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Why Deterministic Inference?
Many inference problems in probabilistic modeling amount to evaluating posterior
distributions of the form p(z | x)

– arises in Bayesian modeling and other domains, e.g. graphical models.

Can evaluate the posterior by simulating samples using MCMC methods
– can work very well in practice but can be very time-consuming.

An alternative approach is to use deterministic schemes to approximate the
posterior

- results in analytic approximations to the posterior
- can often be found very quickly in comparison to MCMC, e.g. seconds or

minutes v. possibly hours or days.
- depending on the inference goals, these approximations may be more than

sufficient.
Deterministic inference is less well-known than sampling-based inference, i.e.
MCMC

- but it has become very popular in recent years
- has its origins in analysis of large-scale physical systems.
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Methods of Deterministic Inference
There are many approaches to the deterministic inference problem of evaluating
p(z | x) where x is the observed data. They include:

1. Normal and mixture approximations
- first need methods for finding the posterior modes.

2. Methods based on finding marginal posterior modes
- sometimes makes sense to approximate lower-dimensional marginals rather

than full joint distributions.
3. Variational Bayes

- based on minimizing KL(q(z) || p(z | x)) with respect to a family of
distributions q(Z).

4. Expectation Propagation
- based on minimizing KL(p(z | x) || q(z)) with respect to a (parametric) family

of distributions, q(Z).

Note the difference between variational Bayes and expectation propagation.
See Chapter 13 of 3rd edition of Bayesian Data Analysis by Gelman et al. for
details on all of these methods.
Chapter 10 of Bishop’s PR and ML and Chapter 28 of Barber’s BR and ML have
more detailed introductions to variational Bayes and expectation propagation.
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Finding Posterior Modes
Standard numerical methods exist for finding posterior modes including:

1. Conditional maximization or coordinate ascent
- will converge to a local maximum if posterior is bounded.

2. Newton’s method – based on quadratic Taylor series approximation to
p(z | x)

- not guaranteed to converge from all starting points z0
- but convergence is extremely fast once we are close to a solution
- can be computationally expensive since inverse of matrix of second

derivatives, i.e. the Hessian, is required at each step.
3. Quasi-Newton methods, e.g. BFGS, which iteratively approximates the

inverse Hessian.
Note these algorithms only require the unnormalized posterior.
Derivatives may be computed analytically or numerically.
Use multiple starting points if distribution is suspected to be multi-modal and we
want to find all modes associated with non-negligible probability mass.
If posterior mode on boundary of parameter space then it may not be suitable as
a point summary of posterior distribution

- may even want to use a prior that moves posterior to mode to the interior.
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Normal And Mixture Approximations
When p(z | x) is believed to be unimodal can use the approximation

p(z | x) ≈ pnorm-approx(z | x) := N (ẑ, Vz)

where ẑ is the mode of p(z | x) and

Vz :=
[
− d2 log p(z | x)

dz2

∣∣∣∣
z=ẑ

]−1

is the inverse of the curvature of the log posterior evaluated at ẑ
- can be calculated analytically or numerically.

Also straightforward to approximate p(z | x) with a t-distribution if preferred.
If there are multiple modes then straightforward to approximate p(z | x) with a
normal mixture or t mixture

- straightforward to simulate directly from any of these approximations.
Sometimes we’re more interested in computing E [h(z) | x] =

∫
z
h(z)p(z | x) dz

- Laplace’s method uses the approximation h(z)p(z | x) ≈ N (z0, V0) for
suitable z0 and V0 – can also apply to mixture distributions.
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Approximations Based on Marginal Posterior Modes

Normal approximations to the posterior often not suitable
- e.g. hierarchical models where # parameters / latent variables grows with #

observations.
If θ = (γ,φ) denotes set of parameters / latent variables then often convenient
to work with posterior in the form

p(γ,φ | x) = p(φ | x) p(γ | φ, x).
Can approximate p(φ | x) with a normal or t approximation

- may be suitable if dim(φ) small and does not grow with # of observations.
Must also approximate p(γ | φ, x) – possibly using normal or t (mixtures) again

- although with parameters now depending on φ.
Can use modal methods to approximate p(φ | x)

- e.g. use EM algorithm to find mode with γ playing role of “missing data”
- also possible to approximate p(φ | x) with

p(φ | x) = p(γ,φ | x)
p(γ | φ, x) ≈

p(γ̂,φ | x)
papprox(γ̂ | φ, x)

if papprox(γ | φ, x) has recognizable form so normalizing factor (which depends
on φ) is available analytically.
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Review: Kullback-Leibler Divergence
Recall the Kullback-Leibler (KL) divergence or relative entropy of Q from P is
defined to be

KL(P ||Q) =
∫

x
P (x) ln

(
P (x)
Q(x)

)
(1)

with the understanding that 0 log 0 = 0.

The KL divergence is a fundamental concept in information theory & statistics.

Can imagine P representing some true but unknown distribution, e.g. p(z | x),
that we approximate with Q

– KL(P ||Q) then measures the “distance” between P and Q.

This interpretation is valid because KL(P ||Q) ≥ 0
– with equality if and only if P = Q

The KL divergence is not a true measure of distance since it is:
1. Asymmetric in that KL(P ||Q) 6= KL(Q ||P )
2. And does not satisfy the triangle inequality.
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The KL-Divergence Lower Bound
Recall again that we want to compute (or approximate) p(z | x)

- so the data x has been observed but the parameters / latent variables z are
unobserved.

For any probability distribution q(z) we have

ln p(x) =
∑

z
q(z) ln(p(x))

=
∑

z
q(z) ln

(
p(x, z)
p(z | x)

)
=

∑
z
q(z) ln

(
p(x, z)
q(z) ·

q(z)
p(z | x)

)
=

∑
z
q(z) ln

(
p(x, z)
q(z)

)
︸ ︷︷ ︸

=:L(q)

+
∑

z
q(z) ln

(
q(z)

p(z | x)

)
︸ ︷︷ ︸

≡KL(q || p(·|x))

(2)

(For continuous random variables we can replace sums with integrals.)
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The KL-Divergence Lower Bound
It follows from (2) that

max
q
{L(q)} = max

q

{
ln p(x)− KL(q || p(· | x))

}
= ln p(x)−min

q
{KL(q || p(· | x))}

But argminq{KL(p(· | x) || q)} = {p(· | x)} (a singleton set), it follows that

argmax
q
{L(q)} = {p(· | x)}.

– posterior is therefore the solution of an optimization problem!

Variational Bayes approximates p(z | x) with q(z) where q obtained by minimizing
KL(q || p(· | x)) over a family of tractable distributions.

In contrast, expectation propagation approximates p(z | x) with q(z) where q
obtained by minimizing KL(p(· | x) || q) over a family of tractable distributions.

Before describing these algorithms will first consider difference between
minimizing KL(p || q) and minimizing KL(q || p).
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Minimizing KL(p || q) or KL(q || p)?
As before, we want to approximate p(z) with another distribution q(z).

Since KL(q || p) ≥ 0 for all q with equality only if q = p, this suggests two
reasonable approaches:

1. Solve
min
q

KL(q || p) =
∑

z
q(z) ln

(
q(z)
p(z)

)

Here the expectation is taken wrt the approximation, q, so that:
- regions in the support of p can be ignored if q places zero mass on them
- will also want to choose a q that avoids regions where p is very small.

And so often obtain a more local approximation to p as a result
- therefore inference methods based on this approach, i.e. variational Bayes,

can sometimes overfit and underestimate posterior variances.
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Minimizing KL(p || q) or KL(q || p)?
The other approach is:

2. Solve
min
q

KL(p || q) =
∑

z
p(z) ln

(
p(z)
q(z)

)
Here the expectation is taken wrt the target distribution, p, which is fixed,
so that:

- q must be non-negligible in regions where p is non-negligible.

This results in a more global approximation where q tries to approximates p
across entire support of p.

Exercise: Suppose we minimize KL(p || q) over the distributions q under which
components of z are independent, i.e. we solve

min
q : q(z)=

∏
qi(zi)

KL(p || q).

Show the optimal q satisfies q(z) =
∏
pi(zi).
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Approximating a Bimodal Distribution

Figure 28.1 from Barber: Fitting a mixture of Gaussians p(x) (blue) with a single
Gaussian. The green curve minimises KL(q||p) corresponding to fitting a local model.
The red curve minimises KL(p||q) corresponding to moment matching.
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Approximating a Correlated Bivariate Gaussian

Figure 10.2 from Bishop: Comparison of the two alternative forms for the Kullback-Leibler divergence. The
green contours corresponding to 1, 2, and 3 standard deviations for a correlated Gaussian distribution p(z)
over two variables z1 and z2, and the red contours represent the corresponding levels for an approximating
distribution q(z) over the same variables given by the product of two independent univariate Gaussian
distributions whose parameters are obtained by minimization of (a) the Kullback-Leibler divergence KL(q||p),
and (b) the reverse Kullback-Leibler divergence KL(p||q).
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Approximating a Correlated Bivariate Gaussian Mixture

Figure 10.3 from Bishop: Another comparison of the two alternative forms for the
Kullback-Leibler divergence. (a) The blue contours show a bimodal distribution p(Z)
given by a mixture of two Gaussians, and the red contours correspond to the single
Gaussian distribution q(Z) that best approximates p(Z) in the sense of minimizing the
Kullback- Leibler divergence KL(p||q). (b) As in (a) but now the red contours
correspond to a Gaussian distribution q(Z) found by numerical minimization of the
Kullback-Leibler divergence KL(q||p). (c) As in (b) but showing a different local
minimum of the Kullback-Leibler divergence.
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Variational Bayes
We write z = (z1, . . . , zm) where each zi is a sub-vector and then define Q to be
the set of product distributions over these sub-vectors so that

Q :=
{
q : q(z) =

m∏
i=1

qi(zi)
}
.

The variational Bayes approach approximates px := p(z | x) with the solution to

min
q∈Q

KL(q || px).

This is a computationally hard optimization problem but we can use coordinate
descent to find a local minimum.

Let q̄j :=
∏
i 6=j qi and z̄j := (z1, . . . , zj−1, zj+1, . . . , zm).

Coordinate descent works by minimizing KL(q || px) over qj keeping q̄j fixed for
j = 1, . . . ,m

- and then iterating until convergence.
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Variational Bayes Via Coordinate Descent
So let q = qj q̄j ∈ Q and suppose we want to minimize over qj in the current
step. We have

KL(q || px) =
∑

z
q(z) ln

(
q(z)
p(x, z)

)
+ C1

=
∑

z
q(z) ln q(z)−

∑
z
q(z) ln p(x, z) + C1

=
∑
z̄j

q̄j(z̄j) ln q̄j(z̄j) +
∑
zj

qj(zj) ln qj(zj)

−
∑
zj

qj(zj)
∑
z̄j

q̄j(z̄j) ln p(x, z) + C1

= C2 +
∑
zj

qj(zj) ln qj(zj) −
∑
zj

qj(zj)Eq̄j [ln p(X,Z)]

= C2 +
∑
zj

qj(zj) ln qj(zj) −
∑
zj

qj(zj) ln exp
(
Eq̄j [ln p(X,Z)]

)
= C3 + KL(qj ||C4 exp

(
Eq̄j [ln p(X,Z)]

)
). (3)
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Mean-Field Equations
Can view C1 to C3 as constants since they do not depend on qj .

C4 is a normalization constant ensuring that the distribution integrates to 1.

From (3) it follows that minimizing KL(q || px) over qj has an optimal solution
(why?)

q∗j (Zj) ∝ exp
(
Eq̄j [ln p(X,Z)]

)
or equivalently

ln q∗j (Zj) = Eq̄j [ln p(X,Z)] + constant. (4)

The equations in (4) for j = 1, . . . ,m are known as the mean-field equations
- and they are iterated (when tractable) until convergence
- and convergence is guaranteed; see Section 13.7 of Gelman et al. or Section

28.4.3 of Barber.

The constant term in (4) is a normalization constant that can be found by simply
recognizing the distribution q∗j .
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Variational Bayes for Mean and Precision of a Gaussian

Figure 10.4 from Bishop: Illustration of variational inference for the mean µ and precision τ of a univariate
Gaussian distribution. Contours of the true posterior distribution p(µ, τ |D) are shown in green. (a) Contours
of the initial factorized approximation qµ(µ)qτ (τ) are shown in blue. (b) After re-estimating the factor
qµ(µ). (c) After re-estimating the factor qτ (τ). (d) Contours of the optimal factorized approximation, to
which the iterative scheme converges, are shown in red.
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A Simple Example
Consider a bivariate Gaussian distribution with:

mean µ =
[
µ1
µ2

]
and precision matrix Λ =

[
Λ11 Λ12
Λ21 Λ22

]
so the joint distribution is

p(z) = |Λ|
1
2

(2π)e
− 1

2 (z−µ)>Λ(z−µ)

There is no data x here but that’s ok: can still use variational Bayes to
approximate p(z ; µ,Λ) with a product distribution q(z) = q1(z1)q2(z2).

Mean-field equation for q1 is:
ln q∗1(z1) = Eq̄1 [ln p(z)] + constant

= Eq̄1

[
−1

2Λ11(z1 − µ1)2 − (z1 − µ1)Λ12(z2 − µ2)
]

+ constant

= −1
2Λ11z

2
1 + z1

(
Λ11µ1 − Λ12 (Eq̄1 [z2]− µ2)

)
+ constant

= −1
2Λ11

(
z1 −

(
µ1 − Λ−1

11 Λ12(Eq̄1 [z2]− µ2)
))2 + constant (5)
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A Simple Example
We recognize the form of (5) so that

q∗1(z1) = N
(
µ1 − Λ−1

11 Λ12(Eq̄1 [z2]− µ2), Λ11

)
(6)

By symmetry can also have

q∗2(z2) = N
(
µ2 − Λ−1

22 Λ21(Eq̄2 [z1]− µ1), Λ22

)
(7)

Starting with some initial q2 we can iterate (6) and (7) until convergence.

What does the converged product distribution q∗1(z1)q∗2(z2) miss?

- it captures the mean correctly.

- but the variance is underestimated.

- and the directionality is completely
missed.

21 (Section 4)



Example: Variational Linear Regression
Consider the following Bayesian linear regression model:

Distribution of data: p(y | w) =
∏N
i=1 N(yi | φ(xi)>w, β−1)

Distribution of weights: p(w | α) = N(w | 0, α−1I)
Distribution of weight precision: p(α) = Gamma(α | ν0, b0) ∝ αν0−1e−b0α

Want to compute posterior p(α,w | y) ∝ p(y | w)p(w | α)p(α)
- but instead could use variational Bayes to approximate it with
q(α,w) := qα(α)qw(w).

The mean-field equation for q∗α(α) is:

ln q∗α(α) = ln p(α) + Eqw [ln p(w | α)] + constant

= (ν0 − 1) lnα− αb0 + d

2 lnα− α

2 Eqw [w>w] + constant

= Gamma(νN , bN )

where νN = ν0 + d
2 and bN = b0 + 1

2Eqw [w>w].

Do not yet know how to compute Eqw [w>w].
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Variational Linear Regression (continued)
The mean-field equation for q∗w(w) is:

ln q∗w(w) = ln p(y | w) + Eqα [ln p(w | α)] + constant

= −β2

N∑
i=1

(w>φ(xi)− yi)2 − 1
2Eqα [α]w>w + const

= −1
2w>

(
Eqα [α]I + βΦΦ>

)
w + βw>Φy + constant

Therefore q∗w(w) ≡ N(w | mN ,Λ−1
N ) where

ΛN := Eqα [α]I + βΦΦ> and mN := βΛ−1
N Φy.

Moments easily calculated as

Moment of the weights: Eqw [w>w] = m>NmN + Tr(Λ−1
N )

Moment of the precision α: Eqα [α] = αNbN

– so can now iterate mean-field equations until convergence.
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Computing an Approximate Posterior Predictive Distribution

Can now use (the converged) q(α,w) := qα(α)qw(w) to do approximate posterior
inference.

e.g. Suppose we want to predict the outcome y for a new datapoint x. If we let
D denote the training data then we need p(y | x,D) to do predictions.

Can approximate this posterior predictive distribution as

p(y | x,D) =
∫
p(y | w, x)p(w | D) dw

≈
∫
p(y | w, x)qw(w) dw

=
∫

N(y | w>φ(x), β−1) N(w | mN ,Λ−1
N ) dw

= N
(
y | m>Nφ(x), σ2(x)

)
where σ2(x) := β−1 + φ(x)>Λ−1

N φ(x).

Can use this approximation to make predict y for new datapoint x.
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Variational Bayes and the Exponential Family
Variational Bayes is particularly easy to implement with the exponential family of
distributions and a conjugate prior.

- a very rich class of distributions.
In particular, suppose X = (x1, . . . , xn) is the observed data and let
Z = (z1, . . . , zn) be corresponding hidden or latent data.

If the observations are IID and the complete data (x, z) has an exponential family
distribution then

p(x, z; η) =
n∏
i=1

h(xi, zi)g(η) exp
(
η>u(xi, zi)

)
.

If we assume a conjugate prior for η so that

p(η; ν0,χ0) = f(ν0,χ0)g(η)ν0 exp
(
ν0η>χ0

)
then the posterior is p(z; η | x) ∝ p(η; ν0,χ0)p(x, z; η).
Variational Bayes with q(z; η) = qz(z)qη(η) is then straightforward to implement

- see Section 10.4 of Bishop for further deails.
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Variational Bayes for a Gaussian Mixture Model

Figure 10.6 from Bishop: Variational Bayesian mixture of K = 6 Gaussians applied to the Old Faithful data
set, in which the ellipses denote the one standard-deviation density contours for each of the components, and
the density of red ink inside each ellipse corresponds to the mean value of the mixing coefficient for each
component. The number in the top left of each diagram shows the number of iterations of variational
inference. Components whose expected mixing coefficient are numerically indistinguishable from zero are not
plotted.

See Section 10.2 of Bishop for details.
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Application: Control by Inference
Example 28.2 from Barber:

1. Let vt = (xt, yt)> be the time t position of an n-link robot arm in the plane.

2. Each link i ∈ {1, . . . , n} in the arm has unit length and angle, hi,t, so that

xt =
n∑
i=1

coshi,t, yt =
n∑
i=1

sin hi,t

3. Goal: choose the hi,t’s so that the arm will track a given sequence v1:T such
that the joint angles, ht, do not change much from one time to the next.

4. This is a classical control problem which may be formulated as an inference
problem using the model

P(v1:T ,h1:T ) = P(v1 |h1)P(h1)
T∏
t=2

P(vt |ht)P(ht |ht−1) (8)

where we assume

P(vt | ht) ∼ N

((
n∑
i=1

coshi,t,
n∑
i=1

sinhi,t

)>
, σ

2I

)
, P(ht | ht−1) ∼ N

(
ht−1, ν

2I
)
.

(9)27 (Section 4)



Control by Inference
One approach is to solve for the most likely posterior sequence
argmaxh1:T

P(h1:T | v1:T ).

Question: How does this model formulation ensure that the joint angles, ht, do
not change much from one time to the next?

We could restrict ourselves to finding the most likely marginal state at each time
argmaxht P(ht | v1:T )

– but cannot compute the marginals exactly due to the non-linear
observations.

Instead we will use variational Bayes to find an approximation
q(h1:T ) ≈ P(h1:T | v1:T ) where we assume a fully factorized form for q(·) so that

q(h1:T ) =
T∏
t=1

n∏
i=1

q(hi,t)
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Variational Bayes and the Mean-Field Equations
Recall the mean-field equations imply that the optimal choice for q(hi,t) satisfies

q(hi,t) ∝ exp
(
E(i′,t′)6=(i,t) [ln P(h1:T , v1:T )]

)
(10)

where E(i′,t′) 6=(i,t) [·] means the expectation is calculated with respect to∏
(i′,t′) 6=(i,t) q(hi′,t′).

Question: In what sense is q(hi,t) in (10) optimal?

Using (8) and (9), it is straightforward to see that (10) yields for 1 < t < T

−2 log q(hi,t) = 1
ν2

(
hi,t − h̄i,t−1

)2 + 1
ν2

(
hi,t − h̄i,t+1

)2

+ 1
σ2 (coshi,t − αi,t)2 + 1

σ2 (sinhi,t − βi,t)2 + const (11)

where
h̄i,t+1 := Eq [hi,t+1] (12)

αi,t := xt −
∑
j 6=i

Eq [coshj,t] (13)

βi,t := yt −
∑
j 6=i

Eq [sinhj,t] . (14)
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Variational Bayes and the Mean-Field Equations
The marginal distributions are clearly non-Gaussian because of the cos(·) and
sin(·) terms.

But because these distributions are one-dimensional the expectations in (12) to
(14) are easy to calculate numerically

– and so the mean-field equations can be iterated to convergence.

Question: How would you use this approach to move the arm smoothly from
v1 = (x1, y1) to vT = (xT , yT ) where the intermediate locations are not
specified?

A particular application is displayed in Figure 28.6 from Barber
– note how well the approach works.
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Figure 28.6 from Barber: (a): The desired trajectory of the end point of a three link robot arm. Green
denotes time 1 and red time 100. (b): The learned trajectory based on a fully factorised KL variational
approximation. (c): The robot arm sections every 2nd time-step, from time 1 (top left) to time 100 (bottom
right). The control problem of matching the trajectory using a smoothly changing angle set is solved using
this simple approximation.



Expectation Propagation: Motivation
Reverse Kullback-Leibler minimization solves

min
q

KL(p || q) = min
q

Ep
[
log
(
p

q

)]
Suppose now we insist that q be a member of the exponential family so that

q(z) = h(z)g(η)eη>u(z) (15)
– where we’ve suppressed any dependence on observed data D.

Then
KL(p || q) = − ln g(η)− η>Ep[u(z)] + constant

so the optimal estimate η∗ satisfies
−∇η ln g(η∗) = Ep[u(z)].

But also known that −∇η ln g(η∗) = Eq(η∗)[u(z)]
- follows by differentiating

∫
h(z)g(η)eη>u(z) dz = 1 wrt η.

Therefore obtain the following moment matching result:
Eq(η∗)[u(z)] = Ep[u(z)] (16)
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Expectation Propagation
Can use this observation to create an algorithm – expectation propagation (EP) –
for approximate inference.
In many applications the joint distribution of the hidden variables (including
unknown parameters) z has the form

p(D, z) =
∏
i

fi(z) (17)

Note that (17) arises in many applications including:
1. A model for IID data where there is one factor fi(z) := p(xi | z) for each

datapoint xi and a factor f0(z) = p(z) for the prior.
2. Models defined by directed acyclic graphs (DAGs) or undirected graphs.

The posterior is then given by

p(z | D) = 1
Zp

∏
i

fi(z).

EP approximates this posterior with a distribution q that has the same
factorization so that

q(z) = 1
Zq

∏
i

f̃i(z).
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Expectation Propagation
Will assume that the f̃i(z)’s come from the exponential family. Would then like
to solve

min
q

KL(p || q) = min
all f̃i

KL
(

1
Zp

∏
i

fi(z)
∥∥∥ 1
Zq

∏
i

f̃i(z)
)

- intractable in general since expectation is wrt unknown true distribution p.

Could try to solve minf̃i KL(fi || f̃i) for all i
- much easier but tends to result in poor approximation to joint distribution.

Instead EP approximates each factor fi in turn in context of all remaining
factors.
In particular, suppose we have initialized all factors f̃i so that our initial
approximation is

q(z) ∝
∏
i

f̃i(z).
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Expectation Propagation
We then iterate the following steps until convergence:

1. Pick a factor f̃j(z)
2. Define q̄j(z) := q(z)/f̃j(z)
3. Evaluate new posterior approximation by setting

f̃∗j (z) = argmin
f̃j

KL
(
fj(z)q̄j(z)

Zj

∥∥∥ f̃j(z)q̄j(z)
Z̃j

)
(18)

where Zj and Z̃j are just normalization factors.
Can solve (18) using result in (16) since f̃j(z)q̄j(z) is from exponential
family

- assuming expectation in (16) with p ∝ fj(z)q̄j(z) can be calculated.
4. Set f̃j(z) = f̃∗j (z).

Note that convergence is not guaranteed in general
- see Section 10.7 of Bishop for examples and further details.
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