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The EM Algorithm (for Computing ML Estimates)

Assume the complete data-set consists of Z = (X,))
— but only X is observed.

The complete-data log likelihood is denoted by [(8; X', ))) where 6 is the unknown
parameter vector for which we wish to find the MLE.

E-Step: Compute the expected value of [(0; X', )) given the observed data, X,
and the current parameter estimate 6,;4. In particular, we define

Q0;0,q) = E[(6;X,Y)]| X, 004

= /1(9;?(, y) p(y | X, 0014) dy (1)

- p(- | X,0,14) = conditional density of ) given observed data, X, and 6,4
— Q(0;0,14) is the expected complete-data log-likelihood.

M-Step: Compute 6,0, := maxy Q(0;6,14).
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The EM Algorithm

Now set 6,1 = 0.,c0o and iterate E- and M-steps until sequence of 6,,..,'s
converges.

Convergence to a local maximum can be guaranteed under very general
conditions

— will see why below.

If suspected that log-likelihood function has multiple local maximums then the
EM algorithm should be run many times

— using a different starting value of 6,4 on each occasion.

The ML estimate of 8 is then taken to be the best of the set of local maximums
obtained from the various runs of the EM algorithm.
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Why Does the EM Algorithm Work?

Will use p(- | -) to denote a generic conditional PDF. Now observe that
1(0;X) = Ilnp(X|0)
— [ oy ) dy

X, 6
. / p”y)p(y | X, 001a) dy

(y | X,0014)
(X, Y 0) ]
— me|- B2 17 y g,
" {p(y (X 0y) | 75Ot
> E {ln <m> | X,Oold} by Jensen's inequality (2)
= E[lnpX,Y|0)|X,004] — Elnp(Y|X,004) | X,004]
= Q(Q 90[{1) - E [hl p(y ‘ X,g()](]) ‘ X, H()ld} (3)

Also clear (why?) that inequality in (2) is an equality if we take 6 = 6,4.
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Why Does the EM Algorithm Work?

Let (6 | 044) denote the right-hand-side of (3).

Therefore have
Wo; X) = g(0 | boia)

for all 8 with equality when 6 = 6,;4.

So any value of 6 that increases g(0 | 60,14) beyond g(6o14 | O014) must also
increase [(0; X) beyond 1(0,4; X).

The M-step finds such a 6 by maximizing Q(6;60,14) over 0
— this is equivalent (why?) to maximizing g(6 | 0,4) over 6.

Also worth noting that in many applications the function Q(6;6,.4) will be a
convex function of 0

— and therefore easy to optimize.
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Schematic for general E-M algorithm

Gold enew

Figure 9.14 from Bishop (where £(gq,0) is g(6 | 0514) in our notation)
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E.G. Missing Data in a Multinomial Model

Suppose x := (1, 22, T3, 24) is a sample from a Mult(n, 7y) distribution where

1 1 1 1 1

The likelihood, L(#;x), is then given by

it () o) (o) (1)

so that the log-likelihood 1(6;x) is
1 1
(0;x) = C + z1ln (2 + 49) + (4 23)In(1—-0) + z41n(0)

— where C'is a constant that does not depend on 6.

Could try to maximize I(0;x) over 6 directly using standard non-linear
optimization algorithms

— but we will use the EM algorithm instead.
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E.G. Missing Data in a Multinomial Model

To do this we assume the complete data is given by y := (1, ¥2, s, ¥4, y5) and
that y has a Mult(n, 7;) distribution where

1 1 1 1 1
5= 1=, -0, =(1-0), =(1-0), -6].
T (27 4 4( )a 4( )a 4 )
However, instead of observing y we only observe (y1 + v2, 3, Y4, ¥5), i€, X.

Therefore take X = (y1 + y2, ¥s, Y4, y5) and take Y = yo.

Log-likelihood of complete data then given by
10:X,Y) = C + y2In(0) + (ys+ys)In(1—-6) + ysIn(0)

where again C is a constant containing all terms that do not depend on 6.

Also “clear” that conditional “density” of ) satisfies

fQY|&,0) = Bin <y1+y2, 1/29_{_49/4>

Can now implement the E-step and M-step.
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E.G. Missing Data in a Multinomial Model

Recall that Q(6;0,14) :== E[I(0; X,Y) | X, 0014).
E-Step: Therefore have

Q(0;0,4) = C + E[yroln(0) | X, 00 + (y3+v)In(1—0) + ys51n(6)
= C+ (n+y2)poaln(0) + (y3+ya)In(1—0) + y51n(0)
where

60/(1/4
old *= . 4
Pl 2 G a4 )
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E.G. Missing Data in a Multinomial Model

M-Step: Must now maximize Q(6;60,:4) to find 0,,¢,.

Taking the derivative we obtain

aQ (y1+y2)p (3t ) )
o ) old 1-6 )

0 whené = 0,0

where ( )
Ys + Potd(Y1 + Y2
(5)

gmzw = .
Ys + ya + Ys + Poa(y1 + y2)

Equations (4) and (5) now define the EM iteration

— which begins with some judiciously chosen value of 6,,4.
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E.G. Normal Mixture Models Revisited

Clustering via normal mixture models is an example of probabilistic clustering
— we assume the data are |ID draws

— will consider only the scalar case but note the vector case is similar.
So suppose X = (X1,...,X,) are |ID random variables each with PDF

ij

o~ (@—n;)? /207
2ma}
where p; > 0 for all j and where Zj p;=1

— parameters are the p;'s, 11;'s and o;'s
— typically estimated via MLE

— which we can do via the EM algorithm.
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Normal Mixture Models Revisited

We assume the presence of an additional or latent random variable, Y, where
P(Y=j)=p;, j=1,....,m

Realized value of Y then determines which of the m normals generates the
corresponding value of X

— so there are n such random variables, (Y7,...,Y,) =Y.
Note that 1
Loyl | i = 5.6) = e~ (@) /2] (6)
27r0?
where 6 := (p1,.. ., P, 1+« s 01, - - -, Om) IS the unknown parameter

vector.

The complete data likelihood is given by

L(6; xX,Y) = ;
pr A/ 7T‘0'§1

(Ti*;u'yi)2/205i .
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Normal Mixture Models

The EM algorithm starts with an initial guess, 6,4, and then iterates the E-step
and M-step until convergence.

E-Step: Need to compute Q(0;0,q) :== E[I(0; X,)) | X, 0,14

Straightforward to show that

Q0 0,14) ZZP i =1 %0, 00a) W (fopy (i | s = 4,0) P(Yi=j]0)).

=1 j=1
(7)
Note that f,,(z; | y: = j,0) is given by (6) and that P(Y; = j | 0c1a) = pj,old-

Finally, can compute (7) analytically since
P(Y;=j, Xi =1 | 0o1a)
P(Xz =T ‘ eold)

Jaly (@i | Yi = §,001a) P(Yi =35 |001a)
Yo foly (@i | yi = k,001a) P(Ys =k | Oo1a)

P(Y;=j|2i,00q) =

(8)
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Normal Mixture Models

M-Step: Can now maximize Q(6;6,.4) by setting the vector of partial
derivatives, 9Q/90, equal to 0 and solving for 6,,¢y.

After some algebra, we obtain

S wP(Y =74 2, 00)

j,new = - 9
a S P(Ys =71 2:,001) )
7'1 T i 2P YZ = i 90
O pew = Zl:l(xn ) P(Yi = J | 2 Oota) (10)
’ i1 P(Yi=712:,001a)
1 — _
Pjnew = n ZP(Yi =712, 001). (11)
i=1

Given an initial estimate, 6,4, the EM algorithm cycles through (9) to (11)
repeatedly, setting 6,14 = 6,¢ after each cycle, until the estimates converge.
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Kullback-Leibler Divergence

Let P and @ be two probability distributions such that if Q(x) =0 then
P(x) = 0.

The Kullback-Leibler (KL) divergence or relative entropy of @ from P is defined

o kLrl@) = [ Peom (o) (12)

with the understanding that Olog0 = 0.

The KL divergence is a fundamental concept in information theory and machine
learning.

Can imagine P representing some true but unknown distribution that we
approximate with @

— KL(P|| @) then measures the "distance” between P and Q.

This interpretation is valid because we will see below that KL(P || Q) > 0
— with equality if and only if P = Q.
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Kullback-Leibler Divergence

The KL divergence is not a true measure of distance since it is:
1. Asymmetric in that KL(P || Q) # KL(Q]| P)
2. And does not satisfy the triangle inequality.

In order to see that KL(P || @) > 0 we first recall that a function f(-) is convex
on R if

flaz+ (1= a)y) < af(z) + (1 —a)f(y) forall a €|0,1].

We also recall Jensen's inequality:

Jensen’s Inequality: Let f(-) be a convex function on R and suppose E[X] < oo
and E[f(X)] < co. Then f(E[X]) < E[f(X)].
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Kullback-Leibler Divergence

Noting that —In(z) is a convex function we have

- frrem (565)
—1In (/XP(X) gg;) by Jensen's inequality
= 0.

KL(P[ Q)

Y

Moreover it is clear from (12) that KL(P|| Q) =0 if P = Q.

In fact because —In(z) is strictly convex it is easy to see that KL(P || Q) =0
only if P = Q.
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A Nice Optimization “Trick”

Suppose ¢ € R"! and we wish to maximize >, ciln(g;) over pmf’s,
a={q, -, qn}

Let p={p1,...,pn} where p; := ¢;/ Ej ¢j so that p is a (known) pmf.
We then have:

méxxzn: c¢iln(g;) = ( Y ci) ma X{szln qi }
i=1 i=1
— (écz)m X{szlnpz épiln(z:) }
= (Zn:c) ( ] piln(p;) mqinKL(pIIq>>
=1 =1

from which it follows (why?) that the optimal q* satisfies q* = p.

Could have saved some time using this trick in earlier multinomial model example

— in particular obtaining (5)
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The EM Algorithm Revisited

As before, goal is to maximize the likelihood function L(6; X') which is given by

L(6; X) = p(X|6) = / p(X,y6) dy. (13)

Y

Implicit assumption underlying EM algorithm: it is difficult to optimize p(X | 6)
with respect to 6 directly

— but much easier to optimize p(X,Y|0).
First introduce an arbitrary distribution, ¢()’), over the latent variables, ).

Note we can decompose log-likelihood, 1(6; X), into two terms according to

00; X) :=Inp(X[0) = L(¢,0) + KL(q|lpyx) (14)

“energy”
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The EM Algorithm Revisited

L(q,0) and KL(q|| pyjx) are the likelihood and KL divergence and are given by

ﬁ(q,ﬂ) — /yq(\)))lﬂ(W) (15)
KL(qll pyjx) = _/J,Q(y)ln(]w)

It therefore follows (why?) that L£(g,6) < I(0; X) for all distributions, ¢(-).

Can now use the decomposition of (14) to define the EM algorithm, beginning
with an initial parameter estimate, 6,;4.

21 (Section 2)



The EM Algorithm Revisited

E-Step: Maximize the lower bound, £(q,8,:4), with respect to ¢(-) while keeping
901(1 fixed.

In principle this is a variational problem since we are optimizing a functional, but
the solution is easily found.

First note that 1(6,4; X) does not depend on ¢(-).

Then follows from (14) with 8 = 6,4 that maximizing £(q,0,14) is equivalent to
minimizing KL(q || py|x).

Since this latter term is always non-negative we see that £(q,6,.4) is optimized
when KL(¢q|| pyja) =0

— by earlier observation, this is the case when we take ¢()) = p(V | X, 0,14).

At this point we see that the lower bound, £(¢, 8,14), now equals current value of
log-likelihood, 1(0414; X).
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The EM Algorithm Revisited

M-Step: Keep ¢(Y) fixed and maximize £(q,0) over 0 to obtain 0,,c,.

This will therefore cause the lower bound to increase (if it is not already at a
maximum)

— which in turn means the log-likelihood must also increase.

Moreover, at this new value 8,,.,, it will no longer be the case that
KL(q || pyjx) =0
— so by (14) the increase in the log-likelihood will be greater than the
increase in the lower bound.
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Comparing Classical EM With General EM

It is instructive to compare the E-step and M-step of the general EM algorithm
with the corresponding steps of the original EM algorithm.

To do this, first substitute ¢(¥) = p(YV | X, 0,14) into (15) to obtain
L(q,0) = Q(0;0,4) + constant (16)
where Q(0;0,14) is the expected complete-date log-likelihood as defined in (1).

The M-step of the general EM algorithm is therefore identical to the M-step of
original algorithm since the constant term in (16) does not depend on 6.

The E-step in general EM algorithm takes ¢()) = p(Y | X, 0,14) which, at first
glance, appears to be different to original E-step.

But there is no practical difference: original E-step simply uses p() | X, 0,14) to
compute Q(0;60,.4) and, while not explicitly stated, the general E-step must also
do this since it is required for the M-step.
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E.G. Imputing Missing Data (Again)

N respondents were asked to answer m questions each. The observed data are:

1 if respondent 7 answered yes to question ¢
Vig = 0 if respondent 7 answered no to question ¢
— if respondent ¢ did not answer question ¢

J— 1 Uiq € {07 1}
Yia =\ 0 otherwise

We assume the following model:
® K classes of respondents: = (71, ..., Tx) with 7, = P(respondent in class k)
e Latent variables z; € {1,..., K} fori=1,...,N
¢ Class dependent probability of answers: o, = P(v;g =112, = k)
® Parameters 6 = (, o)
Log-likelihood with X := {v;y|i=1,...,N,q=1,...,m}:

Zln Zm H a (1 — okq )(1_“””)

@ Yig=1

Question: What implicit assumptions are we making here?
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EM for Imputing Missing Data

Take YV := (z1,...,2Nn)-

Complete-data log-likelihood then given by

(0;x2,) = ZZl{zl k) In <7rk H 0‘ 1_Uk (1—v,5q)>

i=1 k=1 T:Yiqg=1

E-Step: Need to compute Q(6;0,14). We have

Q(6;001a) = [l (0:X,0) | X,0014]
N
- Z 'Vzokldln (Wk H O';;Zl(l—o'kq)(l—”m))
=1 k=1 ¢:yig=1

where

Yol =Pz =k | v, 001) o Wkldp(vz | 2 = k)

_ ld H old v,q old\(1—wjq)
- —03q") !

q:yiq=1
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EM for Imputing Missing Data

M-Step: Now solve for 6,,,, = maxg Q(0;0,14):

We have
K K m
Q(0:001a) Z (Z’YOM) In(7y,) + ZZ ( Z 3 Uzq) In (0kq)
k=1 =1 k=1q=1 dy,=1
( Z k(1 — Vig )ln (1 — qu)
1 Yig=1

Solving maxy Q(0;0,,4) yields

old
ﬂ_"gew — Z’L 1 Vik
old
Zz 1 Z 171]
new  __ Zi‘y«'qzl ,yik Vig
kq - old *
Zz Yiq=1 Vik

Now iterate E- and M-steps until convergence.
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