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Abstract

We apply the recently developed duality methods based on information relaxations to the
classic linear quadratic (LQ) control problem. We derive two dual optimal penalties for the
LQ problem when the control space is unconstrained. These two penalties, which are derived
using value function and gradient methods, respectively, may be used to evaluate sub-optimal
policies for constrained LQ problems when it is not possible to determine the optimal policy
exactly. We also compare these dual penalties to the dual penalty of Davis and Zervos (1994).
This connection to the earlier work of Davis and Zervos is not widely known and demonstrates
that some of these duality ideas have been in circulation for some time. We also emphasize that
while the three penalties are dual optimal, they are not identical. Indeed their differences have
significant implications when the penalties are used via Monte-Carlo to evaluate sub-optimal
policies for constrained LQ problems. Our conclusions should apply more generally to other
stochastic control problems.



1 Introduction

In this note we apply recently developed duality techniques for stochastic control problems to the
classic linear quadratic (LQ) control problem. These techniques were developed independently by
Rogers (2007) and Brown, Smith and Sun (2010) and are based on relaxing the decision-maker’s
information constraints. This work was motivated in part by the duality techniques developed
by Davis and Karatzas (1994), Rogers (2002) and Haugh and Kogan (2004) for optimal stopping
problems and the pricing of American options in particular. These duality techniques (of Rogers
2007 and Brown et al. 2010) can be used to evaluate sub-optimal policies for control problems that
are too difficult to solve exactly. In particular, the sub-optimal policy may be used to compute
both primal and dual bounds on the optimal value function. The primal bound can be computed
by simply simulating the sub-optimal policy whereas the aforementioned duality techniques can be
used with the sub-optimal policy (or indeed some other policy) to compute the dual bound. If the
primal and dual bounds are close to one another then we know that the sub-optimal policy is close
to optimal. We believe that these techniques will play an increasingly important role in the area of
sub-optimal control and that there are many interesting related research questions to be resolved.

In this note we focus on finite horizon LQ problems and we derive two dual optimal penalties when
the control space is unconstrained. The first penalty is derived using knowledge of the optimal
value function whereas the second penalty is derived using the gradient methods developed by
Brown and Smith (2010) in the context of dynamic portfolio optimization under transaction costs.
These penalties and others may then be used to evaluate sub-optimal policies for constrained LQ
problems when it is not possible to determine the optimal policy exactly. If the controls are not
too constrained then we expect the optimal unconstrained penalties to be close to optimal for the
constrained problem and therefore to lead to good dual bounds. We emphasize that the derivation of
these penalties is quite straightforward and is only a modest contribution to this growing literature.

We also compare these dual techniques to the work of Davis and Zervos (1994) who used Lagrange
multipliers to show that a stochastic LQ problem may be reduced to a deterministic LQ problem.
Indeed it is easy to show that their Lagrange multipliers are also optimal dual penalties. This
connection to the earlier work of Davis and Zervos is not widely known and it highlights that some
of these duality ideas have been in circulation for some time. In fact within the stochastic control
literature1 the idea of relaxing the non-anticipativity constraints goes back at least to Davis (1989,
1991). It is also interesting to note that these developments appear to mirror the development of
the duality methods for solving optimal stopping problems as mentioned earlier. In this case, Davis
and Karatzas (1994) used a dual formulation to characterize the optimal solution to the optimal
stopping problem. Rogers (2002) and Haugh and Kogan (2004) were not aware2 of Davis and
Karatzas when they independently developed dual formulations of the optimal stopping problem.
Their focus, however, was on using these dual formulations to construct good dual bounds for
optimal stopping problems that were too difficult to solve exactly. This was also the focus of
Rogers (2007) and Brown et al. (2010) who developed their dual techniques with a view to using
them to evaluate sub-optimal strategies. In contrast, the seminal work of Davis and his co-authors
appears to have been only on characterizing optimal solutions.

A further contribution of this note is a comparison of the three optimal dual penalties for the
unconstrained LQ problem. We emphasize that while the three penalties are dual optimal, they
are not actually identical. Indeed as demonstrated by Brown et al. (2010), the penalty function

1It has also been a feature of the stochastic programming literature where it has often been applied to stochastic
programs with just a few periods.

2Davis and Karatzas (1994) published their paper as a book chapter and as a result, was not widely known until
sometime afterwards.
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constructed using the optimal value function is almost surely optimal whereas the other penalties
are only optimal in expectation3. This observation should have significant implications when we use
dual penalties to evaluate sub-optimal policies for constrained control problems in general. However,
it is also worth mentioning that dual penalties constructed using value function approximations
can be quite challenging to work with and so we expect the gradient approach to often be a viable
alternative.

The remainder of this paper is organized as follows. We briefly review the duality approach of
Brown et al. (2010) in Section 2 and then derive optimal dual penalties for the unconstrained LQ
problem in Section 3. We review the results of Davis and Zervos (1994) in Section 4 and compare
their dual penalty to the dual penalties derived in Section 3. We conclude in Section 5 and identify
several directions for further research.

2 Review of Duality Based on Information Relaxations

We begin with a general finite-horizon discrete-time dynamic program with a probability space,
(Ω,F ,P). Time is indexed by k = 0, . . . , N and the evolution of information is described by the
filtration F = {F0, . . . ,FN} with F = FN . We make the usual assumption that F0 = {∅, Ω} so that
the decision maker starts out with no information regarding the outcome of uncertainty. There is
a state vector, xk ∈ Sk, where Sk is the time k state space. The dynamics of xk satisfy

xk+1 = fk(xk, uk, wk+1), k = 0, . . . , N − 1 (1)

where uk ∈ Uk(xk) is the control taken at time k and wk+1 is an Fk+1-measurable random distur-
bance. A feasible strategy, u := (u0, . . . , uN−1) is one where each individual4 action, uk ∈ Uk(xk)
is Fk-measurable. In particular, we require the decision-maker’s strategy, u, to be be Fk-adapted.
We use UF to denote the set of all such Fk-adapted strategies. The objective is to select a feasible
strategy, u, to minimize the expected total cost,

g(u) := gN (xN ) +
N−1∑

k=0

gk(xk, uk)

where we assume5 each gk(xk, uk) is Fk-measurable. In particular, the decision maker’s problem is
then given by

J0(x0) ≡ inf
u∈UF

E0

[
gN (xN ) +

N−1∑

k=0

gk(xk, uk)

]
(2)

where the expectation in (2) is taken over the set of possible outcomes, w = (w1, . . . , wN−1) ∈ Ω.
To emphasize that the total cost is random, we will often write g(u,w) for g(u). Letting Jk denote
the time-k value function for the problem (2), the associated dynamic programming recursion is
given by6

JN (xN ) := gN (xN )
Jk(xk) := inf

uk∈Uk(xk)
{gk(xk, uk) + Ek [Jk+1 (fk(xk, uk, wk+1)]} k = 0, . . . , N − 1. (3)

3We will clarify this statement in Section 2.
4Brown et al. (2010) use a slightly more general formulation where they assume that Uk = Uk(u0, . . . , uk−1) can

depend on the entire history of past actions and states.
5This assumption is without loss of generality. Suppose for example the true time k cost is g̃k(xk, uk, wk+1) so

that it depends on the as yet unobserved disturbance, wk+1. Then we can replace this cost with gk(xk, uk) :=
Ek [g̃k(xk, uk, wk+1)] which is Fk-measurable.

6We write Ek [·] for E [· | Fk] hereafter.
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In practice of course it is often too difficult or time-consuming to perform the iteration in (3). This
can occur, for example, if the state vector, xk, is high-dimensional or if the constraints imposed
on the controls are too complex or difficult to handle. In such circumstances, we must be satisfied
with sub-optimal solutions or policies.

2.1 The Dual Formulation

We now briefly describe the dual formulation of Brown et al. (2010) which should be consulted for
further details and proofs of the results given below. Note, however that Brown et al. (2010) focus
on problems where the primal problem is a maximization problem. We have chosen to specify our
primal problem as a minimization problem so that we are consistent with the usual formulation of
linear-quadratic problems where the goal is to minimize expected total costs.

We say the filtration G := {Gk} is a relaxation of F if, for each k, Fk ⊆ Gk. We write F ⊆ G to
denote such a relaxation. For example, the perfect information filtration, I := {Ik}, is obtained by
taking Ik = F for all k. We let UG denote the set of all Gk-adapted strategies. It is clear then that
for any relaxation, G := {Gk}, we have UF ⊆ UG ⊆ UI so that as we relax the filtration, we expand
the set of feasible policies.

The set of penalties, Z, is the set of all functions z(u,w) that, like the set of costs, depend on the
choice of actions, u, and the outcome, w. We define the set, ZF, of dual feasible penalties to be
those penalties that do not penalize temporally feasible, i.e. Fk-adapted, strategies. In particular,
we define

ZF := {z ∈ Z : E0 [z(u,w)] ≤ 0 for all u ∈ UF}. (4)

We then have the following version of weak duality, the proof of which follows immediately from
the definition of dual feasibility in (4) and because G is a relaxation of F.

Lemma 1 (Weak Duality)
If uF and z are primal and dual feasible respectively, i.e. uF ∈ UF and z ∈ ZF, then

E0 [g(uF , w)] ≥ inf
uG∈UG

E0 [g(uG, w) + z(uG, w)] . (5)

Therefore any dual feasible penalty and information relaxation provides a lower bound on the opti-
mal value function. Clearly weaker relaxations lead to weaker lower bounds as a weaker relaxation
will increase the set of feasible policies over which the infimum is taken in (5). In the case of the
perfect information relaxation we have G = I and the lower bound takes the form

E0 [g(uF , w)] ≥ inf
u∈UI

E0 [g(u,w) + z(u,w)] = E0

[
inf

u∈UI
{g(u,w) + z(u,w)}

]
.

For a given information relaxation, we can optimize the lower, i.e., dual bound, by optimizing over
the set of dual-feasible penalties. This leads to the dual of the primal DP:

Dual Problem: sup
z∈ZF

{
inf

uG∈UG
E0 [g(uG, w) + z(uG, w)]

}
. (6)

By weak duality, if we identify a policy, uF , and penalty, z, that are primal and dual feasible,
respectively, such that equality in (5) holds, then uF and z must be optimal for their respective
problems. Moreover, if the primal problem (2) has a finite solution, then so too has the dual
problem (6), and there is no duality gap. This yields the following result.
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Theorem 1 (Strong Duality)
Let G be a relaxation of F. Then

inf
u∈UF

E0 [g(uF , w)] = sup
z∈ZF

{
inf

uG∈UG
E0 [g(uG, w) + z(uG, w)]

}
(7)

Furthermore, if the primal problem on the left is bounded, then the dual problem on the right has
an optimal solution, z∗ ∈ ZF, and there is no duality gap.

There is also a version of complementary slackness.

Theorem 2 (Complementary Slackness)
Let u∗F and z∗ be feasible solutions for the primal and dual problems, respectively, with informa-
tion relaxation G. A necessary and sufficient condition for these to be optimal solutions is that
E0 [z∗(u∗F )] = 0

E0 [g(u∗F , w) + z∗(u∗F , w)] = inf
uG∈UG

E0 [g(uG, w) + z∗(uG, w)] . (8)

Note that Theorem 2 implies that with an optimally chosen penalty, z∗, the decision-maker in
the dual DP will be happy to choose a non-anticipative control, despite not being restricted to do
so. As shown by Brown et al. (2010), we can also take advantage of any structural information
regarding the optimal solution to the primal problem. In particular, if it is known that the optimal
solution to the primal problem has a particular structure, then we can restrict ourselves to policies
with the same structure when solving the dual optimization problem.

2.2 Using the Dual Formulation to Construct Dual Bounds

In practice it is often the case that we are unable to compute the solution to the primal DP
exactly. However, we can compute a lower bound on the optimal value function of the primal
DP by starting with a dual feasible penalty function, z(u,w) :=

∑N−1
k=0 zk(u,w), and then using

this penalty function on the right-hand-side of (5). In particular, we do not seek to optimize over
the dual penalty but hope that the penalty function we have chosen is sufficiently good so as to
result in a small duality gap. We will only consider perfect information relaxations in this paper
so that G = I. This is because the perfect information relaxations result in dual problems that
are deterministic optimization problems which are often easy to solve. If we use other information
relaxations then the resulting dual problems remain stochastic in which case it is generally difficult
to handle constraints on the control vector, u. If we use Jdb(x0; z) to denote the resulting dual or
lower bound from solving the dual problem then we see that Jdb(x0; z) satisfies

Jdb = inf
uG∈UG

E0 [g(uG, w) + z(uG, w)] (9)

= inf
uG∈UG

E0

[
gN (xN ) +

N−1∑

k=0

(gk(xk, uk) + zk(uG, w))

]

= E0

[
inf

uG∈UG

{
gN (xN ) +

N−1∑

k=0

(gk(xk, uk) + zk(uG, w))

}]
. (10)

The optimization problem inside the expectation in (10) can be solved as a deterministic optimiza-
tion problem after substituting for the xk’s using (1). An unbiased dual bound on the optimal
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value function, J0(x0), can therefore be estimated by first simulating M paths of the noise process,
w. If we label these paths w(i) := (w(i)

0 , . . . , w
(i)
N−1) for i = 1, . . . , M , and set

J
(i)
db (x0; z) := inf

uG∈UG

{
gN (xN ) + zN (u,w(i)) +

N−1∑

k=0

(
gk(xk, uk) + zk(uG, w(i))

)}
(11)

with the xk’s satisfying (1) then

Jdb(x0; z) :=
1
M

M∑

i=1

J
(i)
db (x0; z) (12)

is an unbiased dual or lower bound for J0(x0).

2.3 Constructing Dual Penalties

We outline two methods for constructing dual feasible penalties that we will use in Section 3. We
emphasize again that we only consider perfect information relaxations so that Gk = Ik for all k.

Using Value Function Approximations to Construct Dual Penalties

Brown et al. (2010) propose taking

zk(u,w) := Ek [vk(u,w)] − E [vk(u, w) | Gk]
= Ek [vk(u,w)] − vk(u,w) (13)

where vk(u,w) only depends on (u0, . . . , uk) and where (13) follows since we are using the perfect
information relaxation here so that Gk = F for all k. It is easy to see that penalties defined in this
manner are dual feasible. Indeed we easily obtain that E0 [zk(uF )] = 0 for all uF ∈ UF. Brown et
al. (2010) call the vk(u)’s generating functions and show that if we take vk(u) := Jk+1(xk+1) where
Jk+1 is the optimal value function of the primal DP, then the corresponding penalty,

z(u, w) =
N−1∑

i=0

(Ek [Jk+1(xk+1)] − Jk+1(xk+1)) , (14)

is optimal and results in a zero duality gap. Moreover, they show that g(u∗F , w) + z(u∗F , w) =
E0 [g(u∗F , w)] almost surely with this choice of penalty. This will not be true of the gradient based
penalty and the penalty of Davis and Zervos (1994) that we discuss in Section 4.

Note that (14) clearly implies that if we know the optimal value function to within a constant then
that is enough to obtain a lower bound with a zero duality gap. More generally, this observation
suggests that a good approximation to the shape of the value function should often be sufficient for
obtaining a good upper bound. In practice, we do not know Jk and therefore cannot compute the
dual penalty of (14). Nonetheless if we have a good approximation, say J̃k to Jk then we could use

z̃(u,w) :=
N−1∑

i=0

(
Ek

[
J̃k+1(xk+1)

]
− J̃k+1(xk+1)

)
(15)

as a dual feasible penalty and hope to still obtain a good lower bound. This program has been
implemented successfully in practice in the context of American options and indeed in the examples
of Brown et al. (2010) and Brown and Smith (2010). However, the dual penalty of (15) has a number
of weaknesses that can result in (11) being difficult to solve in practice. These weaknesses include:
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1. It is not always the case that an approximate value function, J̃k(·), is readily available. Even if
a good sub-optimal policy is available, it is often the case that the value function corresponding
to that sub-optimal policy is unknown. While we could simulate the sub-optimal policy and
use the resulting rewards to estimate the value function this would require additional work
and we would still have to overcome problems two and three below.

2. Even if we do have J̃k+1(·) available to us for each k, we may not be able to compute
Ek

[
J̃k+1(xk+1)

]
analytically and so we cannot write z̃(u, w) in (15) as an analytic function

of the ui’s. This in turn makes it very difficult in general to solve the optimization problem
in (11).

3. Even when we can compute Ek

[
J̃k+1(xk+1)

]
analytically, it may be the case that the result-

ing penalty, z̃(u,w), causes an otherwise easily-solved deterministic optimization problem to
become very difficult. For example, it may be the case that (11) is convex and easy to solve if
we assume a zero penalty function but that convexity is lost if we construct z̃(u,w) according
to (14). One possible solution to this problem is to use an approximation to z̃(u,w) that
is linear or otherwise convex in u. This approach has been used successfully by Brown and
Smith (2010) for solving portfolio optimization problems with transaction costs but there is
no guarantee that it will work in general. In particular, if the desired penalty, z̃(u,w), is very
non-linear in u then the linearization approach may result in poor dual bounds.

These weaknesses are not to suggest that dual bounds based on penalties like (14) cannot work
well in practice. Indeed as mentioned earlier, there are several applications where they have been
used successfully. However, it would appear that, when they can be applied, dual penalties based
on gradients are a promising alternative for several reasons. In particular, they do not require an
approximation, J̃k(·), to the value function and so the first two problems listed above do not arise.
The third problem above also turns out to be a non-issue as gradient-based penalties are linear in
the control, u. We now describe these gradient penalty functions.

2.3.1 Constructing Dual Penalties Using Gradients

Brown and Smith (2010) developed a gradient-based dual penalty function for perfect information
relaxations in the context of dynamic portfolio optimization problems with transaction costs. We
will describe their gradient penalty for the more general dynamic program of (3). We define

z∗g(u,w) := ∇ug(u∗(w))′ (u∗(w)− u) (16)

where u∗ = (u∗0, . . . , u
∗
N−1) is the optimal control for the primal dynamic programming problem

in (3) and u = (u0, . . . , uN−1) is an arbitrary control policy. Note that we are therefore implicitly
assuming that the total cost, g(u,w), is differentiable in the controls, u. If we view the primal
problem in (2) as an optimization problem with the entire strategy, u, as the decision variable, then
assuming the space of feasible strategies is convex, the first order conditions for optimality are

E0

[∇ug(u∗(w))′ (u∗(w)− u)
] ≤ 0 (17)

which implies in particular that zg(u,w) is dual feasible. Moreover, Brown and Smith (2010)
showed7 that when the cost function is convex the dual feasible penalty in (16) is indeed an optimal

7Since Brown and Smith’s (2010) primal problem was a maximization problem, they needed to show that their
reward function, i.e. utility of terminal wealth, was concave in the set of feasible trading strategies.
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dual penalty. Note that with this choice of penalty the dual deterministic optimization problem in
(11) has the form

inf
uG∈UG

{
gN (xN ) +

N−1∑

k=0

(
gk(xk, uk) +∇uk

g(u∗)′ (u∗k(w)− uk)
)
}

. (18)

Moreover the gradient penalty is linear in u and this suggests that the dual problem with this
penalty should be no harder to solve then the deterministic version of the primal problem.

The difficulty with using (18) of course is that we don’t know u∗, the optimal control policy. Indeed
if we did know u∗ then there would be no problem to solve. Brown and Smith (2010), however,
recognized that under certain circumstances they could use zg(u, w) instead of z∗g(u, w) as their
dual penalty where

zg(u,w) := ∇ug(ũ(w))′ (ũ(w)− u) (19)

and where ũ is the optimal solution to an alternative approximate problem. For example, in their
dynamic portfolio optimization problem, Brown and Smith (2010) took ũ to be the optimal control
for the dynamic portfolio optimization problem without transactions costs. Because (i) ũ is optimal
for this alternative problem and (ii) the space of feasible controls for the alternative problem
contains the space of feasible controls for the original problem they could still conclude

E0

[∇ug(ũ(w))′ (ũ(w)− u)
] ≤ 0 (20)

for all Fk-adapted trading strategies so that this alternative gradient penalty is also dual feasible.
Moreover, intuition suggests that (19) should be similar to (16) in which case we would expect to
obtain good dual bounds using (19). This was indeed the case for the problems and parameter
values considered by Brown and Smith (2010).

The advantage of the gradient penalty in (18) over the value-function based penalty in (14) is that
it does not require knowledge of the value function and that it is liner in the controls, u. The
disadvantage of the gradient approach is that it is not always applicable since it assumes that the
cost function is differentiable in u. It also requires the space of feasible strategies to be convex.
Finally, even if it is applicable we will see in Section 3 that the optimal gradient penalty, while
dual optimal, does not result in a dual objective function that equals the primal objective function
almost surely. Equality is only in expectation and this is in contrast to the value-function based
penalty in (14) as we discussed earlier.

3 Finite Horizon Linear-Quadratic Control Problems

We now apply the duality ideas of Section 2 to constrained LQ problems. We first review the finite
horizon, discrete-time LQ problem as formulated, for example, in Berstekas (2000). We consider
the complete information version only as it is well known that that the incomplete information
version can be reduced to the complete information case. Let xk denote the n-dimensional state
vector at time k. We assume it has dynamics that satisfy

xk+1 = Akxk + Bkuk + wk+1, k = 0, 1, . . . , N − 1 (21)

where uk is an m-dimensional vector of control variables and the wk’s are n-dimensional independent
vectors of zero-mean disturbances with finite second moments. It will be useful later to observe
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that (21) implies

xk =

(
k−1∏

i=0

Ai

)
x0 +

k−1∑

i=0




k−1∏

j=i+1

Aj


 (Biui + wi+1) for k = 0, . . . , N (22)

with the understanding that an empty product in (22) equals 1. As before we let Fk denote
the filtration generated by the wk’s. The objective then is to choose Fk-adapted controls, uk, to
minimize

EF0

[
x′NQNxN +

N−1∑

k=0

(
x′kQkxk + u′kRkuk

)
]

where the Qk’s and Rk’s are positive semi-definite and positive definite, respectively. The optimal
solution is easily seen8 to satisfy

u∗k(xk) = Lkxk

where
Lk := − (

B′
kKk+1Bk + Rk

)−1
B′

kKk+1Ak (23)

and where the symmetric positive semi-definite matrices, Kk, are given recursively by the algorithm
KN = QN and

Kk := A′k
(
Kk+1 −Kk+1Bk

(
B′

kKk+1Bk + Rk

)−1
B′

kKk+1

)
Ak + Qk, k = N − 1, . . . , 0. (24)

The optimal value function then satisfies

Jk(xk) = x′kKkxk +
N−1∑

i=k

E
[
w′i+1Ki+1wi+1

]

= x′kKkxk +
N−1∑

i=k

trace (Ki+1Σi+1) (25)

where Σi := Cov (wi).

3.1 The Dual Penalty Constructed from the Optimal Value Function

We can use the unconstrained optimal value function to construct a dual bound. In particular let
Gk be the perfect information relaxation of Fk. Then we can take zk(uk) as our dual penalty where

zk(uk) := E [Jk+1(xk+1) | Fk] − E [Jk+1(xk+1) | Gk] (26)

= E
[
(Akxk + Bkuk + wk+1)

′Kk+1 (Akxk + Bkuk + wk+1) | Fk

]
+

N−1∑

i=k+1

trace (Ki+1Σi+1)

− (Akxk + Bkuk + wk+1)
′Kk+1 (Akxk + Bkuk + wk+1) −

N−1∑

i=k+1

trace (Ki+1Σi+1)

= (Akxk + Bkuk)
′Kk+1 (Akxk + Bkuk) + trace (Kk+1Σk+1)

− (Akxk + Bkuk + wk+1)
′Kk+1 (Akxk + Bkuk + wk+1)

= −w′k+1Kk+1 (Akxk + Bkuk) − w′k+1Kk+1wk+1 − (Akxk + Bkuk)
′Kk+1wk+1

+ trace (Kk+1Σk+1)
= −2 (Akxk + Bkuk)

′Kk+1wk+1 − w′k+1Kk+1wk+1 + trace (Kk+1Σk+1) . (27)
8See, for example, Bertsekas (2000).
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We know of course from the results of Brown et al (2008) that (27) is an optimal dual penalty for
the unconstrained problem. In fact the dual objective (6) with this choice of penalty is given by

J0(x0) = EF0

[
inf
uk

(
x′NQNxN +

N−1∑

k=0

(
x′kQkxk + u′kRkuk + 2 (Akxk + Bkuk)

′Kk+1wk+1

)
)]

(28)
subject to the dynamics of (21). Note that the optimization problem inside the expectation in (28)
is a standard deterministic LQ problem and is easily solved using the usual techniques. It is easy
to confirm by direct computation that the optimal control, u∗k, in (28) is indeed non-anticipative.

Note also that the last two terms in (27) do not appear in (28) since their sum has expectation
zero. While perhaps obvious, this observation emphasizes the non-uniqueness of the optimal dual
penalty. Indeed let vk be any random variable with zero expectation that does not depend on
the controls or state variables. Then if zk(uk) is an optimal dual penalty so too is zk(uk) + vk.
Note also that an optimal penalty is as good as any other optimal dual penalty in so far as their
dual problems result in equal (and optimal) value functions as well as identifying the optimal non-
anticipative control. However, the optimal dual penalty of Brown et al. (2008) is such that any
instance of the dual problem is guaranteed to equal the optimal value function almost surely and
not just in expectation. This is not true in general of other optimal dual penalties and suggests
that some (optimal) dual penalties will outperform other optimal dual penalties when Monte-Carlo
techniques are required to estimate the outer expectation in (10). Similar observations apply when
we cannot compute the optimal dual solution but can only estimate it using sub-optimal penalty
functions.

An Alternative Representation for the Value-Function Dual Penalty

Since the dual problem is deterministic, we do not need to explicitly associate zk(u) in (27) with time
period k. In particular, it is the total sum of the dual penalties that is relevant and we now determine
this sum as a function of the uk’s. This representation of the unconstrained optimal dual penalty
will be useful in Section 4. Let Pvf denote the total penalty and let C :=

∑N−1
k=0 (trace (Kk+1Σk+1) −

w′k+1Kk+1wk+1). Note that C has no bearing on the optimal control in any instance of the dual
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problem. We see that Pvf then satisfies

Pvf = C − 2
N−1∑

k=0

u′kB
′
kKk+1wk+1 − 2

N−1∑

k=0

x′kA
′
kKk+1wk+1

= C − 2
N−1∑

k=0

u′kB
′
kKk+1wk+1

− 2
N−1∑

k=0




(
k−1∏

i=0

Ai

)
x0 +

k−1∑

i=0




k−1∏

j=i+1

Aj


 (Biui + wi+1)



′

A′kKk+1wk+1

= Cvf − 2
N−1∑

k=0

u′kB
′
kKk+1wk+1 − 2

N−1∑

k=0




k−1∑

i=0




k∏

j=i+1

Aj


 Biui



′

Kk+1wk+1

= Cvf − 2
N−1∑

k=0

u′kB
′
kKk+1wk+1 − 2

N−2∑

i=0

u′iB
′
i




N−1∑

k=i+1




k∏

j=i+1

A′j


Kk+1wk+1




= Cvf − 2
N−1∑

k=0

u′kB
′
kKk+1wk+1 − 2

N−1∑

i=0

u′iB
′
i




N−1∑

k=i+1




k∏

j=i+1

A′j


Kk+1wk+1




= Cvf − 2
N−1∑

i=0

u′iB
′
i


Ki+1wi+1 +




N−1∑

k=i+1




k∏

j=i+1

A′j


Kk+1wk+1







= Cvf − 2
N−1∑

i=0

u′iB
′
i




N−1∑

k=i




k∏

j=i+1

A′j


Kk+1wk+1


 (29)

where9

Cvf := C − 2
N−1∑

k=0




(
k∏

i=0

Ai

)
x0 +

k−1∑

i=0




k∏

j=i+1

Aj


 wi+1



′

Kk+1wk+1 (30)

is a mean zero term that does not depend on the uk’s. The salient feature of (29) is that we have
an explicit expression for the coefficient of ui in the optimal dual penalty for the unconstrained LQ
problem.

3.2 The Gradient Dual Penalty

The gradient-based optimal dual penalty is also straightforward to calculate. First, we define

V0 :=
N−1∑

i=0

u′iRiui +
N∑

i=0

x′iQixi

which of course is the realized cost for the LQ control problem. We may then define

zg(u) := ∇uVT (u∗)′(u∗ − u)

where u∗ = (u∗0, . . . , u
∗
N−1) is the optimal control for the unconstrained problem and u = (u0, . . . , uN−1)

is an arbitrary control policy. By viewing the LQ problem as a convex optimization problem where
9We use the notation Cvf to emphasize that this term is the constant component of the value-function based dual

penalty. In particular, Cvf does not depend on the ui’s.
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the strategy, u = (u0, . . . , uN−1), is the decision vector10 we see that the first order optimality
conditions are

E0

[∇uVT (u∗)′(u∗ − u)
] ≤ 0. (31)

But (31) then implies that zg(u) is dual-feasible and indeed it is easy to see that zg(u) is a dual-
optimal penalty for the unconstrained LQ control problem. In this case we know that u∗i = Lix

∗
i

where we use x∗i to denote the trajectory of the state vector under u∗. We then see that

zg(u) =
N−1∑

i=0

∇uiVT (u∗)′(u∗i − ui)

where the dynamics in (21) imply

∇uiVT (u∗)′(u∗i − ui) = 2


Riu

∗
i + B′

i

N∑

k=i+1




k−1∏

j=i+1

A′j


Qkx

∗
k



′

(u∗i − ui)

= 2


Riu

∗
i + B′

i

N∑

k=i+1




k−1∏

j=i+1

A′j


Qkx

∗
k



′

(Lix
∗
i − ui). (32)

We can iterate x∗k = (Ak−1 + Bk−1Lk−1)x∗k−1 + wk to obtain

x∗k =




k−1∏

j=0

(Aj + BjLj)


x0 +

k−1∑

j=0




k−1∏

l=j+1

(Al + BlLl)


wj+1 (33)

and then substitute (33) into (32) to obtain an explicit expression for the gradient penalty that is
linear in the ui’s. Before doing this, we have the following lemma which we will use to simplify
(32).

Lemma 2 For i = 0, . . . , N we have

Ki =
N∑

j=i

(
j−1∏

k=i

A′k

)
Qj

(
j−1∏

k=i

(Ak + BkLk)

)
(34)

where Lk is given by (23).

Proof: First note that when i = N (34) reduces to KN = QN which is clearly true. Suppose now
that (34) is true for i + 1. If we can show that (34) is then true for i we are done. Towards this
end note that

Ki = A′iKi+1 (Ai + BiLi) + Qi (35)

= A′i




N∑

j=i+1

(
j−1∏

k=i+1

A′k

)
Qj

(
j−1∏

k=i+1

(Ak + BkLk)

)
 (Ai + BiLi) + Qi (36)

=
N∑

j=i

(
j−1∏

k=i

A′k

)
Qj

(
j−1∏

k=i

(Ak + BkLk)

)

10To be clear, the decision vector, u, is not an N×1 vector but is infinite-dimensional as ui(xi) is a decision variable
for each state xi and all i = 0, . . . , N − 1.
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where (35) follows from (23) and (24) and where (36) follows from the assumption that (34) holds
for i + 1. ¥

We are now in a position to compare the two penalties. In particular we see that the coefficient of
u′i in each of the two penalties is given by

Coeffvf (ui) = −2B′
i

N∑

k=i+1




k−1∏

j=i+1

A′j


Kkwk (Value-Function Penalty) (37)

Coeffg(ui) = −2RiLix
∗
i − 2B′

i

N∑

k=i+1




k−1∏

j=i+1

A′j


Qkx

∗
k (Gradient Penalty). (38)

Note that (38) follows from (32) with Lix
∗
i substituted for u∗i and that (37) follows11 from (29).

The following lemma establishes directly that the two coefficients are identical.

Lemma 3 Coeffvf (ui) = Coeffg(ui) for i = 0, . . . , N − 1.

Proof: First note that (33) can be restated more generally as

x∗k =




k−1∏

j=i

(Aj + BjLj)


x∗i +

k−1∑

j=i




k−1∏

l=j+1

(Al + BlLl)


wj+1. (39)

We can then use (39) to substitute for x∗k in (38) to obtain

− 1
2

Coeffg(ui) =


RiLi + B′

i

N∑

k=i+1




k−1∏

j=i+1

A′j


Qk




k−1∏

j=i

(Aj + BjLj)





x∗i

+ B′
i

N∑

k=i+1




k−1∏

j=i+1

A′j


Qk

k−1∑

j=i




k−1∏

l=j+1

(Al + BlLl)


wj+1

=
[
RiLi + B′

iKi+1(Ai + BiLi)
]
x∗i by (34)

+ B′
i

N∑

k=i+1

k−1∑

j=i

(
k−1∏

m=i+1

A′m

)
Qk




k−1∏

l=j+1

(Al + BlLl)


wj+1

= B′
i

N−1∑

j=i




N∑

k=j+1

(
k−1∏

m=i+1

A′m

)
Qk




k−1∏

l=j+1

(Al + BlLl)





wj+1 (40)

= B′
i

N−1∑

j=i

(
j∏

m=i+1

A′m

)


N∑

k=j+1




k−1∏

m=j+1

A′m


Qk




k−1∏

l=j+1

(Al + BlLl)





wj+1

= B′
i

N−1∑

j=i

(
j∏

m=i+1

A′m

)
Kj+1wj+1 by (34) again (41)

= −1
2

Coeffvf (ui)

11We have modified the indexing in (37) so that each summation in (37) and (38) runs from i + 1 to N .
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where (40) follows by changing the order of the double summation and noting that RiLi +
B′

iKi+1(Ai + BiLi) = 0 by the definition of Li in (23). ¥

Of course Lemma 3 is not at all surprising since the value-function and gradient penalties are both
dual optimal. Indeed the more interesting question is whether or not the constant terms in each of
the two penalties are equal. If we use Cg to denote the constant component of the gradient penalty,
then using (32) and summing over i we see that is is given by

Cg = 2
N−1∑

i=0


Riu

∗
i + B′

i

N∑

k=i+1




k−1∏

j=i+1

A′j


Qkx

∗
k



′

Lix
∗
i (42)

= 2
N−1∑

i=0


B′

i

N−1∑

j=i

(
j∏

m=i+1

A′m

)
Kj+1wj+1


 Lix

∗
i . (43)

Note that we have used (41) to substitute for the term inside the square brackets in (42). We
recall that the corresponding constant component of the value-function based penalty, Cvf , is
given by (30). It is clear that Cvf and Cg are different. For example, Cvf contains the term∑N−1

k=0 trace (Kk+1Σk+1) and no such term appears in Cg. This observation demonstrates in general
the the value-function based penalty and the gradient penalty do not coincide when the latter is
actually defined.

4 The Davis and Zervos Approach

While we have derived the optimal value-function and gradient penalties in Section 3 using the
recent results of Brown et al. (2010) and Brown and Smith (2008), it turns out that these penalties
are very closely related to the work of David and Zervos (1995) which we will now describe. Davis
and Zervos12 (1995) consider the three classic cases of discrete-time LQ problems: the deterministic,
stochastic full information and stochastic partial information cases. They show that the solution
to the deterministic problem can be used to solve the two stochastic versions of the problem after
including appropriate Lagrange multiplier terms in the objective function. We will show below that
the Lagrange multiplier terms of DZ (1994) in the stochastic full information case13 also constitute
a dual optimal penalty. Indeed, the only difference between the DZ penalty and our two earlier
penalties are terms that have zero expectation that do not depend on the ui’s. In particular, DK
prove the following14 theorem.

Theorem 3 Consider the linear system model

xi+1 = Axi + Bui + wi+1 i = 0, . . . , N − 1 (44)
12DZ, hereafter.
13We will not consider the stochastic partial information case as the ideas are identical and of course, it is well

known that the partial information case can be reduced to the full information case by expanding the state space.
14This Theorem is a combination of Theorem 2 in DZ together with the analysis they provide in “Case 2” imme-

diately following their Theorem 2. (DZ included a cross-term of the form x′kTuk in their objective function but we
will omit this term without any loss of generality so that we can compare their penalty with our penalty in (29).
They also assume that Ak = A, Bk = B, Qk = Q and Rk = R for all k and we will maintain this assumption in this
subsection, again without loss of generality.)
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where w = (w1, . . . , wN ) is a sequence of independent zero mean random vectors and u = (u0, . . . , uN−1)
is the control sequence. Let

J(u, λ) = EF0

[
x′NQxN +

N−1∑

i=0

(
x′iQxi + u′iRui + 2λ′iui

)
]

(45)

be the cost associated with the pair (u, λ) and let

Jd(u,w, λ) = x′NQxN +
N−1∑

i=0

(
x′iQxi + u′iRui + 2λ′iui

)
. (46)

be the cost associated with (u,w, λ) so that J(u, λ) = E [Jd(u,w, λ)]. Assume the matrices Q
and R are symmetric positive semi-definite and symmetric positive definite, respectively, and λ =
(λ0, . . . , λN−1) is a given sequence of vectors. Suppose λ is chosen so that

λi = −B′Ki+1wi+1 −B′βi+1, for i = 0, . . . , N − 1 (47)

where Ki+1 satisfies15 (24) and where βi satisfies

βi = A′βi+1 + A′Ki+1wi+1, βN = 0. (48)

Then: (i) u∗i (xi) = Lixi where Li is given by (23) is the optimal non-anticipative control vector
that minimizes (45). (ii) u∗i (xi) = Lixi is also the optimal control that minimizes the deterministic
objective function of (46) where w is known in advance. Moreover, this choice of λ is almost surely
the unique one for which the minimizer of Jd(u,w, λ) is non-anticipative and for which the lagrange
multiplier terms in (45) disappear.

In order to compare Theorem 3 with our earlier results, we need to compare the penalty terms in
the three approaches. But first note that Davis and Zervos do not16 include a constant term like
Cvf or Cg and so we can immediately conclude that the Davis and Zervos penalty is different to the
two earlier penalties. The following lemma shows, however, that the coefficient of ui in the penalty
term in (45), i.e. 2λi, is equal to Coeffvf (ui) as given in (37).

Lemma 4 For i = 0, . . . , N − 1, we have

λi = −B′
N−1∑

k=i

(
Ak−i

)′
Kk+1wk+1

so that the coefficient of ui in (29) is equal to the coefficient of ui in (45). In particular the
Lagrangian terms of DZ in (45) are also dual optimal in the framework of BSS.

Proof: First note that we can iterate (48) to obtain

βi+1 =
N−1∑

k=i+1

(
Ak−i

)′
Kk+1wk+1. (49)

15With the understanding that Ai = A, Bi = B, Qi = Q and Ri = R for all i.
16It is possible that they simply omitted such a constant term as it has no bearing on the optimal controls.
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We can then substitute (49) into (47) to obtain

λi = −B′ (Ki+1wi+1 + βi+1)

= −B′
(

Ki+1wi+1 +
N−1∑

k=i+1

(
Ak−i

)′
Kk+1wk+1

)

= −B′
N−1∑

k=i

(
Ak−i

)′
Kk+1wk+1

as desired. ¥

Note that while the Lagrangian terms of DZ are dual optimal in the framework of BSS, they do not
result in zero-variance dual bounds. This was also the case with the gradient-based penalty, and as
suggested earlier, this observation suggests that penalties based on value-function approximations
may be more efficient than other penalties when dual bounds need to be computed using Monte-
Carlo methods.

When we consider the results of this section and the earlier developments in the optimal stopping
literature that we mentioned in Section 1, it becomes clear then that many of the ideas behind the
information relaxation duality theory of Brown et al. (2010) and Rogers (2007) have been around
for some time17 and in particular, since the work of Davis and Karatzas (1994) and Davis and
Zervos (1995). This is not to say, however, that Brown et al. (2010) and Rogers (2007) is some-
how redundant. On the contrary, they have unified these ideas in a discrete-time framework and
demonstrated that the dual problem can be used successfully for evaluating sub-optimal strategies
when it is not practically feasible to construct optimal policies. This of course parallels the earlier
literature on optimal stopping problems. The results of Brown eta al. also apply to information
relaxations that are more general than the perfect-information relaxation. Moreover, their opti-
mal dual penalty in the case of the perfect-information relaxation is a zero-variance penalty which
should be particularly useful when evaluating sub-optimal strategies via Monte-Carlo.

5 Conclusions and Further Research

There are several directions for future research that are particularly interesting. First, we would
like to consider constrained LQ problems and compare the dual bounds corresponding to each of
the three penalties. Of course these penalties are only optimal for unconstrained LQ problems
and they may not produce good dual bounds when the constraints are frequently binding. When
that is the case, it would be necessary to construct other dual-feasible penalties, possibly using
good sub-optimal policies for the constrained problem. This has already been done for optimal
stopping problems and other problems. See for example, Haugh and Kogan (2004), Rogers (2002)
and Brown et al. (2010) among others.

A particularly interesting direction for future research is in comparing the efficiency of value-
function based penalties with gradient penalties. We know from Brown et al. (2010) that the
former are almost surely optimal when the optimal value function is used. Of course the optimal
value function is never available in practice and so approximate value functions must be used. The
question then arises as to whether penalties constructed using approximate value functions are
more efficient or have a lower variance than corresponding gradient penalties. Finally, variance

17It should also be mentioned that the idea of relaxing the non-anticipativity constraints has been well known in
the stochastic programming literature.
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reduction methods should be of considerable use when computing dual bounds. For example, the
optimal value function of the unconstrained problem (when it is available analytically) should be
a good control variate and indeed such a control variate was used by Brown and Smith (2010).
More generally, however, the dual instances of these problems can often be very computationally
demanding and constructing good variance reduction methods should be of considerable value.
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