidate for τ
is geometricwith parameter 1−δ, which iswhat is used
in the standard absorption time formulation discussed
in Section 2.3 and what we used in the inventory con-
trol examples in Section 3.3. Another natural candidate
is to choose τ to be deterministic and equal to some
fixed-horizon length T; formally, this corresponds to
reformulated state transition function s̃t that transi-
tions to xɑ with probability 1 at t � T and never ear-
lier. We refer to this as a truncated-horizon formulation.
Although such an {s̃t} does not cover s (there is zero
probability of a nonabsorbing transition at time T), by
Theorem 4.1(i), we nonetheless obtain a lower bound
on v?(x0) if we apply an information relaxation to
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this formulation, provided we use a penalty gener-
ated from a subsolution (i.e., no cost corrections are
required).
With a truncated horizon formulation, the perfect

information relaxation inner problems are determin-
istic DPs with T periods. In the case when the non-
absorbing state transition probabilities under s̃t match
those under s, applying (17), the inner problems take
the form

v�
t (x̃t)� min

a∈A(x̃t )

{
c(x̃t , a)+ Ɛ[v(s(x̃t , a ,w))]
− δv(s̃t(x̃t , a ,wt+1))
+ δv�

t+1(s̃t(x̃t , a ,wt+1))
}

(18)

for t � 0, . . . ,T − 1, with v�
T � 0, where we use the fact

that ϕt(x̃t+1 | x̃t , a) � δ for t < T, since there is prob-
ability δ of a nonabsorbing transition under s and
probability 1 of a nonabsorbing transition under s̃t .
Recursion (18) is identical to (8) with τ � T, with the
exception that the discount factor has reemerged in the
continuation value term.
Intuitively, we should expect the distribution of τ to

have an impact on the variance of costs and, in par-
ticular, the computational effort required to get good
enough estimates of the lower bounds. The distribu-
tion of τ in general also affects the value of the lower
bound itself (i.e., the mean), not just the variability of
the lower bound. To illustrate this, we revisit the inven-
tory control example from Section 3.3 with δ � 0.9 and
geometrically distributed demands. Recall fromTable 1
that using a perfect information relaxation with the
myopic penalty (i.e., v � vm), we concluded that the
myopic policy is at most about 0.91% suboptimal. The
results in Table 1 use the absorption time formulation
(geometric with parameter 1 − δ) and lead to precise
suboptimality gap estimates (mean gap of 2.45 with an
SE of 0.25, relative to an estimated myopic policy cost
of 269.20).
In Table 2, we show similar results using truncated

horizon formulations with T � 10, 20, and 40, along
with geometric absorption. Although the 1,000 sam-
ple paths used for the results in Table 1 were suf-
ficient for precise gap estimates, to ensure we could
make statistically significant comparisons between the
lower bounds themselves, the results in Table 2 are
based on longer simulations. To make the comparisons
evenhanded, we use the same computational budget
for each lower bound calculation, based on a total of
250,000 total time periods (geometric uses stratified
sampling on τ with 25,000 sample paths; truncated
horizon with T � 10 uses 25,000 sample paths, T � 20
uses 12,500 sample paths, and T � 40 uses 6,250 sample
paths), and each lower bound simulation takes about
the same time (about 20 minutes on the desktop we
used). The myopic policy cost is estimated using the
geometric absorption sample paths.

Table 2. Results for Inventory Example with δ � 0.9 and
Geometric Demands Using Different Absorption Time
Formulations

Mean Gap Gap
Mean SE gap SE %

Geometric absorption formulation
Myopic policy cost 272.55 2.15 — — —
Information relaxation 269.93 2.13 2.62 0.06 0.96

Truncated-horizon formulations
T � 10: Information relaxation 179.96 0.67 92.59 NA 33.97
T � 20: Information relaxation 239.15 1.48 33.40 NA 12.26
T � 40: Information relaxation 265.23 2.35 7.32 NA 2.69

Notes. Gaps are differences between the myopic policy cost and the
(perfect) information relaxations with v � vm. “Gap %” is relative to
the myopic policy.

The lower bounds using truncated horizons improve
with longer horizons, as we would expect. The bound
using T � 10 is poor, and the bound using T � 40 is
competitive with the bound using geometric absorp-
tion (slightly worse, but within sampling error). The
longer horizons also have higher SEs, which might
be expected as well, and the SE of the T � 40 hori-
zon is (slightly) higher than the SE using geometric
absorption. This is perhaps a bit surprising, since geo-
metric absorption includes the additional variation as
a result of the time horizon being random. However,
Theorem 4.1(ii) tells us that the ideal penalty will lead
to zero-variance lower bounds, and we suspect the
myopic penalty reduces much of this additional vari-
ance in these examples. Moreover, the fact that we use
stratified sampling on τ in the geometric absorption
case also helps to reduce this additional variability.

In general, with truncated horizon models, when
v is a subsolution, the optimal value v�

t (xt) of the per-
fect information inner problem (18) is almost surely
nondecreasing in T in every possible state: this fol-
lows from Proposition 4.1(ii), which implies that
δv�

t+1(s̃t(x̃t , a ,wt+1))− δv(s̃t(x̃t , a ,wt+1)) > 0 for all t < T,
so an increase in T can only increase the optimal costs
in the perfect information relaxation in every sample
path. Of course, very long horizons may lead to more
computational effort. In the examples we have con-
sidered, geometric absorption has performed similarly
to truncated horizon formulations with sufficiently
large T, and in general, as a result of Theorem 4.1(ii),
we would expect the mean and variance of the lower
bounds to be fairly insensitive to these choices when
paired with a good penalty.

Finally, as mentioned in Section 2.3.1, geometric
absorption is also useful because it allows for a com-
mon sample comparison to the costs associated with
feasible policies (here, the myopic policy) within a sin-
gle simulation. This allows us to look at a full distribu-
tion of the gap values and, for example, calculate the SE
on the gap estimate. A truncated horizon formulation
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leads to bias in the estimates of a policy’s costs and
thus, absent any corrections to the costs, does not lead
to meaningful gap estimates in each sample.

5. Application to Dynamic Service
Allocation for a Multiclass Queue

We consider the problem of allocating service to dif-
ferent types, or “classes,” of customers arriving at a
queue. Many researchers have studied different vari-
ations of multiclass queueing models. A recurring
theme in the extensive literature on such problems is
that relatively easy-to-compute policies are optimal or
often perform very close to optimal. Cox and Smith
(1961) study an average cost model with linear delay
costs and show optimality of a simple index policy
that prioritizes customers myopically by their immedi-
ate expected cost reduction (the “cµ rule”). Harrison
(1975) studies a discounted version of the problemwith
rewards and shows optimality of a static priority pol-
icy. VanMieghem (1995) studies a finite horizon model
with convex delay costs and shows that a myopic pol-
icy that generalizes the cµ rule is optimal in the heavy
traffic limit.
A number of researchers have studied variations

of multiclass scheduling problems for which optimal
policies are not characterized in any simple form, but
they nonetheless find that relatively easy-to-compute
index policies perform quite well. Veatch and Wein
(1996) consider scheduling of a machine to make dif-
ferent items to minimize discounted inventory costs;
they investigate the performance of “Whittle index”
(Whittle 1988) policies based on analyzing the prob-
lem as a restless bandit problem. Ansell et al. (2003)
develop Whittle index policies for multiclass queueing
models with convex costs in an infinite horizon setting
and find that these policies are very close to optimal
in numerical examples. Niño-Mora (2006) develops
Whittle index policies for multiclass queues with finite
buffers. The calculation of these Whittle indices has
connections to Lagrangian relaxations, and we will use
Lagrangian relaxations in approximating themodel we
study.

5.1. The Model
The model we study closely follows the model in
Ansell et al. (2003). The system operates in continuous
time, and there are I customer classes, with indepen-
dent Poisson arrival and service processes; λi and νi
denote the mean arrival and service rates for class i
customers. Customers arrive to the queue and await
service, and we let xi ∈ �+ denote the number of class
i customers in the system at a given time. Costs are
discounted and accrue at rate ∑

i ci(xi), where the cost
functions ci are assumed to be nonnegative, increasing,
and convex in xi . We will assume that there is a finite

buffer limit Bi on the number of class i customers that
are allowed in the system at any point in time.

At each point in time a single server must decide
which customer class to serve. Preemption is allowed;
this, together with the fact that costs are increasing in
queue lengths, implies that we may restrict attention
without loss of generality to service policies that never
idle when the queue is nonempty. The goal is to mini-
mize the expected value of total discounted costs from
some given initial state x0 (e.g., an empty queue).
Although this problem is naturally formulated

in continuous time, it is straightforward to convert
the problem to an equivalent discrete-time model
through “uniformization” (see, e.g., Puterman 1994,
Section 11.5), with each point in time representing a
potential arrival or a completed service. In this for-
mulation, we normalize the total event rate so that∑

i(λi + νi)� 1. We let x � (x1 , . . . , xI) denote the num-
ber of customers of each class; this is the state
of the system. We denote the random next-period
state given that we are currently serving customer
class i and the current state is x by f (x , i ,w) :�
( f1(x1 , i ,w), . . . , fI(xI , i ,w)), where w is a uniform [0, 1]
random variable. In each period, exactly one of the fol-
lowing events occurs:

a. An arrival of any one customer class j occurs
with probability λ j . The next-period state satisfies
f j(x , i ,w) � min(x j + 1,B j) and is unchanged for all
other customer classes.

b. The service of the class i customer being served (if
any) is completed with probability νi . The next-period
state satisfies fi(x , i ,w)� xi −1 and is unchanged for all
other customer classes.

c. No arrivals occur, and the service of the class i
customer being served (if any) is not completed. This
occurs with probability 1 − νi −

∑
j λ j . In this case,

f (x , i ,w)� x.
We obtain these state transitions and probabilities

with w as follows: since∑
i(λi +νi)� 1, we can partition

the unit interval according to the λi and νi . The uni-
form [0, 1] value of w for each period then represents a
class i arrival if it falls in an interval corresponding to
λi and a class i service token if it falls in an interval cor-
responding to νi . Consistent with event c, if w results
in a service token for class j , i while we are serving
class i, then the state is unchanged (i.e., f (x , i ,w)� x in
this case).

We can then write the optimal value function v? of
the system as

v?(x)� min
i∈I+(x)

{∑
j

c j(x j)+ δƐ[v?( f (x , i ,w))]
}
, (19)

where I+(x) represents the set of customer classes cur-
rently present in the queue. If no customers are present
in the queue, the server simply idles; by convention,
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we take I+(x) � {0} in this case. The discount factor
δ in (19) is a scaling of the continuous time discount
factor; again see, e.g., Section 11.5 of Puterman (1994).
In all our examples, we will work with the absorp-

tion time formulation of the problem. As in the general
setup in Section 2.3, we let xɑ denote the absorbing
state and s denote the state transition function includ-
ing absorption; i.e., s transitions to xɑ with probabil-
ity 1 − δ in each period and state and otherwise (i.e.,
with probability δ) transitions with the same transi-
tion probabilities as f . For all approximate value func-
tions v we consider, we take v(xɑ) � 0, which implies
δƐ[v( f (x , i ,w))] � Ɛ[v(s(x , i ,w))] for all states x and
service decisions i.

5.2. Approximate Value Functions and
Heuristic Policies

The number of states involved in solving (19) scales
exponentially in the number of customer classes, which
will be challenging when there are more than a few
customer classes in the model. In such situations, we
may instead consider heuristic policies that allocate
service based on approximations to the optimal value
function. Specifically, we will consider heuristic poli-
cies that are “greedy” with respect to an approximate
value function—i.e., policies that, in each period, allo-
cate service to a customer class α(x) satisfying

α(x) ∈ arg min
i∈I+(x)

{∑
j

c j(x j)+ δƐ[v( f (x , i ,w))]
}
, (20)

where v is an approximate value function. The right-
hand side of (20) approximates (19), with v in place
of v?. We will also use v to form a penalty in the infor-
mation relaxations. In our examples, we will only use
v’s that are subsolutions to (19).
One simple approximation is a myopic approxima-

tion of v?. The approximate value function in this
case is given by vm(x) :� ∑

i ci(xi), and, when in ser-
vice, the myopic heuristic serves a customer class i
that maximizes the quantity νi(ci(xi) − ci(xi − 1)). This
myopic approximation serves as a benchmark; we do
not expect it will lead to particularly tight bounds.
Since costs are nonnegative, vm is a subsolution.
Another approximation we use is based on Lagran-

gian relaxations. Specifically, we consider a relaxation
of the problem in which customer classes are aggre-
gated into groups; at any point in time, the server
can serve at most one customer in any given group
but can simultaneously serve customers across differ-
ent groups and is charged a Lagrangian penalty l > 0
for serving customers from multiple groups simulta-
neously. To make this formal, let there be G groups
of customer classes, with Ig representing the indices
of customer classes in group g (formally, {I1 , . . . , IG} is
a partition of {1, . . . , I}). Using a Lagrange multiplier

l > 0, we can show that this relaxed problem decouples
across groups, with

v l(x)� (G− 1)l
1− δ +

∑
g

v l
g(xg), (21)

where xg represents the state vector (number of cus-
tomers) for group g, and v l

g is the optimal value func-
tion for group g in the Lagrangian relaxation:

v l
g(xg)� min

a∈{0}∪Ig

{∑
i∈Ig

ci(xi)+ δƐ[v l
g( fg(xg , a ,w))]− l�{a�0}

}
.

(22)

In (22), state transitions fg are defined over each group
in the analogous way as in the original model. This
decoupling essentially follows from Hawkins (2003) or
Adelman and Mersereau (2008) and relies on the fact
that costs decouple across customer classes as well as
the fact that state transitions for each class depend only
on the state of that class and whether or not we are
serving that class.4
Solving for the value functions for a particular group

involves dealing with a number of states that grows
exponentially in the number of classes in the group,
but we may still be able to solve (22) relatively easily if
we only consider groups consisting of a small number
of classes. For a given grouping, we can optimize over
the Lagrange multiplier l > 0 (e.g., using bisection) to
maximize v l(x0). Moreover, for any l > 0, it is straight-
forward to argue that v l is a subsolution to (19); thus
v l(x0) 6 v?(x0) for any l > 0.
The lower bounds provided by these grouped

Lagrangian relaxations will get tighter (larger) as we
move to coarser groupings. For instance, any grouping
of customer classes into pairs can do no worse than the
Lagrangian relaxation with individual groups, as the
former imposes all the constraints of the latter, as well
as some additional constraints (customers in the same
group cannot be served simultaneously). In our exam-
ples, we group together classes that appear to be most
demanding of service, as we will explain shortly.

In our examples, we will consider four approxi-
mate value functions: the myopic approximation and
Lagrangian relaxations with groups of sizes 1, 2, and 4.
Wewill use each of these approximations as an approx-
imate value function for a heuristic policy that selects
actions as in (20), as well as in forming a penalty in the
information relaxations.

5.3. Perfect Information Relaxations and Penalties
In describing how we will use information relax-
ations to obtain lower bounds, it is helpful to first
describe how we generate sample paths. For each sam-
ple path, we first simulate an absorption time,5 τ,
that is geometric with parameter 1 − δ. Given τ, we
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then generate τ− 1 IID uniform [0, 1] random variables
(w1 , . . . ,wτ−1), representing arrivals and service tokens
as described in Section 5.1. These are the sample paths
that we use in evaluating all lower and upper bounds.
We take � to be the perfect information relaxation

unless stated otherwise (see Section 5.5.1 for an imper-
fect information relaxation). With this relaxation, both
τ and (w1 , . . . ,wτ−1) are fully revealed in each sample
path before making any service decisions. We will use
an approximate value function v to form a penalty and
will use either v � vm or v � v l for a given Lagrangian
relaxation, as discussed in Section 5.2. In this case, the
inner problems analogous to (8) here take the form

v�
t (xt)� min

i∈I+(xt )

{∑
j

c j(xt , j)+ Ɛ[v(s(xt , i ,w))]

− v(s(xt , i ,wt+1))+ v�
t+1(s(xt , i ,wt+1))

}
(23)

for t � 0, . . . , τ − 1, with xτ � xɑ and v�
τ (xɑ) � 0.

Recursion (23) is a deterministic, finite horizon DP
with τ periods and state transitions encoded through
(w1 , . . . ,wτ−1). The state in this problem in each period
is the vector xt . Even though this is a deterministic
problem, we may need to keep track of many possible
values for xt , especially when τ is large. This occurs
because the service decision in each period affects xt ,
and we may need to consider many possible down-
stream states xt due to this interaction.

One way around this difficulty is to consider an
uncontrolled formulation, where state transitions are
not affected by service decisions. In our examples,
we do this by taking state transitions to be fixed
at the state transitions associated with the heuristic
policy α, described in (20). Formally, we consider a
new state transition function s̃, where s̃(xt , i ,wt+1) �
s(xt , α(xt),wt+1) for every state xt , feasible action i, and
outcome wt+1. In this formulation of the problem, if the
heuristic policy successfully completes a class j service
in a given period in a given time period, then a class j
customer departs the system, regardless of which cus-
tomer i we actually choose to serve. Note that with s̃,
we only visit the states visited by the heuristic policy, so
s̃ certainly does not cover s; however, since wewill only
use subsolutions v in forming penalties, by virtue of
Theorem 4.1(i)(b), we nonetheless obtain lower bounds
on v?(x0) when we apply an information relaxation to
this uncontrolled formulation.
Although states are uncontrollable in this reformula-

tion, service decisions do influence the change of mea-
sure factors ϕ(xt+1 | xt , j) (and therefore the incurred
costs). These factors have the following form:
i. Transitions due to absorption: ϕ(xɑ | xt , j) � 1 for

all xt , j ∈ I+(xt).
ii. Transitions due to arrivals: if an arrival of a class i

customer occurs and xt , i < Bi , then ϕ(xt+1 | xt , j)� 1 for

all j ∈ I+(xt); this follows since arrivals are independent
of service decisions.

iii. Transitions due to services: if a class i customer
is successfully served by α, then ϕ(xt+1 | xt , j)� �{ j�i}.

iv. Unchanged state transitions: if xt+1 � xt when
α(xt) � i, then ϕ(xt+1 | xt , j) � (1 −Λ − ν j)/(1 −Λ − νi),
where Λ�

∑
{k: xt , k<Bk } λk .

For a given sample path, we let (x̃0 , . . . , x̃τ) denote
the states following the heuristic policy, with x̃t �

(x̃t , 1 , . . . , x̃t , I) for t < τ, x̃0 � x0, and x̃τ � xɑ. When eval-
uating the cost of the heuristic policy in simulation,
these are exactly the states we will visit in the sample
path. Applying the perfect information relaxation to
this uncontrolled formulation, the inner problems (17)
here take the form

v̄�
t (x̃t)� min

i∈I+(x̃t )

{∑
j

c j(x̃t , j)+ Ɛ[v(s(x̃t , i ,w))]

+ϕ(x̃t+1 | x̃t , i)(v̄�
t+1(x̃t+1) − v(x̃t+1))

}
(24)

for t �0, . . . , τ−1, where v̄�
τ �0 and x̃t+1 � s̃(x̃t , i ,wt+1)�

s(x̃t , α(x̃t),wt+1).
Solving the recursion (24) is quite easy: the choice

of action i does not influence the evolution of states
in (24), as these are already fixed at (x̃0 , . . . , x̃τ) accord-
ing to the heuristic policy. Thus, we need only deal
with a single state in each period in each sample path.
Moreover, given that we are selecting actions for the
heuristic according to (20) with the approximate value
function v, the expectations in the recursions in (24)
will have already also been calculated at the states
(x̃0 , . . . , x̃τ) for all feasible actions in the sample path.
Thus, we need only perform τminimizations—one per
period—to solve (24), with all costs (including penal-
ties) having been precalculated.

The change of measure factors can have an adverse
impact on the quality of the information relaxation
lower bounds. In particular, in a given sample path, if
the heuristic successfully completes service of a class i
customer at time t, then selecting any other customer
class j in (24) at time t leads to ϕ(x̃t+1 | x̃t , j)� 0, which
would wipe away the remaining tail costs in (24) in
that sample path. Nonetheless, we know from Propo-
sition 4.1(i) that the optimal value of the inner prob-
lem must satisfy v̄�

0 (x0) > v(x0) since our choice of v
will always be a subsolution to (19). For example, if
we take v � v l , where v l is a Lagrangian relaxation
as discussed in Section 5.2, this approach is guaran-
teed to improve on the lower bound v l(x0) from the
Lagrangian relaxation.

5.4. Numerical Examples
We have applied these methods to some examples of
this multiclass queueing model with I � 16 customer
classes and Bi � 9 for each customer class; the full
DPs (19) for these examples have 1016 states and would
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be very difficult to solve. Following Ansell et al. (2003),
we use a quadratic cost function of the form ci(xi) �
c1i xi + c2i x2

i , with c1i and c2i generated randomly and
uniformly in [1, 5] and [0.1, 2.0], respectively (these
are the ranges of the same parameters used in the
examples in Ansell et al. 2003). Arrival rates and ser-
vice rates are also generated randomly and scaled so
that ∑

i(λi + νi)� 1 and ∑
i(λi/νi) > 1; this is an over-

loaded system and the problem is challenging due to
the resulting heavy congestion (finite buffers ensure
stability). We will use discount factors of 0.9, 0.99, and
0.999, and the initial state is an empty queue. The total
cost in each example is scaled by the factor 1−δ: this is a
standard scaling that facilitates comparisons across the
discount factors in that 1/(1− δ) is the expected num-
ber of time periods. All calculations have been done on
a standard desktop PC using Matlab.
For all examples, we first calculate lower bounds

and approximate value functions using Lagrangian
relaxations (21) with groups of sizes 1, 2, and 4. The
Lagrangian relaxations with groups of size 1 have
16 class-specific value functions, each with 10 states;
the group of size 2 and size 4 have 8 and 4 group-
specific value functions with 102 and 104 states each,
respectively. Each of these approximations are cal-
culated using value iteration and bisection on the
Lagrange multiplier. To determine the groupings for
each discount factor, we ran a short simulation of the
Lagrangian heuristic using the Lagrangian relaxation
with groups of size 1 and tracked how frequently each
of the classes was served by the heuristic; we grouped
together classes most frequently served in decreasing

Table 3. Multiclass Queue Example Results

Approximate value function (v), used in heuristic policy and in penalty

Myopic LR, groups of size 1 LR, groups of size 2 LR, groups of size 4

Gap Time Gap Time Gap Time Gap Time
Mean SE % (s) Mean SE % (s) Mean SE % (s) Mean SE % (s)

δ � 0.9
Cost of heuristic policy 14.05 1.10 — 1.6 13.20 0.05 — 1.6 13.23 0.07 — 2.1 13.21 0.05 — 1.6
Gap from heuristic to v 14.05 1.10 100.0 — 1.30 0.05 9.84 1.5 1.22 0.07 9.21 0.5 1.00 0.05 7.58 18.6
Gap from heuristic to 6.12 0.90 43.6 0.5 0.19 0.04 1.47 0.5 0.32 0.06 2.44 1.1 0.25 0.04 1.86 0.7
information relaxation

δ � 0.99
Cost of heuristic policy 201.73 16.5 — 18.6 204.00 0.68 — 18.3 203.66 0.44 — 29.8 203.39 0.09 — 26.6
Gap from heuristic to v 201.73 16.5 100.0 — 12.12 0.68 5.97 13.1 10.16 0.44 4.99 6.9 4.32 0.09 2.12 340.2
Gap from heuristic to 197.98 16.5 98.1 5.2 8.12 0.67 3.98 5.1 6.44 0.43 3.16 9.9 1.24 0.06 0.61 6.5

information relaxation
δ � 0.999
Cost of heuristic policy 1,058.58 44.0 — 204.1 944.82 1.02 — 196.8 947.14 0.91 — 362.9 943.93 0.56 — 330.1
Gap from heuristic to v 1,058.58 44.0 100.0 — 25.98 1.02 2.75 113.8 23.47 0.91 2.48 60.1 13.36 0.56 1.42 3,665.2
Gap from heuristic to 1,058.10 44.0 99.9 51.8 24.25 1.02 2.57 50.5 21.79 0.91 2.30 98.5 11.98 0.56 1.27 63.8
information relaxation

Notes. The perfect information relaxations use the uncontrolled formulation, and the heuristic policy selects actions using v as an approximate
value function in (20). Bold highlights the results for the best gap for each δ. LR denotes Lagrangian relaxation.

order. More sophisticated ways of grouping classes are
no doubt possible and may perform even better.

For each discount factor, we generate 1,000 sam-
ple paths according to the sampling procedure dis-
cussed at the start of Section 5.3. For each approximate
value function v, in each sample path, we evaluate the
following:

i. Heuristic policy: We select actions as in (20) and
calculate the cost incurred by this policy.

ii. Perfect information relaxation of uncontrolled formu-
lation: State transitions follow the heuristic policy as
discussed in Section 5.3, and we solve the inner prob-
lem (24) on the states (x̃0 , . . . , x̃τ) visited by the heuris-
tic, using a penalty formed by v.
The average of the heuristic policy costs provides

an upper bound on v?(x0), and, by Theorem 4.1(i),
the average of the optimal values v̄�(x0) provides a
lower bound on v?(x0). Since our main goal is to assess
the suboptimality of the heuristic policy, in the results
below we report the difference between the heuristic
policy cost and v̄�

0 (x0). The average value of this gap
is an upper bound on the suboptimality of the heuris-
tic policy. Following the discussion in Section 4.3.1, we
include the penalty terms as control variates in the
heuristic policy costs, and the gaps must be nonnega-
tive for every sample path, as the actions chosen by the
heuristic policy are always feasible in (24).

Table 3 shows the results for these experiments,
reporting the estimate of the heuristic policy cost, as
well as the suboptimality gaps using both the subso-
lution directly and the perfect information relaxation.
For each estimated value, we report themean, standard
error (SE) of the mean, and time in seconds required
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to calculate the value. For each of the two gaps in each
case, we also report the percent suboptimality relative
to the estimate of the heuristic policy cost.
The gaps using the myopic approximate value func-

tion are, as expected, quite poor. The myopic lower
bound itself is not helpful: the initial state is an empty
queue, so this lower bound is just zero, and the sub-
optimality gap using this is 100%. The information
relaxation bound improves on this lower bound, as it
must, but the gaps are still quite large using themyopic
approximation. The heuristic policy using this approx-
imation does appear to perform somewhat well (and
we may expect such a policy to be reasonably good),
but it is difficult to be certain about this, given the rela-
tively high SEs. (Given that the myopic value function
is a poor approximation of the optimal value function,
it serves as a relatively bad control variate in estimating
the cost of the heuristic policy.)

The Lagrangian relaxations provide much better
lower bounds. These lower bounds improvewith larger
group sizes and fare better as the discount factor
increases. The relative gaps using these lower bounds
range from about 9.84% (δ � 0.9 with groups of size 1)
to 1.42% (δ � 0.999 with groups of size 4). The upper
bounds from the heuristic policies do not change much
with larger groupings and are estimated quite well
in all cases: these Lagrangian relaxation value func-
tions, regardless of group size, appear to provide good
approximations for a heuristic policy and also perform
well as control variates.
The information relaxation lower bounds improve

on the Lagrangian relaxation bounds, as they must by
Proposition 4.1(i), with the amount of improvement
decreasing as δ increases. The intuition for this is that,
with longer time horizons, there will be more scenar-
ios in which it is optimal in the inner problem (24)
to serve a class i with an associated change of mea-
sure term ϕ(x̃t+1 | x̃t , i) � 0; such scenarios may result
in relatively modest improvements on the original
Lagrangian relaxation. Nonetheless, the relative gaps
using the information relaxation lower bounds can be
considerably smaller than those from the Lagrangian
relaxations: in the δ � 0.9 case, for instance, the relative
gaps are a factor of 4 to 6 smaller than the relative gaps
from the Lagrangian relaxations.
In terms of computational effort, the approximate

value functions are calculated and stored prior to the
simulation (there is nothing to calculate for the myopic
approximation). For the Lagrangian relaxations, the
run times get longer as the discount factor gets larger
because a larger discount factor necessitates more iter-
ations in the value iteration routine. The groups of size
4 take the longest to compute: these relaxations only
have four groups, but each group corresponds to a sub-
problemwith 10,000 states. All of the Lagrangian relax-
ations take from about 1.5 seconds (groups of 1, δ� 0.9)

to a few minutes to compute, with the exception of
groups of size 4 with a discount factor of 0.999 requir-
ing about an hour; optimizing these Lagrangian relax-
ation calculations was not our focus, and these times
could probably be improved.

The run times in Table 3 for the other bounds rep-
resent the total time for all 1,000 sample paths in the
simulations. The time horizons tend to increase with
the discount factor, ranging from tens of periods for the
δ � 0.9 case to thousands of periods for the δ � 0.999
case. The number of calculations required in evaluat-
ing the heuristic policy and the information relaxation
scales linearly in the time horizon, and this is evident in
the run times. These bounds can be calculated quickly:
the information relaxation calculations take about one
second total in the δ � 0.9 cases and about a minute
total in the δ � 0.999 cases. These times are insensi-
tive to the group sizes. (There are some differences in
times across the columns for these calculations, which
reflect differences in time required to iterate over the
groups in the penalty calculations. These differences
are specific to our implementation.) In terms of estima-
tion error, 1,000 sample paths in these examples are far
more than necessary to obtain relatively precise bound
estimates, at least for the bounds using the Lagrangian
relaxations—note the very low SEs on the cost of the
heuristic policy and all gaps in those columns. Thus,
we view these run times as quite conservative.

In summary, we improve on the lower bounds from
the Lagrangian relaxations, and, with modest compu-
tational effort (an extra few seconds to about a minute),
we obtain precise gap estimates that indicate that the
heuristic policy is no worse than 1.47%, 0.61%, and
1.27% suboptimal for each discount factor, respectively.
This is assuring, given that a full solution of the DP (19)
is impractical in these examples.

5.5. Variations
Although the lower bounds reported above are likely
good enough for most practical purposes for these
examples, we also considered some other approaches
to obtaining lower bounds using information relax-
ations in these examples. These variations are instruc-
tive and may also be useful in other problems.
5.5.1. Partially Controlled Formulations. Perfect in-
formation bounds using uncontrolled formulations are
easy to calculate in that actions do not affect state tran-
sitions. This simplicity, however, can come at a price
in terms of the quality of the bounds, as there may
be many inner problem actions with low values of
ϕ(x̃t+1 | x̃t , i) in many sample paths. On the other hand,
working with the original (i.e., controlled) formula-
tion avoids the change of measure terms entirely and
thus may lead to better lower bounds, but in these
multiclass queueing examples, the inner problems (23)
are difficult to solve. We now discuss some partially
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controlled formulations that may be viewed as a compro-
mise between these two extremes.
Specifically, we consider a reformulation in which

the service decisions do affect states, but only for
a subset S ⊆ {1, . . . , I} of classes. Customers in all
other classes S̄ :� {1, . . . , I}\S, on the other hand,
cannot be successfully served. Formally, we take
s̃(x , i ,w)� s(x , i ,w) for all i ∈ S, and for all i ∈ S̄, we
take s̃(x , i ,w)� s(x , i ,w) if w corresponds to an arrival
and s̃(x , i ,w)� x otherwise. When S � {1, . . . , I}, we
recover the original formulation of the problem, and
when S ��, we recover an uncontrolled formulation in
which the server always idles. Just like with the uncon-
trolled formulations discussed above, this s̃ does not
cover s, but again, we obtain lower bounds on v?(x0)
since we use subsolutions to construct penalties. As
above, we take τ to be geometric with parameter 1− δ.
With this formulation, customers from a class in S̄

may arrive but can never be served, andwhenwe apply
a perfect information relaxation, the states of all cus-
tomers in S̄ in each period in each sample path are
fixed. By contrast, we do need to account for the dif-
ferent states that are possible for the class S customers
because service decisions still affect those classes. The
inner problems with this formulation are then deter-
ministic DPs with at most ∏

i∈S(Bi + 1) states in each
period, with class S̄ states fixed in each sample path.
If |S | is not too large, these deterministic DPs will be
manageable.

Given that wewill beworkingwith all possible states
for classes in S, we can take this one step further and
consider an imperfect information relaxation in which
all events (arrivals and service tokens) are known per-
fectly, except those for class S customers. In this imper-
fect information relaxation, in each period prior to
absorption, wt is known to be one of (i) an arrival for
a customer in S̄, (ii) a service token for a customer in S̄
(which we cannot “use” under s̃), or (iii) a “class S
event.” If a class S event is known to occur, this event
will be an arrival (respectively, service token) for a cus-
tomer i ∈ S with probability λi/ΓS (respectively, µi/ΓS),
where ΓS :� ∑

j∈S(λ j + µ j). In this case the inner prob-
lems are now stochastic DPs with ∏

i∈S(Bi + 1) states in
each period, with these conditional probabilities at all
periods corresponding to class S events, and determin-
istic transitions at all other periods (corresponding to
class S̄ events; recall that we cannot control the state of
customers in S̄). The factors ϕ(x̃t+1 | x̃t , i) equal 1 for all
i ∈ S; for i ∈ S̄, we have ϕ(x̃t+1 | x̃t , i)� (1−µi−Λ)/(1−Λ)
if x̃t+1 � x̃t and x̃t , i > 0 and 1 otherwise, where Λ is as
in Section 5.3.
Table 4 shows the results for this approach on the

same examples from Section 5.4. These results corre-
spond to the same 1,000 sample paths for each dis-
count factor, and we use the Lagrangian relaxations
with groups of size 4 in the penalty. The set of classes S

Table 4. Imperfect Information Relaxation Results for
Multiclass Queue Examples with Partially Controlled
Formulation

Information relaxation
with partially Using previous

controlled formulation lower bounds

Mean SE Gap % Time (s) Gap % (U) Gap % (LR)

δ � 0.9 13.16 0.04 0.37 99 1.86 7.58
δ � 0.99 202.62 0.04 0.38 1,197 0.61 2.12
δ � 0.999 932.84 0.02 1.17 13,537 1.27 1.42

Note. Gaps are percent relative to heuristic policy; “Gap % (U)” is
the gap from the information relaxations with the uncontrolled for-
mulation, and “Gap % (LR)” is the gap from the lower bounds from
the Lagrangian relaxation with groups of size 4.

for each of the three discount factors is the first group
of size 4 in the grouped Lagrangian relaxation. Thus,
the inner problems using this partially controlled for-
mulation have 10,000 states in each period. Table 4
also lists the relative gaps for these lower bounds and
also restates for comparison the relative gaps using
information relaxations with the uncontrolled formu-
lation and the Lagrangian relaxation with groups of
size 4. These lower bounds must be better than the
Lagrangian relaxation and, aswemight expect, are also
better than the lower bounds using the uncontrolled
formulation, with a more marked improvement in the
δ � 0.9 and δ � 0.99 cases. The run times (99 seconds,
about 20 minutes, and about 3.75 hours, respectively)
are substantially longer than with uncontrolled for-
mulations, although these are not unreasonable times
given the complexity of the full DP and given that 1,000
sample paths are evidently far more than necessary
with such low SEs. Overall, the lower bounds using
these partially controlled formulations are very good
(relative gaps of 0.37%, 0.38%, and 1.17%) and illus-
trate that using judiciously chosen “middle ground”
reformulations with information relaxations may be
effective.
5.5.2. Relaxations of the Information Relaxations. The
motivation for using the uncontrolled formulation was
to reduce the size of the state space that needed to be
considered in the information relaxations; recall that
we may need to consider many states in (23). Rather
than introducing another formulation whose informa-
tion relaxations we can solve easily, we could instead
attempt to solve relaxations of (23) that are easier to
solve. By obtaining a lower bound on v�

0 (x0) in every
sample path, we would then still obtain a lower bound
on v?(x0).
For example, we could solve Lagrangian relaxations

of (23) that relax the constraint that at most one cus-
tomer class can be served in each time period. This
is analogous to the Lagrangian relaxations v l in (5.2)
with groups of size 1, except that these Lagrangian
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relaxations are for the deterministic, finite horizon DP
in (23). This approach pairs nicely with penalties con-
structed from Lagrangian relaxations (21) with groups
of size 1 in that with such penalties the Lagrangian
relaxations of the inner problem also decouple by cus-
tomer class. The Lagrange multipliers in each sam-
ple path do not depend on the queue state but may
depend on time. Thus in each scenario we are opti-
mizing over τ Lagrange multipliers (l0 , . . . , lτ−1), where
lt > 0, to obtain the largest lower bound on v�

0 (x0) in
each sample path. This can be viewed as optimizing
over a set of subsolutions to (23) in every sample path;
from Proposition 4.1(ii), since v l itself is a subsolution
to (23) and can be shown to be feasible here by taking
lt � l for all t, the lower bound on v�

0 (x0) we obtain
with this approach can never be smaller than v l(x0).
Thus, we may still improve on the lower bounds from
the Lagrangian relaxations v l(x0) using this additional
relaxation. The full details of these inner problem
Lagrangian relaxations are discussed in Appendix A.2.
We applied this approach on the examples above

and obtained suboptimality gaps of 1.31%, 3.56%, and
2.49% for δ � 0.9, δ � 0.99, and δ � 0.999, respectively,
again with very low sample error on the gaps. We
solved the Lagrangian relaxations of (23) as linear pro-
grams, which took much longer (about 27 seconds,
967 seconds, and 10 hours, respectively, for all 1,000
sample paths) than the uncontrolled formulation cal-
culations. These times probably could be reduced sub-
stantially, e.g., by using a subgradient method in the
optimization. These lower bounds do improve on the
Lagrangian relaxation bounds with groups of size 1
(relative gaps of 9.84%, 5.97%, and 2.75%, respectively),
as they must.
Although this approach of combining relaxations

was not better than the information relaxations using
the reformulations we considered in these examples,
this idea may be useful in other problems where
information relaxations with uncontrolled formula-
tions lead to weak bounds or are difficult to calculate,
e.g., because of high-dimensional action spaces.

6. Conclusion
In this paper, we have shown how to use information
relaxations to calculate performance bounds for infi-
nite horizon MDPs with discounted costs. The gen-
eral approach allows for reformulations of the state
transition functions, which can help to simplify the
information relaxation inner problems, both by yield-
ing finite horizon inner problems and by reducing the
number of states to consider in the inner problems.
When the penalty is generated from a subsolution to
the optimal value function, we can relax absolute con-
tinuity requirements that would normally be required
in obtaining an equivalent formulation, and weak and
strong duality still apply. Additionally, the method is

guaranteed to improve the lower bounds from the sub-
solutions themselves. We have applied the method to
large-scale examples in inventory control and multi-
class queueing with encouraging results. The results in
the multiclass queueing examples are, to our knowl-
edge, the first proof of concept that information relax-
ations applied to an “uncontrolled formulation” (or a
“partially controlled formulation”) can be effective on
a large-scale application.

Moving forward, there are a number of interesting
research directions. First, there is considerable free-
dom in selecting reformulations of the state transi-
tion function, and it would be interesting to consider
this approach in other applications. It may be possi-
ble in some problems to optimize over the reformu-
lation parameters (e.g., reformulated state transition
probabilities), perhaps jointly with the penalty, to yield
the best lower bound. Developing the theory of infor-
mation relaxations for more general infinite horizon
problems, and showing how to successfully apply the
method to such problems, would also be useful. In
problems that have an absorbing state, such as stochas-
tic shortest-path problems, we could consider infor-
mation relaxations applied to reformulations such as
those considered here, where absorption is treated as
exogenous. Alternatively, Feinberg and Huang (2015)
have recently shown that a broad class of infinite
horizon problems, including total cost and average
cost problems, can be equivalently expressed as dis-
counted infinite horizon problems. This reduction uses
and develops “similarity transformations” studied in
Veinott (1969). Provided such transformations could be
explicitly carried out on a given (large-scale) applica-
tion, we could apply information relaxations as dis-
cussed here to the equivalent discounted formulations
to obtain lower bounds on the optimal value in these
problems.
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Appendix A. Proofs and Detailed Derivations
A.1. Proofs
Proof of Proposition 2.1. We show the result by considering
a finite horizon problem with fixed horizon T, invoke the
finite horizon results of BSS to this problem, and then let
T →∞. To this end, we let vT

t (x) denote the optimal value
function for the corresponding primal DP with finite horizon
T, initial state x, and current time t 6 T. In our definition
of this problem, we define the time T terminal cost to be
vT

T (x) � v?(x), where v? is the optimal value function for the
infinite horizon problem. This finite horizon problem then
satisfies the recursion

vT
t (x)� min

a∈A(x)
{c(x , a)+ δƐ[vT

t+1( f (x , a ,w))]}
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for t � 0, . . . ,T − 1, with the boundary condition vT
T � v?. It

is straightforward by induction to see that vT
t (x) � v?(x) for

all t 6 T and any optimal stationary policy α? to the infi-
nite horizon problem is also optimal to this finite horizon
problem.

Now consider any relaxation �, and consider adding to
the costs the penalty ΠT :�∑T−1

t�0 δ
tπt(xt , at ,wt+1), where

πt(xt , at ,wt+1) :� δƐ[v?( f (xt , at ,w))] − δv?( f (xt , at ,wt+1)).
(A.1)

By (2), this penalty satisfies Ɛ[ΠT] � 0 when evaluated over
any primal feasible policy αF ∈ A�. Moreover, ΠT is an ideal
penalty for the finite horizon problem in that

vT
0 (x0)

� inf
αG∈A�

Ɛ

[T−1∑
t�0
δt(c(xt , αG, t)+πt(xt , αG, t ,wt+1))+ δT v?(xT)

]
�Ɛ

[T−1∑
t�0
δt(c(xt , α

∗(xt))+πt(xt , α
∗(xt),wt+1))+ δT v?(xT)

]
.

(A.2)

Equation (A.2) states that the optimal primal policy α∗ is
also optimal with this ideal penalty; this follows from Theo-
rem 2.3 of BSS.

We now let T→∞ in (A.2). On the left-hand sidewe obtain
limT→∞ vT

0 (x0) � limT→∞ v?(x0) � v?(x0), since vT
0 (x0) � v?(x0)

for any T in this construction. Since δ ∈ (0, 1) and since c, v?,
and πt are uniformly bounded, we can apply the dominated
convergence theorem on the right-hand side and obtain

v?(x0)� Ɛ

[ ∞∑
t�0
δt(c(xt , α

∗(xt))+ πt(xt , α
∗(xt),wt+1))

]
. (A.3)

Suppose now that

v?(x0)> inf
αG∈A�

Ɛ

[ ∞∑
t�0
δt(c(xt , αG, t)+πt(xt , αG, t ,wt+1))

]
. (A.4)

Since c, v?, and πt are uniformly bounded and δ ∈ (0, 1), (A.4)
implies we can find a T <∞ such that

v?(x0) > inf
αG∈A�

Ɛ

[T−1∑
t�0
δt(c(xt , αG, t)+ πt(xt , αG, t ,wt+1))

+ δT v?(xT)
]
. (A.5)

But (A.5) contradicts (A.2), and so (A.4) is false. This, together
with weak duality (Lemma 2.1), implies

v?(x0)� inf
αG∈A�

Ɛ

[ ∞∑
t�0
δt(c(xt , αG, t)+πt(xt , αG, t ,wt+1))

]
(A.6)

as desired. Moreover, by (A.3), we see that the infimum in
(A.6) is achieved by the optimal primal policy α∗. �

Before proving Theorem 4.1, we need some additional
results.

Proposition A.1. For any α ∈A�,

vα(x0)� Ɛ

[ τ∑
t�0

c(xt , αt)+ Ɛ[v(s(xt , αt ,w))] − v(xt+1)
]
, (A.7)

where state transitions are given by xt+1 � s(xt , at ,wt+1) (i.e., the
absorption time formulation described in Section 2.3).

Proof. First, note that by standard results (e.g., Puterman
1994, Proposition 5.3.1), for any α ∈ A�, we can equivalently
express the expected cost with α as vα(x0)� Ɛ[∑τ

t�0 c(xt , αt)].
Now consider adding the terms Πτ :� ∑τ

t�0 πt , where πt �

Ɛ[v(s(xt , at ,w))] − v(xt+1). For any α ∈ A�, the elements of
the sequences {πt}t>0 are martingale differences under �.
Note that τ is an almost surely finite stopping time under
�, and since v is bounded, the martingale differences πt
are bounded. Thus by an application of the optional stop-
ping theorem (e.g., Section 10.10 of Williams 1991), we have
Ɛ[Πτ]� Ɛ[Π0]� 0. �

Wewill also use the following lemma. Here, given a proba-
bility space (Ω,Σ,P), we say P is concentrated on A ∈Σ if, for
every event E ∈Σ such that A∩E ��, it holds that P(E)� 0.

Lemma A.1. Consider a measure space (Ω,Σ) with two probabil-
ity measures P and Q, and assume Q is concentrated on AQ ∈ Σ.
Let ϕ denote the unique Radon–Nikodym derivative of the abso-
lutely continuous component of P with respect to Q. Let Y be a
bounded random variable on this space such that Y(ω) > 0 for all
ω <AQ . Then ƐP[Y] > ƐQ[ϕY].
Proof. First, note that by the Lebesgue-Radon-Nikodym the-
orem (see, e.g., Theorem 6.10 in Rudin 1987) we can uniquely
decompose P as P � Pa + Po , where Pa is absolutely con-
tinuous with respect to Q with unique density (or Radon-
Nikodym derivative) ϕ, and Po is concentrated on a set APo

such that APo ∩AQ ��.
We then have

ƐP[Y]�
∫
ω∈Ω

Y(ω) dP(ω)

�

∫
ω∈Ω

Y(ω) dPo(ω)+
∫
ω∈Ω

Y(ω) dPa(ω)

�

∫
ω∈APo

Y(ω) dPo(ω)+
∫
ω∈Ω

Y(ω) dPa(ω)

>

∫
ω∈Ω

Y(ω) dPa(ω)

�

∫
ω∈Ω

ϕ(ω)Y(ω) dQ(ω)

� ƐQ[ϕY].

The second equality follows from the Radon-Nikodym the-
orem referenced above. The third equality follows from the
fact that Po is concentrated on APo and the fact that Y is
bounded. The inequality follows from the condition that
Y(ω) > 0 for all ω < AQ and the fact that APo ∩ AQ � �, and
thus ω ∈ APo implies ω <AQ . The second-to-last equality fol-
lows from absolute continuity of Pa with respect to Q and
the Radon-Nikodym theorem, noting that Y is bounded and
therefore integrable under Pa . �

Remark. When Ω is countable, Lemma A.1 reduces to the
following. For a given probability measure Q, let ΩQ be the
set of outcomes for which Q(ω) > 0. Then Pa(ω)� ϕ(ω)Q(ω)
if ω ∈ ΩQ and 0 for all ω ∈ Ω\ΩQ . Moreover, if Y(ω) > 0 for
all ω ∈Ω\ΩQ , then

ƐP[Y]�
∑

ω∈Ω\ΩQ

Y(ω)P(ω)+
∑
ω∈ΩQ

Y(ω)P(ω)

>
∑
ω∈ΩQ

Y(ω)P(ω)�
∑
ω∈ΩQ

Y(ω)Pa(ω)� ƐQ[ϕY].
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Proposition A.2. For any α ∈AS:
(i) If {s̃t} covers s, then

vα(x0)� Ɛ

[ τ∑
t�0
Φt(α)(c(x̃t , α(x̃t))+ Ɛ[v(s(x̃t , α(x̃t),w))]

−ϕt(x̃t+1 | x̃t , α(x̃t))v(x̃t+1))
]
. (A.8)

(ii) If v is a subsolution, then

vα(x0) > Ɛ
[ τ∑

t�0
Φt(α)(c(x̃t , α(x̃t))+ Ɛ[v(s(x̃t , α(x̃t),w))]

−ϕt(x̃t+1 | x̃t , α(x̃t))v(x̃t+1))
]
. (A.9)

Proof. For part (i) we note that

vα(x0)
(a)
� Ɛ

[ τ∑
t�0

c(xt , α(xt))+ Ɛ[v(s(xt , α(xt),w))] − v(xt+1)
]

(b)
� Ɛ

[( τ∑
t�0

c(xt , α(xt))+ Ɛ[v(s(xt , α(xt),w))] − v(xt+1)
)

· �{τ <∞}
]

(c)
�

∞∑
τ′�1

Ɛ

[( τ′∑
t�0

c(xt , α(xt))+ Ɛ[v(s(xt , α(xt),w))]

− v(xt+1)
)
�{τ � τ′}

]
(d)
�

∞∑
τ′�1

Ɛ

[( τ′∑
t�0
Φt(α)(c(x̃t , α(x̃t))+ Ɛ[v(s(x̃t , α(x̃t),w))]

−ϕt(x̃t+1 | x̃t , α(x̃t))v(x̃t+1))
)
�{τ � τ′}

]
(e)
� Ɛ

[( τ∑
t�0
Φt(α)(c(x̃t , α(x̃t))+ Ɛ[v(s(x̃t , α(x̃t),w))]

−ϕt(x̃t+1 | x̃t , α(x̃t))v(x̃t+1))
)
�{τ <∞}

]
(f)
� Ɛ

[( τ∑
t�0
Φt(α)(c(x̃t , α(x̃t))+ Ɛ[v(s(x̃t , α(x̃t),w))]

−ϕt(x̃t+1 | x̃t , α(x̃t))v(x̃t+1))
)]
.

Equality (a) follows by Proposition A.1. Equality (b) follows
since c and v are uniformly bounded and τ has a finite mean.
Equality (c) follows from the law of total expectations. Equal-
ity (d) follows by application of the Radon-Nikodym theorem
to each term in the sum in (d), which is justified since {s̃t}
covers s. Equality (e) follows again by the law of total expec-
tations, and equality (f) follows by our assumption that τ is
almost surely finite when state transitions follow s̃t .

For part (ii), recall that v being a subsolution means v(x) 6
c(x , a)+ δƐ[v( f (x , a ,w))] � c(x , a)+ Ɛ[v(s(x , a ,w))] for all a ∈
A(x) and x ∈�. All of the steps in the proof of part (i) hold,
with the exception that (d) becomes an inequality. To see this,
conditioned on τ � τ′, we have

τ′∑
t�0

c(xt , α(xt))+ Ɛ[v(s(xt , α(xt),w))] − v(xt+1)

� c(x0 , α(x0))+ Ɛ[v(s(x0 , α(x0),w))]

+

τ′∑
t�1
(c(xt , α(xt))+ Ɛ[v(s(xt , α(xt),w))] − v(xt)),

where we use the fact that xt � xɑ for all t > τ and v(xɑ)� 0.
Note that the terms c(xt , α(xt)) + Ɛ[v(s(xt , α(xt),w))] − v(xt)
are nonnegative for all states because v is a subsolution.
Applying Lemma A.1 to each of these terms and noting
that Φ0 � 1 and x0 is known leads to (d) holding as an
inequality. �

Remark. In the proof of Proposition A.2(ii), the subsolution
property is stronger than is required to apply LemmaA.1: the
result also holds if c(x̃t , α(x̃t)) + Ɛ[v(s(x̃t , α(x̃t),w))] − v(x̃t)
> 0 for all states x̃t that occur with zero probability under the
state transition process induced by s̃t .

Proof of Theorem 4.1. (i) With either condition (a) or (b)
holding as given in the statement, we have

vα(x0) > Ɛ
[ τ∑

t�0
Φt(α)(c(x̃t , α(x̃t))+ Ɛ[v(s(x̃t , α(x̃t),w))]

−ϕt(x̃t+1 | x̃t , α(x̃t))v(x̃t+1))
]

> inf
αG∈A�

Ɛ

[ τ∑
t�0
Φt(αG)(c(x̃t , αG, t)+ Ɛ[v(s(x̃t , αG, t ,w))]

−ϕt(x̃t+1 | x̃t , αG, t)v(x̃t+1))
]
.

The first inequality follows by Proposition A.2, and the sec-
ond inequality follows by the fact that α ∈AS ⊆ A� ⊆ A�.

(ii) To show strong duality, we take v � v?. Clearly, v? is a
subsolution to the primal DP. Consider a fixed sample path
(w1 , . . . ,wτ) and any αG ∈ A�. By definition, αG ∈ A (recall
from Section 2.1 that A is the set of all policies—i.e., the set of
all functions that map from (w1 , . . . ,wτ) to feasible actions).
When � is the perfect information relaxation, A� � A, and
by Proposition 4.1(ii), the optimal value of the inner prob-
lem with perfect information using v � v? is no smaller than
v?(x0), so

τ∑
t�0
Φt(αG)(c(x̃t , αG, t)+ Ɛ[v(s(x̃t , αG, t ,w))]

−ϕt(x̃t+1 | x̃t , αG, t)v(x̃t+1)) > v?(x0). (A.10)

On the other hand, we claim that with αG � α?, where α? is
an optimal stationary policy to the primal DP, that

τ∑
t�0
Φt(αG)(c(x̃t , αG, t)+ Ɛ[v(s(x̃t , αG, t ,w))]

−ϕt(x̃t+1 | x̃t , αG, t)v(x̃t+1))� v?(x0) (A.11)

holds almost surely. To see this, note that with αG � α? and
v � v?, that c(x̃t , αG, t) + Ɛ[v(s(x̃t , αG, t ,w))] � v(x̃t) by (1).
Using this fact, and noting that v(xτ)� v(xɑ)� 0, all terms on
the left-hand side of (A.11) cancel except v?(x0). Since α? ∈
AS ⊆ A�, α? is feasible in the �-adapted problem, and since
every �-adapted policy also satisfies (A.10) almost surely, it
follows that α? is an optimal �-adapted policy with v � v?.
The result then follows by (A.11). �

Proof of Proposition 4.1. (i) This result is implied by part (ii)
below. Since the optimal value of the perfect information
relaxation recursion (17) satisfies v�

0 (x0) > v(x0) by part (ii),
we have Ɛ[v�

0 (x0)] > v(x0). Since A� ⊆ A, the right-hand
side of (15) for any information relaxation � can never be
lower than the value with perfect information, and the result
follows.
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(ii) We fix a sample path (w1 , . . . ,wτ) and prove the result
by induction. At time τ, by definition, xτ � xɑ, which implies
that v(xτ) � v(xɑ) � 0, so v�

τ � 0 � v(xτ). Now consider t < τ,
and assume that v�

t+1(xt+1) > v(xt+1) for all possible states xt+1
at time t + 1. We have

v�
t (x̃t)� min

a∈A(xt )

{
c(x̃t , a)+ Ɛ[v(s(x̃t , a ,w))]
+ϕt(x̃t+1 | x̃t , a)(v�

t+1(x̃t+1) − v(x̃t+1))
}

> min
a∈A(xt )

{c(x̃t , a)+ Ɛ[v(s(x̃t , a ,w))]}

> v(x̃t),

where the equality follows from (17), the first inequality fol-
lows from the induction assumption and the fact that ϕt > 0,
and the second inequality follows from the fact that v is a
subsolution to the primal DP. Finally, setting v�

t+1 � v and
v�

t � v, the same inequalities also show that v is a subsolution
to (17). �

A.2. Lagrangian Relaxations of Inner Problems for the
Multiclass Queueing Application

We show how the inner problems with perfect informa-
tion decouple with Lagrangian relaxations in the multiclass
queueing application, as discussed in Section 5.5.2. We con-
sider a fixed sample path (w1 , . . . ,wτ−1). In this case the inner
problems corresponding to (8) have the form

v�
t (xt)� min

i∈I+(xt )

{∑
j

c j(xt , j)+ Ɛ[v(s(xt , i ,w))] − v(s(xt , i ,wt+1))

+ v�
t+1(s(xt , i ,wt+1))

}
(A.12)

for t � 0, . . . , τ − 1 and where v�
τ � 0. We will consider

Lagrangian relaxations of (A.12) that relax the constraint
that in each time period (and state) the server can serve at
most one customer class. To this end, it will be convenient to
express actions slightly differently than in (A.12); specifically,
we let a :� (a1 , . . . , aI) denote a binary vector indicating which
of the I classes we choose to serve, and we denote the action
set by

A(x) :�
{
{0, 1}I :

∑
i
�{ai�0} > (I − 1), a , 0

if xi > 0 for some i � 1, . . . , I
}
.

We can then write (A.12) equivalently as

v�
t (xt)� min

a∈A(x)

{∑
i

ci(xt , i)+ Ɛ[v(s(xt , a ,w))] − v(s(xt , a ,wt+1))

+ v�
t+1(s(xt , a ,wt+1))

}
, (A.13)

with the understanding that the transition function s is now
defined on the actions a in the analogous way. We will con-
sider a Lagrangian relaxation of (A.13) that relaxes the con-
straint set A(x) to {0, 1}I (i.e., the server can serve any class) in
all states but adds a Lagrangian penalty lt((I − 1) −∑

i �{ai�0})
in each period for some Lagrange multipliers lt > 0 (which
depend on time but not states). Note that this Lagrangian
penalty is less than or equal to zero for any a ∈ A(x), so the
optimal value of this relaxation will be no larger than v�

t (xt)

in all states and times, for any l :� (l0 , . . . , lτ−1) with each
lt > 0. We let v l

t denote the value function for this Lagrangian
relaxation of (A.13); this relaxation satisfies

v l
t (xt)� (I − 1)lt + min

a∈{0, 1}I

{∑
i
(ci(xt , i) − lt�{ai�0})

+ Ɛ[v(s(xt , a ,w))] − v(s(xt , a ,wt+1))

+ v l
t+1(s(xt , a ,wt+1))

}
(A.14)

for t � 0, . . . , τ − 1, with v l
τ � 0. We argue that when v

decouples by customer class—i.e., v(x) �∑
i vi(xi) (plus per-

haps a constant, which we will omit to simplify notation)—
then (A.14) also decouples by customer class—i.e., v l

t (xt) �
θt +

∑
i v l

t , i(xt , i), where θt is a constant that does not depend
on the state.

We argue this by induction. This is clearly true at t � τ,
since v l

τ � 0. Now assume that the result holds for v l
t+1 for

some t+16 τ. Note that since each component si of s(x , a ,w)
only depends on x through xi and a through ai , we have

v(s(xt , a ,wt+1))�
∑

i
vi(si(xt , i , ai ,wt+1))

and similarly for the v l
t+1 term in (A.14). Moreover, we have

Ɛ[v(s(xt , a ,w))]� Ɛ

[∑
i

vi(si(xt , i , ai ,w))
]

�
∑

i
Ɛi[vi(si(xt , i , ai ,w))],

where Ɛi denotes the expectation with respect to the state
transition probabilities for class i, emphasizing the fact that
these probabilities do not depend on the states or actions
associated with other classes. Finally, the cost terms ci(xt , i) −
lt�{ai�0} in (A.14) also decouple by class, and there are no
constraints on actions across classes. Altogether, this implies
that v l

t can be decomposed as stated; in particular,

v l
t , i(xt , i)� min

ai∈{0,1}

{
ci(xt , i) − lt�{ai�0} + Ɛi[vi(si(xt , i , ai ,w))]

− vi(si(xt , i , ai ,wt+1))+ v l
t+1, i(si(xt , i , ai ,wt+1))

}
.

Thus, the Lagrangian relaxation (A.14) decouples by cus-
tomer class in each scenario. Each v l

t , i has Bi + 1 states in
each period, so solving the decoupling for each class involves
dealing with τ · (Bi + 1) total states when the scenario has τ
periods.

We can then consider the problem maxl>0 v l
0(x0) in each

scenario. There are different ways we could solve this prob-
lem; as stated in Section 5.5.2, we solve these inner prob-
lem Lagrangian relaxations as linear programs, with deci-
sion variables for the Lagrange multipliers (l0 , . . . , lτ−1) and
variables representing the value functions v l

t , i(xt , i) for all
class i states in each period. This results in a linear program
with τ+ τ∑

i(Bi + 1) variables. Moreover, if l∗ is the optimal
Lagrange multiplier for v l in (21), then the choice lt � l∗ in
each period leads to v l

t , i � v l∗
i as defined in (21). This fol-

lows from Proposition 2.2(ii), noting that v l∗ is the optimal
value function for the Lagrangian relaxations with lt � l∗. The
Lagrangian relaxation (21) is therefore a feasible choice in
every sample path, and we can do no worse than v l∗ (x0) in
every sample path with this approach.
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Independently, Ye et al. (2014) show a similar decoupling
for weakly coupled DPs and Lagrangian relaxations; like
Hawkins (2003) and Adelman and Mersereau (2008), they
assume a product form for state transition probabilities that
does not hold in the multiclass queueing application we
study in Section 5. Ye et al. (2014) study the use of subgra-
dient methods to solve their decoupled inner problems and
provide a “gap analysis” that describes a limit on how much
slack can be introduced by using Lagrangian relaxations
of the inner problems. In our multiclass queueing example
with grouped Lagrangian relaxations, using a subgradient
method with groups of size 4 would still require solving DPs
with 10,000τ states, and the runtimes could still be substan-
tial, particuarly given that subgradient methods can be slow
to converge. We have found it more fruitful in these mul-
ticlass queueing examples to pursue reformulations of the
state transition function (e.g., uncontrolled formulations or
partially controlled formulations) that lead to simpler inner
problems. These reformulations lead to very good lower
bounds that are significantly easier to calculate; moreover,
the complexity of these calculations does not depend in a crit-
ical way on the choice of approximate value function, unlike,
e.g., Lagrangian relaxations of the inner problems without
any reformulations.

Endnotes
1This can always be done, for instance, by treating states as natural
numbers, taking each wt to be uniformly distributed on � � [0, 1],
and setting f (x , a ,w) to be the generalized inverse distribution func-
tion corresponding to the state transition probabilities p(· | x , a) for
all x ∈�, a ∈ A(x).
2Note that although demands are dependent over time, we could
equivalently write this in terms of IID uncertainties as in the general
setup—e.g., with IID U[0, 1] random variables each being mapped
to demand realizations using the generalized inverse distribution
function corresponding to the current demand state Dt .
3This formulation is equivalent to taking v̄�

τ � 0 and excluding the
−vm term at τ− 1, since absorption occurs at time τ.
4Both Hawkins (2003) and Adelman and Mersereau (2008) assume
state transition probabilities factor into a product form that does not
hold in this problem, because at most one event (arrival or service)
can happen per period. Nonetheless, the state transition probabilities
for each class do not depend on the states or service decisions of
other classes, and it can be shown this is sufficient to lead to the
decomposition (21).
5Following the discussion in Section 4.4, we also tried truncated
horizon formulations with a relatively long horizon T but found this
made little difference in these multiclass queueing examples.
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