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Recent work by Han and Van Roy [Han J, Van Roy B (2011) Control of diffusions via linear programming.
Infanger G, ed. Stochastic Programming: The State of the Art, in Honor of George B. Dantzig (Springer, New York),

329–354] introduced a linear programming technique to compute good suboptimal solutions to high-dimensional
control problems in a diffusion-based setting. Their problem formulation worked with finite horizon problems
where the horizon, T , is an exponentially distributed random variable. We extend their approach to finite
horizon problems with a fixed horizon T . We also apply these techniques to dynamic portfolio optimization
problems and then simulate the resulting policies to obtain lower bounds on the optimal value functions. We
also use these policies in conjunction with convex duality methods designed for portfolio optimization problems
to construct upper bounds on the optimal value functions. In our numerical experiments we find that the primal
and dual bounds are very close, and so we conclude, for these problems at least, that the linear programming
approach performs very well.
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1. Introduction
Because of the so-called curse of dimensionality, solv-
ing high-dimensional control problems is a notori-
ously difficult problem. It is not surprising, then,
that suboptimal control has been an active area
of research for many years. Moreover, the advent
of ever-increasing computational power has seen
many developments in the related area of approx-
imate dynamic programming (ADP), particularly for
discrete-time control problems. (See Bertsekas 2005
for a comprehensive introduction to classical sub-
optimal control techniques. Bertsekas 2012 also con-
tains an excellent treatment of approximate dynamic
programming.) Linear programming (LP) methods
have played an important role in the development of
several ADP techniques, beginning with Schweitzer
and Seidmann (1985) and continuing with the impor-
tant contributions of de Farias and Van Roy (2003),
de Farias and Van Roy (2004), among others.

Recently, Han and Van Roy (2011) proposed an
LP-based approach for the approximate solution
of the Hamilton-Jacobi-Bellman (HJB) equation that
arises from continuous-time control problems. Their
approach applies to diffusion problems with an expo-
nentially distributed horizon, T , and their numeri-
cal results were promising, with the LP-based policy
outperforming other base-case policies. In this paper
we extend their approach to continuous-time control
problems with a fixed horizon, T . We apply these tech-
niques to dynamic portfolio optimization problems

and then simulate the resulting policies to obtain pri-
mal, i.e., lower, bounds on the optimal value functions.
We also use these policies in conjunction with the
convex duality methodology of Haugh et al. (2006a)
(hereafter, HKW) to construct dual, i.e., upper, bounds
on the optimal value functions. (See also Haugh and
Jain 2011 and, more recently, Bick et al. 2012, who
also use this dual approach.) By comparing the result-
ing primal and dual bounds, we can easily assess
the quality of the suboptimal policy produced by the
LP approach. In our numerical experiments we find
that the primal and dual bounds are very close, and
so we can conclude that, for these problems at least,
the LP approach performs very well indeed.

The remainder of this paper is organized as fol-
lows. In §2 we formulate the continuous-time port-
folio optimization problem and also discuss here the
exponentially distributed and fixed horizon versions
of the problem. In §3 we review the approach of Han
and Van Roy (2011) for approximately solving the HJB
equation when the horizon is an exponentially dis-
tributed random variable. We extend their methodol-
ogy to the fixed horizon case in §4, and our numerical
results are presented in §5. We conclude in §6. The
online appendices (available as supplemental mate-
rial at http://dx.doi.org/10.1287/ijoc.2015.0651) con-
tain additional details, including an overview of the
aforementioned dual approach of HKW.
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2. The Portfolio Optimization
Problem Formulation

In formulating the dynamic portfolio optimization
problems that we will consider throughout the paper,
we will follow the formulation of HKW. There are
N risky stocks and an instantaneously risk-free bond
in a market. We do note, however, that the LP-based
approach to solving the HJB equation applies to con-
trol problems in diffusion settings more generally
than the portfolio optimization problem that we con-
sider here. The vector of stock prices is denoted by
Pt = 4P1t1 0 0 0 1 PNt5

>, and the instantaneously risk-free
rate of return on the bond is denoted by rt . With-
out loss of generality, we assume the stocks pay
no dividends. Assets return dynamics depend on
the M-dimensional vector of state variables, Zt =

4Z1t1 0 0 0 1ZMt5
>, taking values in a state space S,

so that

rt = r4Zt51 (1a)

dPt

Pt

= �P 4Zt5 dt +èP 4Zt5 dBt1 (1b)

dZt = �Z4Zt5 dt +èZ4Zt5 dBt1 (1c)

where Bt = 4B1t1 0 0 0 1BNt5
> is an N -dimensional stan-

dard Brownian motion; �Z4Zt5 and �P 4Zt5 are M-
and N -dimensional drift vectors; and èZ4Zt5, èP 4Zt5
are M × N and N × N diffusion matrices of the
state variable and security prices, respectively. We
assume that the diffusion matrix, èP 4Zt5, of the asset
return process is nondegenerate for each Zt so that
x>èP 4Zt5èP 4Zt5

>x ≥ ��x�2 for all x and some � > 0. We
can then define a process, �t , according to

�t4Zt5 2=èP 4Zt5
−14�P 4Zt5− r4Zt5 · 151

where 1 = 411 0 0 0 115>. In a market without portfo-
lio constraints, �t corresponds to the market-price-of-
risk process (see, e.g., Duffie 1996, §6.G). We make
the standard assumption that the process �t is square
integrable so that

Ɛ0

[

∫ T

0
��t�

2 dt

]

<�0

(We use Ɛt6 · 7 to denote an expectation conditional on
time t information throughout the paper.) Under this
opportunity set, our portfolio consists of positions in
the N stocks and the risk-free bond. We also assume
that continuous rebalancing of the portfolio is permit-
ted and that �t4Zt5 2= 4�1t4Zt51 0 0 0 1 �Nt4Zt55

> is the vec-
tor of risky security weights in the portfolio at time t.
To rule out arbitrage, we require the portfolio strategy
to satisfy a square integrability condition, namely, that

∫ T

0 ���2 dt <� almost surely. The value of the portfo-
lio, Wt , associated with �t then changes according to
the stochastic differential equation (SDE):

dWt

Wt

= 6rt + �>

t �t7 dt + �>

t èPt
dBt1 (2)

where �t 2=�Pt
− rt ·1. (For ease of exposition, we will

use r , �P , �Z, etc. (or rt , �Pt
, �Zt

, etc.), in place of
r4Zt5, �P 4Zt5, �Z4Zt5, etc., throughout the paper.) We
also assume that the portfolio is constrained so that

�t4Zt5 ∈K (3)

for all t and where K is some fixed convex set con-
taining zero.

The portfolio optimization problem is to choose
a self-financing trading strategy that maximizes the
expected utility of terminal wealth. The horizon, T ,
is assumed to be finite, but it may be either ran-
dom or deterministic, depending on the specific for-
mulation under consideration. The utility function
u4W5 is assumed to be strictly increasing, con-
cave, and smooth. Moreover, it is assumed to sat-
isfy the Inada conditions at zero and infinity so
that limW→0 u

′4W5= � and limW→� u′4W5 = 0. In this
paper, we will use the constant relative risk aversion
(CRRA) utility function so that

u4W5 2=
W 1−�

1 −�

with � > 1. (We note that log utility is obtained in the
limit as � decreases to 1.)

2.1. When the Horizon T Is Fixed
When the problem has a fixed horizon, T , the in-
vestor’s portfolio optimization problem at time t is to
solve for

J ∗4w1z1 t5 = sup
8�s 2 s∈6t1 T 79

Ɛt6u4WT 57

subject to (1), (2), and (3)1 (4)

where w and z are the wealth and state vector values
at time t. A well-known implication of CRRA utility
is that J ∗ is separable in w and 4z1 t5 so that we can
write J ∗4w1z1 t5 = u4w5V ∗4z1 t5. The optimal strategy
is therefore independent of the wealth process, wt .

To write the HJB equation for this problem, we first
define the HJB operator:

H�V 4z1 t5 2= 41 −�5V 4z1 t54�>�+ r5+Vz4z1 t5
>�Z4z5

+
1
2�4� − 15V 4z1 t5�>èPè

>

P �

+ 41 −�5Vz4z1 t5
>èZè

>

P �

+
1
2 tr6Vzz4z1 t5èZè

>

Z 7+Vt4z1 t50 (5)
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Note that Vz is the M-dimensional gradient of V with
respect to the state variable z. Similarly, Vzz is the
M ×M Hessian matrix of V with respect to z. The
HJB equation is then given by

0 =HV 4z1 t5 2= inf
�∈K

H�V 4z1 t51 (6)

and we note that V ∗4z1 t5= J ∗4w1z1 t5/u4w5 is a solu-
tion to this equation.

2.2. When the Horizon T Is Exponentially
Distributed

We now assume the horizon T is an exponentially
distributed random variable with mean � . Moreover,
T is assumed to be independent of all other random
sources. In this case the investor’s problem is iden-
tical to (4) but now with the understanding that the
expectation must also be taken with respect to T . By
first taking expectation with respect to T , it is easy to
see the problem may also be formulated as

J ∗4w1z5 = sup
8�s9

Ɛ

[

∫ �

t=0
e−t/�u4Wt5 dt

]

subject to (1), (2), and (3)0 (7)

Although t is no longer a state variable, J ∗ is still sep-
arable, so we can again write J ∗4w1z5 = u4w5V ∗4z5.
The HJB operator for this problem is then defined as

H�V 4z5 2= 41 −�5V 4z54�>�+ r5+Vz4z5
>�Z4z5

+
1
2�4� − 15V 4z5�>èPè

>

P �

+ 41 −�5Vz4z5
>èZè

>

P �+ 1
2 tr
[

Vzz4z5èZè
>

Z

]

−V 4z5/� + 11 (8)

and the HJB equation is given by

0 =HV 4z5= inf
�∈K

H�V 4z50 (9)

We note that V ∗4z5= J ∗4w1z5/u4w5 is a solution to this
equation.

3. Review of Han and Van Roy’s
LP Approach

In this section we review Han and Van Roy’s (2011)
LP approach for approximately solving (7) when the
horizon T is exponentially distributed. In a standard
argument they show that the optimal solution, V ∗, to
the HJB equation (9) is also the unique optimum of
the following static optimization problem:

max
V 4z5

∫

V 4z5�4dz5

subject to H�V 4z5≥ 01 ∀� ∈K1 z ∈ S1 (P1)

V ∈C21

where � is a prespecified positive measure for the inte-
gral. Although the objective and constraints in (P1) are
linear, the problem is still very challenging to solve
because there are uncountably many decision vari-
ables and constraints; indeed, there is one constraint
for every 4�1 z5 pair. We therefore solve an approxima-
tion to (P1), and this approximation is obtained via the
following steps:

1. We first choose a suitable set of basis func-
tions 8�14z51 0 0 0 1�k4z59 with the goal of finding a
linear combination,

∑k
j=1 rj�j4z5, that we will use to

approximate V ∗4z5. The original problem then reduces
to the problem of solving for k decision variables,
r11 r21 0 0 0 1 rk. The algorithm is initialized with a pre-
determined weight vector, r 405 = 4r

405
1 1 0 0 0 1 r

405
k 5.

2. We generate a finite sample set z11 0 0 0 1 zQ and
approximate the integral in (P1) by a corresponding
finite sum of Q terms. Although any positive mea-
sure, �, can be used in theory, the performance of the
algorithm depends on how the samples are generated.
Han and Van Roy define

�4dz5 2=
1
�
Ɛ

[

∫ �

t=0
e−t/�18Zt∈6z1 z+dz79 dt

]

and then generate z11 0 0 0 1 zQ by simulating (approx-
imately) from this measure. In particular, they first
simulate the horizon T ∼ Exp41/�5 and then simulate
a discrete-time approximation to the dynamics of the
state variables (1c). The value of the state vector at the
simulated time T is taken as one of our Q samples.

3. For each sample, zj , we choose a single cor-
responding �j as follows: given an approximation,
êr 2= �1r1 + · · · + �krk, to V ∗, we myopically choose
a greedy action with respect to êr . That is, we select
�j ∈ arg min�∈KH�64êr54zj57 for each j .

4. Given a weight vector r , we find a new weight
vector r ′ by solving an approximation of (P1) (see
phase 2 of the algorithm below); this approximation
is a linear program that we obtain from steps 1–3.

Steps 3 and 4 are repeated to obtain a sequence of
weight vectors, 8r 4051 r 4151 r 4251 0 0 09. We are now ready
to define the adaptive constraint selection algorithm of
Han and Van Roy.

Adaptive Constraint Selection Algorithm I
for i = 1 to � do

for j = 1 to Q do

�j ∈ arg min
�∈K

H�64êr 4i−1554zj57 (phase 1)

end for

r 4i5 ∈ arg max
r∈�k

Q
∑

j=1

4êr54zj5 (phase 2)

subject to H�j
64êr54zj57≥ 01 ∀ j = 11 0 0 0 1Q

end for
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This algorithm does not necessarily generate an
optimal solution to (P1), and there is no theoretical
guarantee that the sequence r 4i5 will converge. (Han
and Van Roy 2011 did not specify how they handled
nonconvergence, but we suspect they simply used a
different starting point, r 405, in that event.) However,
if it does converge, then Han and Van Roy show it
must converge to an optimal solution of the following
problem, which is an approximation of (P1):

max
r

Q
∑

j=1

4êr54zj5

subject to H64êr54zj57≥ 01 ∀ j = 11 0 0 0 1Q0

(10)

We now discuss in further detail the steps required to
execute phases 1 and 2.

Phase 1
We can expand the objective of phase 1 using (8). If
we then remove terms that do not depend on � and
eliminate the common factor, � − 1, then the problem
of phase 1 can be expressed as

�j ∈ arg min
�∈K

{

1
2�

>6�4êr 4i−1554zj5èPè
>

P 7�

− 64êr 4i−1554zj5�4zj5+èPè
>

Z 4êr 4i−155z4zj57
>�
}

0 (11)

If 4êr 4i−1554zj5 > 0, then (11) is a convex quadratic
program and therefore easy to solve. Otherwise, the
objective in (11) may be unbounded if K is not com-
pact, and some other heuristic approach for comput-
ing �j would be required.

Phase 2
If we expand the constraints of the LP in phase 2
using (8), then we obtain the following LP:

max
r∈�k

c>r

subject to Ar ≥ −11
(12)

where

Aij 2= 41 −�5�j4zi56�
>

i �4zi5+ r4zi57+ 64�j5z4zi57
>�Z4zi5

+ 1
2�4� − 15�j4zi5�

>

i èPè
>

P �i

+ 41 −�564�j5z4zi57
>èZè

>

P �i

+
1
2 tr64�j5zz4zi5èZè

>

Z 7−�j4zi5/�1

and ci 2=�i4z15+�i4z25+· · ·+�i4zQ50 This linear pro-
gram has a k-dimensional decision vector and Q lin-
ear constraints.

4. Extending the LP Approach to the
Case of a Fixed Horizon T

The LP approach of the previous section applies
to problems with an exponentially distributed hori-
zon T , but we would also like to apply it to the case
of a fixed horizon. As we shall see, this extension is
not immediate and requires some work because time t
is also a state variable in this case. We show in §A
of the online supplement that under some technical
conditions, the solution to the HJB equation (6), V ∗, is
also the unique solution to the following optimization
problem:

max
V

∫

V 4z1 t5�4dz1dt5

subject to H�V 4z1 t5≥ 01 ∀� ∈K1 z ∈ S1 t ∈ 601T 71

V 4z1T 5≤ 11 ∀z (boundary condition)1

V ∈C21 (P2)

where � is again some prespecified measure. In
contrast to problem (P1), the boundary condition
V 4z1T 5≤ 1 is required in this case.

The extension of the adaptive constraint selec-
tion algorithm seems straightforward: we choose
basis functions 8�14z1 t51 0 0 0 1�k4z1 t59 to approximate
V ∗4z1 t5 and generate 84z11 t151 4z21 t251 0 0 0 1 4zQ1 tQ59 as
a representative sample of 4z1 t5. As a simple heuristic
for generating this sample, we first generate the tj ’s
as IID ∼ U601T 7, and then, for each tj , we set zj 2=Ztj

,
where Ztj

is obtained by simulating a discrete-time
approximation to the market state dynamics (1c) and
then terminating at time tj . The adaptive constraint
selection algorithm in this case is as follows.

Adaptive Constraint Selection Algorithm II (For a
fixed horizon T )
for i = 1 to � do

for j = 1 to Q do

�j ∈ arg min
�∈K

H�64êr 4i−1554zj1 tj57 (phase 1)

end for

r 4i5 ∈ arg max
r∈�k

Q
∑

j=1

4êr54zj1 tj5 (phase 2)

subject to H�j
64êr54zj1 tj57≥ 01 ∀ j = 11 0 0 0 1Q1

4êr54z1T 5≤ 11 ∀z

end for

We note the boundary condition 4êr54z1T 5 ≤ 1 in
phase 2 applies to all possible z rather than just the
sampled zj ’s. We could, of course, impose this bound-
ary constraint on just a finite subset of z values, but
we will see later that it is straightforward to impose
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the general constraint through an appropriate choice
of basis functions. For example, we could ensure that
each nonconstant basis function has a common fac-
tor T − t. As a result, the only contribution to the left-
hand side of the constraint 4êr54z1T 5 ≤ 1 will come
from a constant basis function, say, �1 ≡ 1. We can
then impose the boundary condition by adding the
linear constraint r1 ≤ 1 to the LP phase 2.

We now discuss the objectives and constraints in
phases 1 and 2 in further detail and, in particular,
why this algorithm is problematic to implement in its
current form.

Phase 1
If we substitute (5) into the objective function of
phase 1, drop all terms that do not depend on �, and
eliminate the common factor, � − 1, then the problem
of phase 1 may be written as

�j ∈ arg min
�∈K

{

1
2�

>6�4êr 4i−1554zj1 tj5èPè
>

P 7�

− 64êr 4i−1554zj1 tj5�4zj5

+èPè
>

Z 4êr 4i−155z4zj1 tj57
>�
}

0 (13)

If 4êr 4i−1554zj1 tj5 > 0, then the phase 1 problem is a
convex quadratic program and therefore easy to solve.
Otherwise, depending on K, (13) may be unbounded.
In this case we simply take �j to be the myopic port-
folio described in §B of the online supplement. We
note here, however, that in the numerical experiments
of §5.1, we rarely encountered negative values of
4êr 4i−1554zj1 tj5. (We considered problems with various
combinations of risk-aversion parameter, �, and hori-
zon T in those numerical experiments. In the worst
case among all such problems, we observed negative
values of 4êr 4i−1554zj1 tj5 only 1.46% of the time. In
most of these problems we never encountered nega-
tive values of 4êr 4i−1554zj1 tj5.)

Phase 2
If we substitute (5) into the constraints of phase 2,
then the problem of phase 2 can be formulated as

max
r∈�k

c>r

subject to Ar ≥ 01

4êr54z1T 5≤ 11 ∀z1

(14)

where

Aij = 41 −�5�j4zi1 ti56�
>

i �4zi5+ r4zi57+ 4�j5z4zi1 ti5
>

·�Z4zi5+
1
2�4� − 15�j4zi1 ti5�

>

i èPè
>

P �i

+ 41 −�564�j5z4zi1 ti57
>èZè

>

P �i

+
1
2 tr64�j5zz4zi1 ti5èZè

>

Z 7+ 4�j5t4zi1 ti51

and ci = �i4z11 t15+�i4z21 t25+ · · · +�i4zQ1 tQ5. Ignor-
ing the boundary conditions, 4êr54·1T 5≤ 1 (which we
can handle through the choice of basis functions as
previously discussed), we see that phase 2 is an LP
with a k-dimensional decision vector and Q linear
constraints.

It turns out that phase 2 here is very problem-
atic. In particular, the constraint Ar ≥ 0 of (14) is
much more difficult to handle than the constraint
Ar ≥ −1 of (12) that occurs in the exponentially dis-
tributed horizon case. This latter set of constraints is
always satisfied by all points in some ball around
the zero vector 0. This is not true in the fixed hori-
zon case where the corresponding constraints are
Ar ≥ 0. Since r is k-dimensional, each of the Q con-
straints in Ar ≥ 0 defines a k-dimensional closed
half-space containing 0 on its boundary. Any feasible
point must therefore lie in the intersection of these
Q half-spaces. Moreover, since Q is typically much
larger than k, the intersection is generally just a single
point—namely, the origin 809. This makes the prob-
lem (14) trivial to solve, but the solution is hardly
desirable.

One ad hoc approach for resolving this issue would
be to relax the constraint Ar ≥ 0 to Ar ≥ −� · 1,
where � is some small positive number. For exam-
ple, in our initial numerical experiment of §5.1, the
value � = 1 appeared to yield the best results among
several different values of �. We did not, however,
have a sensible rule for choosing an appropriate value
of � in advance. Moreover, in §4.1, we propose an
alternative problem formulation that yields superior
results.

4.1. An Alternative Formulation
We propose here a new problem formulation based on
the certainty equivalent return, rce, which is defined
as the certain annualized rate of return that makes the
investor indifferent between accepting it and follow-
ing his optimal trading strategy. It is therefore given
implicitly via

u4w5V ∗4z1 t5= u4werce4z1 t54T−t551

which implies

ln4V ∗4z1 t55= rce4z1 t54T − t541 −�50 (15)

Because rce4z1 t5 is generally “less nonlinear” than the
value function (especially when � is large), it makes
some sense to approximate the log-value function
rather than the value function itself. We assume basis
functions of the form

8�14z1 t51 0 0 0 1�k4z1 t59

= 84T − t5�̃14z1 t51 0 0 0 1 4T − t5�̃k4z1 t59 (16)
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and will use a linear combination of them to approx-
imate ln4V ∗4z1 t55. We also note that any such linear
combination of these functions will automatically sat-
isfy the boundary condition e4êr54z1T 5 ≤ 1 so that this
constraint does not need to be explicitly imposed in
our new adaptive constraint selection algorithm.

Adaptive Constraint Selection Algorithm III (For a
fixed horizon T )
for i = 1 to � do
for j = 1 to Q do

�j ∈ arg min
�∈K

H�6e
4êr 4i−1554zj 1 tj 57 (phase 1)

end for

r 4i5 ∈ arg max
r∈�k

Q
∑

j=1

e4êr54zj 1 tj 5 (phase 2)

subject to H�j
6e4êr54zj 1 tj 57≥ 01 ∀ j = 11 0 0 0 1Q

end for

We provide further details on the steps required for
phases 1 and 2 below.

Phase 1
If we substitute (5) into the objective function of
phase 1, drop terms that do not depend on �, and
then eliminate the common factor, eêr 4i−15

4� − 15, then
the problem of phase 1 may be reduced to

�j ∈ arg min
�∈K

{

1
2�

>6�èPè
>

P 7�

− 6�4zj5+èPè
>

Z 4êr 4i−155z4zj1 tj57
>�
}

1 (17)

where the subscript z in (17) denotes a gradient vec-
tor. In contrast to the previous algorithm, phase 1
is always a convex quadratic program and therefore
easy to solve.

Phase 2
Similarly, if we substitute (5) into the constraints of
phase 2, eliminate the common factor eêr , and rear-
range, we obtain

4êr5z4z1 t5
>�Z4z5+ 41 −�54êr5z4z1 t5

>èZè
>

P �

+
1
2 tr644êr5zz4z1 t5+ 4êr5z4z1 t54êr5z4z1 t5

>5èZè
>

Z 7

+ 4êr5t4z1 t5

≥ −41 −�54�>�+ r5− 1
2�4� − 15�>èPè

>

P � (18)

for 4z1 t5 = 4z11 t151 0 0 0 1 4zQ1 tQ5. Note that if we used
the alternative formulation based on approximating
the log-value function for the case of the exponen-
tially distributed horizon, we would not be able to
eliminate the factor eêr because of the constant term
“1” that appears in the HJB operator in (8). Note also

that the phase 2 objective function contains the expo-
nential term e4êr54zj 1 tj 5 and the constraint (18) contains
the term 4êr5z4z1 t54êr5z4z1 t5

>, which is quadratic
in r . Phase 2 is therefore not an LP.

We resolve this problem by (i) linearizing the objec-
tive function using a first-order Taylor series expan-
sion of ex around zero and (ii) simply dropping the
terms in (18) that are quadratic in r . (We could, of
course, have also used a Taylor expansion to linearize
the constraints, but in our numerical experiments we
obtained very good results by simply dropping the
quadratic terms.) This yields the following LP for
phase 2:

max
r∈�k

c>r

subject to Ar ≥ −d1
(19)

where

Aij 2= 4�j5z4zi1ti5
>�Z4zi5+41−�564�j5z4zi1ti57

>èZè
>

P �i

+
1
2 tr64�j5zz4zi1ti5èZè

>

Z 7+4�j5t4zi1ti51

di 2= 41−�56�>

i �4zi5+r4zi57+
1
2�4�−15�>

i èPè
>

P �i1

ci 2= �i4z11t15+�i4z21t25+···+�i4zQ1tQ50

In our numerical experiments with this algorithm, we
will choose �14z1 t5 = 4T − t5/T as one of our basis
functions. It is then easy to see that A1j = 4T − tj5/T > 0
for all j , so regardless of d, we can ensure Ar ≥ −d
holds by taking r1 sufficiently large. We therefore do
not need to relax the constraints, Ar ≥ −d, as we
needed to do with (14) in our original problem formu-
lation for the problem with a fixed horizon T .

5. Numerical Experiments
We now illustrate the performance of the LP-based
algorithms of §4. We consider several portfolio opti-
mization problems and assume that in each of them
the horizon T is fixed. We consider three different
trading strategies: the strategies that are greedy with
respect to the approximate value functions that are
obtained from the adaptive constraint selection Algo-
rithms II and III, as well as the well-known myopic
strategy we will use as a benchmark. The myopic
strategy is known to perform well under the vari-
ous numerical experiments in HKW and Haugh and
Jain (2011). (Indeed, when � = 1—corresponding to
log utility—the myopic strategy is known to be opti-
mal.) Further details on the myopic strategy can be
found in §B of the online supplement.

The LP-based strategies at any state 4t1Zt5 are
found by solving

�LP1
t = arg min

�∈K

{

1
2�

>6�4êr∗54Zt1 t5èPè
>

P 7�

− 64êr∗54Zt1 t5�+èPè
>

Z 4êr∗5z4Zt1 t57
>�
}

1 (20)



Ahn and Haugh: Linear Programming and the Control of Diffusion Processes
652 INFORMS Journal on Computing 27(4), pp. 646–657, © 2015 INFORMS

�LP2
t = arg min

�∈K

{

1
2�

>6�èPè
>

P 7�

− 6�+èPè
>

Z 4êr∗5z4Zt1 t57
>�
}

0 (21)

We note that �LP1
t and �LP2

t are obtained from (13)
and (17), i.e., phase 1 of Algorithms II and III, respec-
tively, by replacing êr with êr∗, where r∗ is the solu-
tion we obtain from implementing these algorithms.
Similarly the myopic strategy in state 4t1Zt5 is found
by solving the convex quadratic program

�m
t = arg min

�∈K

{

1
2�

>6�èPè
>

P 7�−�>�
}

1 (22)

where � is the time t vector of excess returns.
We used a standard Euler scheme to generate sam-

ple paths of the security prices and state vector Zt .
(We also used stratified sampling as a variance reduc-
tion technique. In particular, we stratified upon the
terminal value of the vector Brownian motion driv-
ing the price and state dynamics and then used the
Brownian bridge construction to simulate the Euler
scheme. See Glasserman 2004 for a discussion of
Euler schemes as well as stratified sampling and the
Brownian bridge construction.) At each time step all
three strategies are found by solving (20), (21), and
(22), respectively. By simulating many paths and aver-
aging the utility of terminal wealth across all paths
for each strategy, we can obtain estimates of the value
functions associated with each of the strategies. In our
numerical results, we will report these value func-
tions as certainly equivalent (CE) annualized returns.
Since these strategies are all feasible, their CE returns
are therefore lower bounds on the CE return for the
(in general) unknown optimal strategy. Finally we can
use the dual approach of HKW (see §C of the online
supplement for a review) to construct upper bounds
on the optimal value. These upper bounds are also
reported as CE returns.

All of the computations in the following three exam-
ples were performed using Matlab running on a laptop
with 4GB RAM and a 2.53 GHz processor. We note that
in all of these examples it took just a couple of seconds
to execute phases 1 and 2 of Algorithm III—the algo-
rithm we ultimately favor—for each 4T 1�5 pair and
each set of trading constraints. When it comes to actu-
ally simulating/evaluating the policies, the computa-
tion times were as follows. For each 4T 1�5 pair and
set of trading constraints in Example 1, it took approx-
imately 5–10 minutes for precalculation of the greedy
policy (with respect to the approximate value function
obtained in phases 1 and 2) on a predefined grid of
sample points 4t1 z5. Note that we only did this precal-
culation in the case of Example 1 because the state vec-
tor is one-dimensional in that case and precalculation
on a one-dimensional grid was feasible. It then took

approximately 1.5 hours to simulate the one million
sample paths. In the case of Examples 2 and 3, it took
between one and four hours to simulate the one mil-
lion sample paths for each 4T 1�5 pair with the specific
time depending on which set of trading constraints
were imposed. But we note that these sample paths
are also used for the myopic policy. Moreover, if one
ever wanted to use these strategies in practice, then
this large simulation step would not be required. (To
actually implement the computed policy in practice,
we would only need to compute the strategy along
the single realized path rather than one million simu-
lated paths.)

5.1. Example 1: Three Risky Assets and a
Single State Variable

Our first numerical example is from HKW, who in
turn based their model on the discrete-time market
model in Lynch (2001). They consider a financial mar-
ket with three risky assets and a single state variable
associated with a four-dimensional Brownian motion.
In our framework of §2 we assumed (without loss
of generality) that the volatility matrix, èP , is invert-
ible. We can enforce this here by simply assuming
that the state variable is in fact a fourth risky security
that we are not allowed to trade. We assume the drift
term of risky assets returns is affine in the state vari-
able, which itself follows an Ornstein–Uhlenbeck pro-
cess with a long-term mean of zero. The asset return
dynamics therefore satisfy

rt ≡ r1

dPt

Pt

= 4�0 +Zt�15 dt +èP dBt1

dZt = −kZt dt +èZ dBt1

where r = 0001, k = 00366, and

�0 =





00142
00109
00089



1 �1 =





00065
00049
00049



1

èP =









00256 0 0 0
00217 00054 0 0
00207 00062 00062 0

−00741 0004 00034 00288









1

èZ =









−00741
0004

00034
00288









>

0

Note that r , èP , and èZ are constant in this model.
When performing simulations, we set the initial
value, Z0 = 0, of the state variable. We use a discretiza-
tion time step of dt = 1/100 in our simulations as
well as in the simulations of the later models of §§5.2
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and 5.3. The horizon T is fixed at either 5 or 10 years,
and the parameter � of the CRRA utility function can
be either 105, 3, or 5. We also consider two sets of
trading constraints:

(i) The unconstrained case where the agent does
not face any trading constraints (except, of course, for
the fourth asset, which is really the state variable and
therefore not tradable). We refer to this as the “incom-
plete markets” case.

(ii) There are no short sales on all the risk securities
as well as a no-borrowing constraint. We refer to this
as the “incomplete markets + no short sales and no
borrowing” case.

In each of our numerical experiments (here and
elsewhere in the paper), we use Q = 101000 sam-
ple points in our two LP-based algorithms. When
we use the adaptive constraint selection Algorithm II,
we use

�= 819∪
{

Pi4z5 ·

(

T − t

T

)j ∣
∣

∣

∣

0 ≤ i ≤ 51 1 ≤ j ≤ 5
}

as our basis functions where Pi4 · 5 is the Chebyshev
polynomial of the first kind of degree i. These poly-
nomials up to degree i = 5 are

P04z5 = 11

P14z5 = z1

P24z5 = 2z2
− 11

P34z5 = 4z3
− 3z1

P44z5 = 8z4
− 8z2

+ 11

P54z5 = 16z5
− 20z3

+ 5z0

Note that except for the first one, all of our basis
functions contain a factor of T − t. As stated ear-
lier, this allows us to easily impose the constraint
4êr54z1T 5≤ 1. In phase 2 of Algorithm II, we set � = 1
to relax the constraints in the linear program (14).
When using Algorithm III associated with our alter-
native formulation, we use

�=

{

Pi4z5 ·

(

T − t

T

)j ∣
∣

∣

∣

0 ≤ i ≤ 51 1 ≤ j ≤ 5
}

as our set of basis functions.
It is perhaps worth mentioning at this point that

ADP methods are often extremely sensitive to the
choice of basis functions and the number of simu-
lated sample paths Q. In our experiments, we found
that the use of Chebyshev polynomials resulted in a
very stable performance in that convergence of the
r 4i5 sequence was rarely an issue. This was not nec-
essarily the case when we experimented with other
sets of basis functions. This, however, is a criticism

of ADP methods in general rather than our (and Han
and Van Roy’s 2011) approach in particular. More-
over, this weakness of ADP methods can be partly
addressed through the use of the duality approach
to construct dual bounds on the optimal value func-
tion. In particular, if we find that the computed dual-
ity gap, i.e., the difference between the lower and
upper bounds, is too wide, then this suggests that
the ADP algorithm is failing to find a sufficiently
good solution. We could then seek to improve it
possibly by changing the set of basis functions or
increasing the number of basis functions that we
use, etc.

Tables 1 and 2 present the results of Algorithms II
and III, respectively. We observe the two trading
strategies driven by the LP approach perform better
than the myopic strategy even when � is close to 1.
In the incomplete markets case, it is actually possi-
ble to compute the optimal solution by solving a sys-
tem of ordinary differential equations. This optimal
solution is reported in the row labeled “V u.” If we
compare the performances of the LP strategies to the
optimal strategy, we see they are generally very close
to each other, although their performances do deteri-
orate somewhat with T and �.

In comparing Tables 1 and 2 more closely, we also
note that Algorithm III is clearly superior to Algo-
rithm II and that this is especially noticeable when
4T 1�5 = 410155. This seems to suggest that the error
due to the linearization in phase 2 of Algorithm III
is quite small. We also noticed similar behavior in
our other numerical experiments, and for this rea-
son, we will only report results from Algorithm III
henceforth.

5.2. Example 2: A Zero-Premium Long-Term Bond
and Three State Variables

The second model we consider is taken from Haugh
et al. (2006b), who in turn based their model and
parameters on Wachter and Sangvinatsos (2005). In
this model there is only one risky asset, which is a
long-term bond maturing at time T . The bond has no
risk premium and there is a three-dimensional state
variable and three-dimensional Brownian motion. In
contrast to the previous model (and the duality devel-
opment in §C of the online supplement), we do not
explicitly define artificial assets so that the number
of risky assets equals the dimension of the Brow-
nian motion (in which case èP will be invertible).
Instead, we directly set the risk premium of the risky
bond as well as the market price of risk process,
�t , to be zero. With these choices, it is clear that
èP� = � will be satisfied. Therefore, if necessary we
could explicitly define artificial asset price dynamics
so that our choice of �, i.e., zero in this example,



Ahn and Haugh: Linear Programming and the Control of Diffusion Processes
654 INFORMS Journal on Computing 27(4), pp. 646–657, © 2015 INFORMS

Table 1 Results of Model 1 Using Algorithm II Strategy

T = 5 T = 10

Function � = 105 � = 3 � = 5 � = 105 � = 3 � = 5

Incomplete markets
LBLP 16.79 10.25 6.98 17.73 11.32 7.80

4160771160805 4100231100285 46096170005 4170711170745 4110301110355 47078170835
UBLP 16.81 10.37 7.25 17.77 11.53 8.29

4160781160845 4100261100475 47010170405 4170741170795 4110381110695 47093180665
LBm 16.64 9.87 6.61 17.45 10.58 7.09

4160621160665 49086190895 46059160625 4170441170475 4100561100595 47008170105
UBm 16.83 10.43 7.31 17.81 11.65 8.37

4160811160865 4100321100545 47016170475 4170791170835 4110481110825 47094180815
V u 16.79 10.32 7.06 17.76 11.55 8.12

Incomplete markets + No short sales and no borrowing
LBLP 10.16 7.82 5.63 10.38 8.48 6.36

4100161100175 47081170835 45061150655 4100371100385 48047180495 46035160385
UBLP 10.17 7.87 5.78 10.39 8.59 6.63

4100171100185 47084170915 45067150895 4100381100395 48056180625 46043160845
LBm 10.16 7.63 5.34 10.37 8.17 5.80

4100151100165 47063170645 45033150355 4100361100375 48016180185 45079150805
UBm 10.21 7.98 5.85 10.46 8.85 6.80

4100211100225 47094180025 45074150975 4100451100465 48080180905 46056170055

Notes. Rows marked “LBLP ” and “LBm” report estimates of the CE annualized percentage returns rCE from the strategy determined by Algorithm II and the
myopic strategy, respectively. Approximate 95% confidence intervals are reported in parentheses. Estimates are based on one million simulated paths. The
row “V u” reports the optimal value function for the problem. Rows marked “UBLP ” and UBm” report estimates of the upper bound on the true value function
computed using these strategies.

would be the unique market price of risk process in
the unconstrained market. Clearly, then, we do not
need to explicitly define artificial asset price dynam-
ics in order to apply the dual methodology. (See also

Table 2 Results of Model 1 Using Algorithm III Strategy

T = 5 T = 10

Function � = 105 � = 3 � = 5 � = 105 � = 3 � = 5

Incomplete markets
LBLP 16.79 10.32 7.05 17.77 11.50 8.07

4160771160815 4100291100355 47000170095 4170751170785 4110441110555 48001180145
UBLP 16.79 10.34 7.06 17.77 11.54 8.29

4160761160825 4100261100435 46087170255 4170751170805 4110421110675 48004180555
LBm 16.63 9.86 6.59 17.46 10.57 7.09

4160611160645 49084190875 46058160615 4170451170475 4100561100585 47008170105
UBm 16.82 10.41 7.12 17.82 11.72 8.50

4160791160845 4100331100505 46093170325 4170801170855 4110591110845 48024180775
V u 16.79 10.32 7.06 17.76 11.55 8.12

Incomplete markets + No short sales and no borrowing
LBLP 10.16 7.83 5.68 10.38 8.52 6.55

4100151100165 47082170845 45066150715 4100381100385 48051180535 46052160585
UBLP 10.16 7.83 5.67 10.38 8.53 6.63

4100151100165 47080170865 45055150805 4100381100395 48050180555 46050160775
LBm 10.15 7.63 5.33 10.37 8.17 5.80

4100151100165 47062170645 45032150345 4100361100375 48016180185 45079150805
UBm 10.20 7.96 5.77 10.46 8.84 6.98

4100201100215 47091180005 45062150915 4100451100475 48079180895 46081170155

Notes. Rows marked “LBLP ” and “LBm” report estimates of the CE annualized percentage returns rCE from the strategy determined by Algorithm III and the
myopic strategy, respectively. Approximate 95% confidence intervals are reported in parentheses. Estimates are based on one million simulated paths. The
row “V u” reports the optimal value function for the problem. Rows marked “UBLP ” and “UBm” report estimates of the upper bound on the true value function
computed using these strategies.

the final paragraph of §C of the online supplement,
where we explain why the choice of artificial asset
price dynamics does not impact the dual bound in
our numerical examples.)
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Assume that the state variable follows a three-
dimensional Ornstein–Uhlenbeck process reverting to
zero vector. More precisely, the asset return dynamics
satisfy the following SDEs:

rt = �0 + �1Zt1

dPt

Pt

= rt dt +èP dBt1

dZt = −KZt dt +èZ dBt1

where

K =





00576 0 0
0 30343 0

−00421 0 00083



 1 èZ =





1 0 0
0 1 0
0 0 1



 1

�0 = 000561 �1 =





00018
00007
00010





>

1

and èP = −�1K
−14I − e−4T−t5K5èZ, which forces the

bond price to equal the face value at maturity. Note
that the diffusion vector, èP , of the asset return is time
dependent in this model.

The initial state variable is Z0 = 0, the time
to maturity is T = 5 years, and the risk-aversion
coefficient is � = 15, which reflects a high degree
of risk aversion. This is intentional because we
can guess in this case that the policy of hold-
ing all of the portfolio in the long-term bond
should be very close to optimal. In this particu-
lar model, then, we can consider the buy-and-hold
policy, which invests all in the long-term bond, as
another benchmark. Note that the myopic strategy
in this case will simply invest everything in the
cash account since the risk premium on the long-
term bond is zero. In this model (and model 3
below), we consider two sets of trading constraints.
In the first, the investor does not face any trading
constraints and simply has an incomplete markets
problem. In the second case, the investor faces a no-
borrowing constraint in addition to an incomplete
market.

In applying Algorithm III, we choose

� =
{

Pi4z15 · Pj4z25 · Pk4z35 · 4T − t/T 5l

∣

∣ 0 ≤ i+ j + k ≤ 31 1 ≤ l ≤ 3
}

as our set of basis functions where once again Pi

denotes the Chebyshev polynomial of degree i.
Table 3 displays the results of this experiment.

As expected, because of the high value of �, we
observe that the performance of the buy-and-hold
policy on the long-term bond is much better than
that of the myopic policy. Surprisingly, however,
the LP approach performs even better and produces
lower and upper bounds that, to two decimal places
at least, are identical.

Table 3 Results of Model 2 Using Algorithm III Strategy

Function Incomplete markets Incomplete markets + No borrowing

LBLP 5.52 5.52
45052150525 45052150525

UBLP 5.52 5.52
45052150525 45052150525

LBm 4.41 4.41
44040140415 44041140425

UBm 5.52 5.52
45052150525 45052150525

LBLT 5.51 5.51
45051150515 45051150515

UBLT 5.53 5.58
45052150535 45057150595

Notes. Rows “LBLP ,” “LBm ,” and “LBLT ” report estimated CE annualized per-
centage returns rCE from the strategy determined by Algorithm III, the myopic
strategy, and the buy-and-hold strategy on the long-term bond, respectively.
Approximate 95% confidence intervals are reported in parentheses. Esti-
mates are based on one million simulated paths. The rows marked “UBLP ,”
“UBm ,” and “UBLT ” report estimates of the upper bound on the true value
function computed using these strategies.

5.3. Example 3: Two Risky Bonds and a
Stock Index with Four State Variables

In our final model, which is again taken from Haugh
et al. (2006b), there are three risky assets: two bonds
with maturities 3 years and 10 years, respectively,
and a stock index. There is a four-dimensional state
variable and a five-dimensional Brownian motion.
As was the case with Example 2, we explicitly
define the market price of risk process �t instead
of defining additional artificial risky assets that the
investor will not be permitted to trade. (We note
from the dynamics in (23b) and (23c) that our choice
of � satisfies èP� = �. The same argument that we

Table 4 Parameters for Model 3 Defining the Instantaneous
Risk-Free Rate, Risk Premium, and State Variable
Processes in (23a), (23b), and (23d), Respectively

Parameter Value

K 00576 0 0 0
0 30343 0 0

−00421 0 00083 0
0 0 0 00080

èZ 100000 0 0 0 0
0 100000 0 0 0
0 0 100000 0 0
0 0 0 001600 003664

�0 00056

�1 00018 00007 00010 0

�>

0 −005630 −002450 −002190 004400 0

�>

1 0 0 005370 001110 0
107540 −108150 003760 003050 0

0 0 −000820 −000170 0
0 0 0 000700 0
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Table 5 Results of Model 3 Using Algorithm III Strategy

Incomplete markets Incomplete markets + No borrowing

Function � = 105 � = 3 � = 5 � = 105 � = 3 � = 5

LBLP 59.47 35.82 24.65 32.26 20.59 15.45
4590391590545 4350671350985 4240201250145 4320121320405 4200461200725 4150311150595

UBLP 59.49 35.97 25.91 32.31 20.77 15.79
4590381590615 4350531360415 4240971260895 4320111320525 4200401210155 4150151160445

LBm 59.06 34.59 23.61 32.15 20.23 15.09
4590001590135 4340521340665 4230551230675 4320031320285 4200131200325 4150021150175

UBm 60.01 37.54 27.40 32.55 21.18 16.34
4590901600125 4370171370925 4260391280445 4320341320755 4200741210645 4150451170275

Notes. Rows “LBLP ” and “LBm” report estimated CE annualized percentage returns rCE from the strategy determined by Algorithm III and the myopic strategy,
respectively. These estimates are based on one million simulated paths for the incomplete market problem and 100,000 paths for the no-borrowing problem.
Approximate 95% confidence intervals are reported in parentheses. Rows “UBLP ” and “UBm” report the estimates of the corresponding upper bounds on the
true value function.

provided in the case of Example 2 would then apply
here. In particular, there is no need to explicitly
define artificial asset price dynamics in order to com-
plete the unconstrained market.) We assume the state
vector follows a four-dimensional mean-reverting
Ornstein–Uhlenbeck process with mean zero vector.
The asset return and the risk premium dynamics sat-
isfy the SDEs:

rt = �0 + �1Zt1 (23a)

�t = �0 +�1Zt1 (23b)

dPt

Pt

= 4rt · 1+èP�t5 dt +èP dBt1 (23c)

dZt = −KZt dt +èZ dBt1 (23d)

where Q =K +èZ�1 and

èP =









−�1Q
−14I − e−3·Q5èZ

−�1Q
−14I − e−10·Q5èZ

−000126 000057 − 000295 00143 0









0

The particular forms of the first and second rows of
èP imply that we use dynamic rollover strategies for
the 3-year and 10-year bonds so that the duration of
the bonds should be maintained at 3 and 10 years by
continuous reinvestment. The other parameter values
are K, èZ, �0, �1, �0, and �1, reported in Table 4. The
initial state vector is Z0 = 0, the horizon is T = 5 years,
and the constant relative risk-aversion coefficient � is
set to 105, 3, and 5.

When we use the adaptive constraint selection
Algorithm III, we use

� =
{

Pi4z15Pj4z25Pk4z35Pl4z454T − t/T 5m

∣

∣ 0 ≤ i+ j + k+ l ≤ 21 1 ≤m≤ 10
}

as our set of basis functions.

Table 5 displays the numerical results for this
model. The results are consistent with our earlier
examples in that, regardless of the market trading
constraints, the LP strategy outperforms the myopic
strategy. The gap between the two trading strate-
gies is more visible here than in model 1, for exam-
ple. When � = 5 in the incomplete markets case, the
duality gap of 25091 − 24065 = 1026% suggests that
the LP-based strategy is still reasonably far from the
optimal strategy. As stated earlier, we suspect that
we could improve the LP-based strategy via a more
careful linearization of the constraints in phase 2 of
Algorithm III.

6. Conclusions
We have extended the linear programming approach
of Han and Van Roy (2011) to compute good subopti-
mal solutions for high-dimensional control problems
in a diffusion-based setting with fixed time horizons.
In considering numerical examples drawn from port-
folio optimization, we were able to show that our
suboptimal solutions are indeed very good by using
them to construct tight lower and upper bounds
on the optimal value functions for these problems.
These results suggest that the LP approach is a very
promising one for tackling high-dimensional control
problems.

There are several possible directions for future re-
search. First, it would be interesting to extend the
methodology to jump diffusions and other more gen-
eral settings. There is also scope for additional theo-
retical work in order to better understand the prop-
erties of these LP-based algorithms. Given some of
the necessary ad hoc steps of the LP approach in this
paper and the original work of Han and Van Roy
(2011), this may be particularly challenging.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2015.0651.

http://dx.doi.org/10.1287/ijoc.2015.0651
http://dx.doi.org/10.1287/ijoc.2015.0651


Ahn and Haugh: Linear Programming and the Control of Diffusion Processes
INFORMS Journal on Computing 27(4), pp. 646–657, © 2015 INFORMS 657

References
Bertsekas DP (2005) Dynamic Programming and Optimal Control,

3rd ed., Vol. I (Athena Scientific, Nashua, NH).
Bertsekas DP (2012) Dynamic Programming and Optimal Control,

4th ed., Vol. II (Athena Scientific, Nashua, NH).
Bick B, Kraft H, Munk C (2012) Solving constrained consumption

investment problems by simulation of artificial market strate-
gies. Management Sci. 59:485–503.

de Farias DP, Van Roy B (2003) The linear programming approach
to approximate dynamic programming. Oper. Res. 51:850–865.

de Farias DP, Van Roy B (2004) On constraint sampling in the lin-
ear programming approach to approximate dynamic program-
ming. Math. Oper. Res. 29:462–478.

Duffie D (1996) Dynamic Asset Pricing Theory (Princeton University
Press, Princeton, NJ).

Glasserman P (2004) Monte Carlo Methods in Financial Engineering
(Springer-Verlag, New York).

Han J, Van Roy B (2011) Control of diffusions via linear pro-
gramming. Infanger G, ed. Stochastic Programming: The State of

the Art, in Honor of George B. Dantzig (Springer, New York),
329–354.

Haugh MB, Jain A (2011) The dual approach to portfolio evaluation:
A comparison of the static, myopic and generalized buy-and-
hold strategies. Quant. Finance 11:81–99.

Haugh MB, Kogan L, Wang J (2006a) Evaluating portfolio strate-
gies: A duality approach. Oper. Res. 54:405–418.

Haugh MB, Kogan L, Wu Z (2006b) Portfolio optimization with
position constraints: An approximate dynamic programming
approach. Working paper, Columbia University, New York.

Lynch A (2001) Portfolio choice and equity characteristics: Charac-
terizing the hedging demands induced by return predictability.
J. Financial Econom. 62:67–130.

Schweitzer P, Seidmann A (1985) Generalized polynomial approx-
imations in Markovian decision processes. J. Math. Anal. Appl.
110:568–582.

Wachter J, Sangvinatsos A (2005) Does the failure of the expec-
tations hypothesis matter for long-term investors? J. Finance
60:179–230.


