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Supervised Versus Unsupervised Learning
The goal of supervised learning is to predict an output y as a function of inputs
x = (x1, . . . , xp)

We are given training data: (x1, y1), (x2, y2), . . . , (xN , yN )
– (xi , yi) is known for all i = 1, . . . ,N .

The goal is to compute E[y | x] or otherwise predict y given x.
Regression and classification are examples of supervised learning.

The goal of unsupervised learning is to characterize the distribution P(x) of the
inputs x. There is no target output y.
Standard examples of unsupervised learning methods include:

Clustering methods: Identify multiple regions of the x-space that contain
modes of P(x). One can then represent P(x) as a mixture of simpler
densities representing distinct types or classes of observations.
Dimension-reduction methods: Identify low-dimensional manifolds in x-space
that represent high data density. Examples include principal component
analysis (PCA), independent component analysis (ICA), spectral clustering,
etc.
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Clustering Methods
The goal with clustering methods is to partition the data into clusters with low
intra-cluster dissimilarity and large inter-cluster dissimilarity.
There are many approaches:

Non-probabilistic combinatorial methods: K -means, K -medoids etc.
Mixture modeling: Data is an IID draw from a mixture but the mixture
indicator is latent or hidden.
Mode-seeker: Seek modes of the joint PDF of x in a non-parametric manner

We will focus on the first method here but will consider mixture modeling when
we study the EM algorithm.
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Object Dissimilarity
A key component of any clustering algorithm is how the distance, d(x, y),
between points x and y are measured.

Will always assume d(x, x) = 0
Typically assume d(·, ·) is symmetric: d(x, y) = d(y, x)
In general do not assume the triangle inequality holds

– so there may exist x, y, z such that d(x, z) > d(x, y) + d(y, z).

Examples:
Weighted difference between attributes: d(x, y) =

∑p
j=1 wjdj(xj , yj)

Quantitative variables: dj(xj , yj) = fj(|xj − yj |), for fj(·) non-negative and
non-decreasing.
Rank variables: the rank i 7→ i−1/2

N , i = 1, . . . ,N
– now treat as quantitative variable.

Categorical variables: often choose d(x, y) := c 1{x 6=y}.

Dissimilarity matrix: D ∈ RN×N with Dij := d(xi , xj)
– if clustering algorithm requires symmetric D then can use (D + D′)/2.

How should we handle missing data?
5 (Section 2)



How Do We Choose the wj’s?
We have N points x1, . . . , xN so that dk(xik , xjk) = dissimilarity measure on the
kth attribute of xi and xj .

Combined dissimilarity measure: d(xi , xj) =
∑p

k=1 wkdk(xik , xjk)

How do we set the weights wk? Total average dissimilarity is:

d̄ = 1
N 2

N∑
i=1

N∑
j=1

d(xi , xj) =
p∑

k=1
wk ·

1
N 2

N∑
i=1

N∑
j=1

dk(xik , xjk)︸ ︷︷ ︸
d̄k

In order to treat all attributes equally we should choose: wk ∼ 1
d̄k

– and also typically have
∑p

k=1 wk = 1.

For dk(xik , xjk) = (xik − xjk)2, the normalization is d̄k = 2Var(xk)

But equal weighting is not always appropriate
– see Figure 14.5 from HTF.
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To Scale or Not to Scale?
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FIGURE 14.5. Simulated data: on the left, K-means
clustering (with K=2) has been applied to the raw data.
The two colors indicate the cluster memberships. On
the right, the features were first standardized before
clustering. This is equivalent to using feature weights
1/[2 · var(Xj)]. The standardization has obscured the
two well-separated groups. Note that each plot uses the
same units in the horizontal and vertical axes.

Figure 14.5 taken from HTF
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Clustering Algorithms
A clustering algorithm with K clusters and N � K points should produce:

A cluster map i ∈ {1, . . . ,N} 7→ {1, . . . ,K}.
The kth cluster is then Ck := {i : i 7→ k}
Cluster “centers” mk for k = 1, . . . ,K

– mk approximates all points in the kth cluster.

Within and between segment dissimilarity can be computed as

1
2

N∑
i=1

N∑
`=1

d(xi , x`) = 1
2

K∑
k=1

∑
i∈Ck

∑
`∈Ck

d(xi , x`) +
∑
` 6∈Ck

d(xi , x`)


= 1

2

K∑
k=1

∑
i∈Ck

∑
`∈Ck

d(xi , x`) + 1
2

K∑
k=1

∑
i∈Ck

∑
` 6∈Ck

d(xi , x`)

= W (C) + B(C)

W (C) = within-cluster dissimilarity and B(C) = between-cluster dissimilarity.
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Clustering Algorithms
Goal: Find clusters C := {Ck : k = 1, . . .K} so that within-cluster dissimilarity is
minimized

– or equivalently (why?) so that between cluster dissimilarity is maximized.
But this is an NP-hard problem!
It can be shown that the number of possible cluster assignments is

S(N ,K ) = 1
K !

K∑
k=1

(−1)K−k
(

K
k

)
kN

According to HTF, S(10, 4) = 34, 105 and S(19, 4) ≈ 1010

– so S(N ,K ) grows rapidly and there is no chance of using enumeration to
find global optimal for reasonable values of (N ,K ).

Instead we seek a good local optimum
– typically using algorithms based on iterative greedy descent.
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K -Means Clustering
K -means is one of the most popular clustering algorithms.
The dissimilarity measure is squared Euclidean distance: d(x, y) = ‖x− y‖2

2
– so all variables required to be of the quantitative type.

For each Ck the minimum distortion center, mk , is easily found ...

mk := argmin
m

∑
xi∈Ck

‖xi −m‖2
2 = 1

Nk

∑
i∈Ck

xi

Moreover can easily check

W (C) = 1
2

K∑
k=1

∑
i,j∈Ck

‖xi − xj‖2
2 =

K∑
k=1

Nk
∑
i∈Ck

‖xi −mk‖2
2 .

10 (Section 3)



K -Means Clustering
The K -means clustering problem is to solve:

min
C

min
{mk}K

k=1

K∑
k=1

∑
i∈Ck

‖xi −mk‖2
2

As explained earlier, we cannot hope to find the global optimal to this problem.

So we use the following iterative algorithm:
Step 1. Fix clusters {Ck} and set mk = 1

Nk

∑
i∈Ck

xi

Step 2. Fix {mk} and choose clusters: C(i) = argmink{‖xi −mk‖2}
– so clusters {Ck} are identified in this step.

Some approximation guarantees are available for this algorithm.
And it is guaranteed (why?) to converge to a local minimum

– so always a good idea to run algorithm from many different starting points.

Next slide shows snapshots of the K -means iterations
– clusters are given by the Voronoi regions determined by the blue lines.
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Application: Vector Quantization
Note that a gray-scale image can be represented as a vector X ∈ Rn

– e.g. the left image of statistician Ronald Fisher consists of 1, 024× 1, 024
pixels and can therefore be represented by X ∈ R1024×1024

– each pixel is a grayscale value ranging from 0 to 255
– so each pixel requires 1 byte of storage

– so entire image requires approx 1 megabyte of storage.

For an image X, can define a collection of vectors X := {xij} ⊂ R4 with

xij := vec
([

X2i−1,2j−1 X2i,2j−1
X2i−1,2j X2i,2j

])

Can now define each xij as a data-point and use K -means clustering to compress
the image.
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Application: Vector Quantization
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FIGURE 14.9. Sir Ronald A. Fisher (1890 − 1962)
was one of the founders of modern day statistics, to
whom we owe maximum-likelihood, sufficiency, and
many other fundamental concepts. The image on the
left is a 1024×1024 grayscale image at 8 bits per pixel.
The center image is the result of 2 × 2 block VQ, us-
ing 200 code vectors, with a compression rate of 1.9
bits/pixel. The right image uses only four code vectors,
with a compression rate of 0.50 bits/pixel

Figure 14.9 taken from HTF
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Application: Vector Quantization
So run K -means on X to obtain cluster “centers” {mk}K

k=1 ⊆ R4

Each group of 4 pixels is replaced by its assigned cluster center
– so if C(xij) = k we then set[

X̂2i−1,2j−1 X̂2i,2j−1
X̂2i−1,2j X̂2i,2j

]
= mat(mk)

where mat(mk) is the 2× 2 matrix constructed from the 4× 1 vector, mk .

This compression algorithm is known as lossy compression.

Question: How do we use the output of the K -means algorithm to compress the
image?

Question: How would we vary the amount of compression?
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Example: Clustering of Senators
Roll call data is a great resource for measuring “dissimilarity” between legislators.

Keith Poole (University of Georgia) and Howard Rosenthal (NYU) maintain an
interesting web-site on this topic at http://www.voteview.com.

Question: How could we cluster senators?
Answer: We need a measure of measure of dissimilarity between senators.

Let V = [vik ] denote the votes of legislator i on bill k

vik =

 +1 vote of legislator i on bill k is “aye”
−1 vote of legislator i on bill k is “nay”

0 legislator k abstained on bill k

Dissimilarity between legislators d(xi , xj) =
√∑

k(vik − vjk)2.

Is this a reasonable dissimilarity measure?
– if so, then we can just go ahead and run K -means.
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Kernel K -Means Clustering
Can extend K -means to general kernels K (x, y) 6= x>y via the “kernel trick”.

Mercer’s Theorem implies K (x, y) = φ(x)>φ(y) for some (possibly unknown)
φ : Rp 7→ Rd where typically d � p.

Recall that the cluster centers satisfy

mk := argmin
∑
i∈Ck

‖φ(xi)−mk‖2
2 = 1

Nk

∑
i∈Ck

φ(xi)

Cluster assignment in iteration t + 1

C(t+1)(i) = argmin
k
‖φ(xi)−mk‖2

2

= argmin
k

{
K (xi , xi)−

2
Nk

∑
`∈C(t)

k

K (xi , x`) + 1
N 2

k

∑
`,`′∈C(t)

k

K (x`, x`′)
}

So the cluster assignment can be computed without reference to φ
– only the kernel function K (·, ·) is required!

Question: But what about computing the mk ’s?
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K -Medoids Clustering
K -means is very sensitive to outliers as they produce large distances

– so maybe worth exploring other distance measures.

Fact: Given x = {x1, . . . , xN}, median(x) ∈ argminz
∑N

i=1 |xi − z|
– so could cluster by using the median to construct distance measure.

More generally, we can assign cluster “center” to be the cluster medoid so we set
mk := xik where

ik = argmin
`∈Ck

∑
i∈Ck

d(x`, xi).

Form new clusters by assigning points to the nearest cluster center

C(i) = argmin
1≤k≤K

d(xi ,mk)

This yields the K -medoids clustering algorithm ...
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K -Medoids Clustering

Algorithm 14.2 in HTF.

Note that we do not need to explicitly compute cluster centers
– so only dissimilarity matrices rather than actual points are needed.

But K -medoids is more computationally demanding than K -means.
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How to Choose the Number of Clusters K
A key practical issue is how to choose the number of clusters, K .
Sometimes the appropriate value of K is obvious from domain specific knowledge

– e.g. suppose a company has K sales-people so the goal is to partition the
customer database into K segments.

But often we need to use the data to determine an appropriate value of K .
So let WK (C) denote within-cluster-dissimilarity when we have K clusters.
Then we expect WK (C) > WK+1(C) for any value of K but if K∗ is the
“correct” number of clusters then should have

∆WK∗(C)� ∆WK∗+1(C)

– so a heuristic approach is to look for a kink in the plot of WK (C) versus K
– and choose K∗ to be the point at which the kink occurs.

HTF also discuss the gap statistic which compares the curve log(WK (C)) to the
curve obtained from uniformly distributed data over a rectangle containing the
original data

– can automate the choice of K∗ using this statistic
– see Section 14.3.11 of HTF for further details.
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Hierarchical Clustering
Hierarchical Clustering maintains a hierarchy of clusters whereby:

Clusters at a given level are created by merging clusters at the next lower
level
Each cluster at the lowest level contains a single observation.
At the highest level there is just one cluster containing all the data.

There are two basic paradigms for constructing hierarchical clusters:
Agglomerative: bottom-up
Divisive: top-down

Methods for agglomerative clustering: merge clusters {G,H} with minimum
Single linkage (SL) distance: dSL(G,H ) = mini∈G,j∈H Dij

Complete linkage (CL) distance: dCL(G,H ) = maxi∈G,j∈H Dij

Group average (GA) distance: dGA(G,H ) = 1
NH NG

∑
i∈G,j∈H Dij
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Normal Mixture Models
Clustering via normal mixture models is an example of probabilistic clustering

– we assume the data are IID draws.

e.g. (Scalar Case) Suppose X = (X1, . . . ,Xn) are IID random variables each with
PDF

fx(x) =
m∑

j=1
pj

e−(x−µj)2/2σ2
j√

2πσ2
j

where pj ≥ 0 for all j and where
∑

pj = 1

– parameters are the pj ’s, the µj ’s and the σj ’s
– typically estimated via MLE
– which we can do via the EM algorithm

– an extremely important algorithm in statistics / machine learning.

We will study the EM algorithm as a separate topic
– will then see clustering via normal mixture models as an application of EM.
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A Detour: Multidimensional Scaling
Let D denote a dissimilarity matrix for the data X = {x1, . . . , xN}

– the underlying data might be categorical, network, or text.

Want to embed data in Rk where k ≤ n − 1
– goal is to “visualize” the data so default is k = 2.

Compute locations Y = {y1, . . . , yN} ∈ R2 so that
∥∥yi − yj

∥∥
2 ≈ d(xi , xj)

– i.e. want an embedding that preserves “distances”.

Can be formulated as a multidimensional scaling problem:

min
y1,...,yN

SM (y1, . . . , yN ) :=
∑
i 6=j

(
d(xi , xj)− ||yi − yj ||

)2

– there are other similar formulations; see Section 14.8 of HTF.
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Simple example
Respondents rate products and yield the Response matrix:

P1 P2 P3 P4 P5 P6
A 0 −1 0 −1 0 0
B −1 0 1 1 1 0
C 0 0 0 1 −1 1
D 1 0 1 −1 0 0

Want to visualize the clustering of the respondents.

Dissimilarity: d(xi , xj) =
√∑4

k=1 |xki − xkj |2 (R command: dist)

where X := Response× Response>

A B C
B 6.24
C 5.48 5.00
D 2.24 6.78 6.08

Embed dissimilarity matrix in R2 (R command: cmdscale)
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Simple example (contd)
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