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Linear Regression
Linear regression assumes the regression function E[Y |X] is linear in the
inputs, X1, . . . ,Xp.
Developed many years ago but still very useful today

- simple and easy to understand
- can sometimes outperform more sophisticated models when there is little data

available.

Linear models can also be applied to transformations of the inputs
- leads to the basis function approach (and kernel regression)
- which extends the scope of linear models to non-linear models.

But linear models also have many weaknesses including a tendency to
over-fit the data

- will return to this later when we discuss the bias-variance decomposition and
(in a later set of slides) shrinkage methods.
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Linear Regression
In a linear regression model the dependent variable Y is a random variable that
satisfies

Y = β0 +
p∑

i=1
βiXi + ε

where X = (X1, . . . ,Xp) and ε is the “error” term.
The linear model therefore implicitly assumes that E[Y | X] is approximately
linear in X = (X1, . . . ,Xp).
The input or independent variables, Xi , are numerical inputs

- or possibly transformations, e.g. product, log, square root, φ(x), of
“original” numeric inputs

- the ability to transform provides considerable flexibility.

The Xi ’s can also be used as “dummy” variables that encode the levels of
qualitative inputs

- an input with K levels would require K − 1 dummy variables, X1, . . . ,XK−1
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Model Fitting: Minimizing the Residual Sum of Squares

We are given training data: (y1, x1), (y2, x2), …, (yN , xN ).

Then obtain β̂ by minimizing the residual sum of squares or RSS:

min
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
= min

β
‖y− Xβ‖2

where

y :=


y1
y2
...

yN

 X :=


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
...

. . .
...

1 xN1 xN2 . . . xNp
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Model Fitting: Minimizing the Residual Sum of Squares

This is a simple (convex) quadratic optimization problem so β̂ satisfies

∇ ‖y− Xβ‖2 = −2X>(y− Xβ) = 0|β=β̂ ⇒ β̂ = (X>X)−1X>y

Also have

ŷ = X(X>X)−1X>︸ ︷︷ ︸
:= H, the “hat” matrix

y and ε̂ = y− ŷ = (I−H)y.

Have (implicitly) assumed that (X>X) is non-singular.
This is not always the case in which case β̂ will not be unique (although ŷ still is)

- can resolve by dropping redundant columns from X
- many software packages do this automatically

But in many modern applications p >> N in which case at least N − p columns
would need to be dropped – something we may not want to do!

- hence the need for another solution approach e.g. ridge regression.
For now we will assume p ≤ N .
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Model Fitting: Minimizing the Residual Sum of Squares

The residual-sum-of-squares is defined as

RSS :=
N∑

i=1
(yi − ŷi)2 = ε̂>ε̂

whereas the the total-sum-of-squares is

TSS :=
N∑

i=1
(yi − ȳ)2.

The R2 statistic is a measure of the linear relationship between X and Y :

R2 := 1− RSS
TSS .

R2 always lies in the interval [0, 1] with values closer to 1 being “better”
- but whether a given R2 value is good or not depends on the application
- in physical science applications we looks for values close to 1 (if the model is

truly linear); in social sciences an R2 of .1 might be deemed good!
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The Geometry of Least Squares

Figure 3.1 from HTF: Linear least squares fitting with X ∈ R2 . We seek the linear function of X that
minimizes the sum of squared residuals from Y .
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The Geometry of Least Squares

Figure 3.2 from HTF: The N-dimensional geometry of least squares regression with two predictors. The
outcome vector y is orthogonally projected onto the hyperplane spanned by the input vectors x1 and x2. The
projection ŷ represents the vector of the least squares predictions.
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Normal Errors: ε ∼ N (0, σ2I)
If ε ∼ N (0, σ2I) then β̂ satisfies

β̂ = (X>X)−1X>y = β + (X>X)−1X>ε ∼ N (β, (X>X)−1σ2).
Can estimate σ2 with the sample variance:

σ̂2 := 1
N − p − 1

N∑
i=1

(yi − ŷi)2 = RSS
N − p − 1 .

e.g. Under the null hypothesis that βj = 0, the z-score

zj := β̂j

σ̂
√

(X>X)−1
jj )
∼ tN−p−1 ≈ N (0, 1) for large N .

- so absolute z scores ≥ 2 ensure significance at the 5% level.

An approximate (1− 2α)-confidence interval for βj is given by(
β̂j − z1−ασ̂

√
(X>X)−1

jj , β̂j + z1−ασ̂
√

(X>X)−1
jj

)
where z1−α := Φ−1(1− α).
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Hypothesis Testing (Assuming Normal Errors)
To test the null hypothesis

H0 : β1 = β2 = · · · = βp = 0

versus the alternative

Ha : at least one βi is non-zero.

We can compute the F -statistic

F = (TSS− RSS)/p
RSS/(N − p − 1)

which has an Fp,N−p−1 distribution under H0

- hence large values of F constitute evidence against H0

- can compute the p-value = Prob(Fp,N−p−1 ≥ F)
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Hypothesis Testing (Assuming Normal Errors)
Can also test that a subset of the coefficients equal zero:

H0 : βp−q+1 = βp−q+2 = · · · = βp = 0

versus the alternative that at least one of these coefficients is non-zero.
In this case the F -statistic is

F := (RSS0 − RSS)/q
RSS/(N − p − 1)

where RSS0 = RSS for model that uses all variables except for last q.
Under the null hypothesis that the nested model (with βp−q+2 = · · · = βp = 0)
fits the data sufficiently well we have F ∼ Fq,n−p−1

- which we can use to compute p-values.
Such F -tests are commonly used for model selection in classical statistics

- but they only work when p << N
- they are also problematic due to issues associated with multiple testing.

Will prefer to use more general validation set and cross-validation approaches for
model selection – to be covered soon.
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The Advertising Data Set from ISLR
Figure 2.1. displays the advertising data set from ISLR. It consists of:

Sales of a particular product in 200 different markets
Advertising budgets for the product in each of those markets for three
different media:

1. TV
2. radio
3. newspaper

The goal is to answer the following questions:
1. Is there a relationship between advertising budget and sales?
2. How strong is the relationship between advertising budget and sales?
3. Which media contribute to sales?
4. How accurately can we estimate the effect of each medium on sales?
5. How accurately can we predict future sales?
6. Is the relationship linear?
7. Is there synergy among the advertising media?

Section 3.4 of ISLR provides answers to these questions
- but need to read earlier sections of chapter 3 first.
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Figure 2.1 from ISLR: The Advertising data set. The plot displays sales, in thousands of units, as a function
of TV, radio, and newspaper budgets, in thousands of dollars, for 200 different markets. In each plot we show
the simple least squares fit of sales to that variable, as described in Chapter 3. In other words, each blue line
represents a simple model that can be used to predict sales using TV, radio, and newspaper, respectively.



The Credit Data-Set from ISLR
The credit data-set from ISLR contains quantitative data on following variables
for a number of customers. See Fig. 3.6 for corresponding scatter-plot matrix .

balance (average credit card debt)
age (in years).
cards (number of credit cards)
education (years of education)
income (in thousands of dollars)
limit (credit limit)
rating (credit rating)

There are also four qualitative variables:
gender
student (student status)
status (marital status)
ethnicity (Caucasian, African American or Asian)

See Section 3.3 of ISLR for analysis and discussion of this data-set and in
particular, how to handle qualitative variables using dummy variables.
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Figure 3.6 from ISLR: The Credit data set contains information about balance, age, cards, education,
income, limit, and rating for a number of potential customers.



Potential Problems with Linear Regression
Many problems can arise when fitting a linear model to a particular data-set:

1. Non-linearity of the response-predictor relationships
- plotting residuals against fitted values are a useful graphical tool for

identifying this problem
- a simple solution is to use non-linear transformations of the predictors.

2. Correlation of error terms
- a serious problem since estimation of σ2 and statistical tests all depend on

assumption of zero-correlation
- problem can arise with time-series data – can detect it then by plotting

residuals against time.
3. Non-constant variance or heteroscedasticity of error terms

- another important assumption that can be tested by plotting residuals against
fitted values

- if problem exists consider applying a concave function to Y .

4. Outliers, i.e. points for which yi is far from the predicted value β̂
>

Xi
- could be genuine or a data error
- may or may not impact fitted model – but regardless will impact σ̂2,

confidence intervals and p-values, possibly dramatically
- can identify them by plotting studentized residuals against fitted values –

values > 3 in absolute value are suspicious.
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Potential Problems with Linear Regression
5. High-leverage points

- these are points whose presence has a large impact on the fitted model
- generally correspond to extreme predictor X
- can identify such points via their leverage statistic, hi := Hii ; always the case

that hi ∈ [1/N , 1].

6. Collinearity and multi-collinearity
- collinearity is the problem when two or more predictor variables are highly

correlated
- difficult then to separate out the individual effects and corresponding

coefficients tend to have very high variances
- can assess multi-collinearity by computing the variance inflation factor (VIF)

which is the ratio of Var
(
β̂i
)

when fitting the full model divided by Var
(
β̂i
)

if fit on its own
- smallest possible value is 1; rule of thumb is that values exceeding 5 or 10

indicate collinearity
- solution is to either drop one of the variables or combine them into a single

predictor. e.g. in credit data set could combine limit and rating into a single
variable.

See discussion in Section 3.3.3 of ISLR for further discussion.
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Linear Regression with Basis Functions
Can also do everything with basis functions

Y = β0 +
M∑

i=1
βiψi(x) + ε

where ψi : Rp 7→ R is the ith basis function.

Example: ψi(x) = 1
(2πσ2)p/2 e−

1
2σ2 ‖x−µi‖

2
2 .

The ψi(x)’s are often used to encode domain-specific knowledge.

Parameter estimate:
β̂ = (Ψ>Ψ)−1Ψ>y

where

Ψ =


1 ψ1(x1) ψ2(x1) . . . ψM (x1)
1 ψ1(x2) ψ2(x2) . . . ψM (x2)
...

...
...

. . .
...

1 ψ1(xN ) ψ2(xN ) . . . ψM (xN )
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Linear Regression with Basis Functions
Ability to use basis functions extends the scope of linear regression to obtain
non-linear relationships between Y and X

- this flexibility can be very valuable
- when basis functions are simply powers of the original inputs we call it

polynomial regression
- splines can also be implemented via basis functions.

If M gets too large then solving for β̂ may become intractable
- but kernel methods and so-called “kernel trick” can then come to the rescue
- in which case possible to even take M =∞

Will defer study of kernel methods until we study support vector machines
- but note here they are applicable to many forms of regression including

linear and ridge regression.

Can also fit non-linear models using smoothing splines, local regression or GAMs
(generalized additive models)

- will not study them in this course but see Chapter 7 of ISLR for details.
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Why Minimize the Sum-of-Squares?
Let X be non-random and suppose we want to estimate θ := a>β.
Then least-squares estimate of θ is

θ̂ = a>β̂ = a>(X>X)−1X>y

– a linear function of the response y.

If the linear model is correct then easy to check that E[θ̂] = θ so θ̂ is unbiased.

Gauss-Markov Theorem: Suppose c>y is any unbiased estimate of θ. Then

Var
(
a>β̂

)
≤ Var

(
c>y

)
.

The Gauss-Markov Theorem says that the least-squares estimator has the
smallest variance among all linear unbiased estimators.

Question: Great! But is unbiasedness a good thing?
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Mean-Squared Error
To answer this question let θ̃ be some estimator for θ.

The mean-squared-error (MSE) then satisfies

MSE(θ̃) = E
[(
θ̃ − θ

)2]
= Var(θ̃) +

(
E
[
θ̃
]
− θ
)2︸ ︷︷ ︸

bias2

.

If the goal is to minimize MSE then unbiasedness not necessarily a good thing
- can often trade a small increase in bias2 for a larger decrease in variance
- will do this later with subset selection methods as well as shrinkage methods

- an added benefit of some of these methods is improved interpretability.

But first let’s study the bias-variance decomposition.
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The Bias-Variance Decomposition
Assume the true model is Y = f (X) + ε where E[ε] = 0 and Var(ε) = σ2

ε .
Let f̂ (X) be our estimate at a new fixed point, X = x0. Then the error at x0
assuming the training inputs are fixed, i.e. non-random, is:

Err(x0) = E
[(

Y − f̂ (x0)
)2
]

= E
[(

f (x0) + ε− f̂ (x0)
)2
]

= E
[
ε2
]

+ E
[(

f (x0)− f̂ (x0)
)2
]

(1)

= σ2
ε + E

[(
f (x0)− E[f̂ (x0)] + E[f̂ (x0)]− f̂ (x0)

)2
]

= σ2
ε +

(
f (x0)− E[f̂ (x0)]

)2
+ E

[(
f̂ (x0)− E[f̂ (x0)]

)2
]

= σ2
ε + Bias2

(
f̂ (x0)

)
+ Var

(
f̂ (x0)

)
= Irreducible Error + Bias2(x0) + Variance(x0). (2)
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The Bias-Variance Decomposition
The irreducible error is unavoidable and beyond our control.
But we can exercise control over the bias and variance via our choice of f̂ (x0)

- the more complex the model the smaller the bias and the larger the variance.

Example: k-Nearest Neighbor Regression. In this case (2) reduces to

Err(x0) = σ2
ε +

(
f (x0)− 1

k

k∑
l=1

f (x(l))
)2

+ σ2
ε

k (3)

where x(1), . . . , x(k) are the k nearest neighbors to x0 and (for simplicity) we’ve
assumed the training inputs are all fixed.
Here k is inversely related to model complexity (why?) and then see:

bias typically decreases with model complexity
variance increases with model complexity.

Can repeat this analysis for other models, e.g. linear or ridge regression etc
- goal is to choose the model complexity which corresponds to the optimal

bias-variance tradeoff.
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The Bias-Variance Decomposition
A more general form of bias-variance decomposition assumes test point x is
selected randomly and also accounts for randomness of training data, D say.
In this case and starting from (1) we obtain the error in entire learning process:

Err(f̂ ) = σ2
ε + Ex,D

[(
f (x)− f̂ (x;D)

)2
]

= σ2
ε + Ex

[
ED
[(

f (x)− f̂ (x;D)
)2
]]

= σ2
ε + Ex

[
ED
[
f̂ (x;D)2

]
− 2ED

[
f̂ (x;D)

]
f (x) + f (x)2

]
= σ2

ε + Ex

[
ED
[
f̂ (x;D)2

]
− 2¯̂f (x)f (x) + f (x)2

]
= σ2

ε + Ex

[
ED
[
f̂ (x;D)2

]
− ¯̂f (x)2︸ ︷︷ ︸

ED

[(
f̂ (x;D)−¯̂f (x)

)2
] + ¯̂f (x)2 − 2¯̂f (x)f (x) + f (x)2︸ ︷︷ ︸(¯̂f (x)−f (x)

)2

]

= Irreducible Error + Ex
[
Variance(x) + Bias2(x)

]
= Irreducible Error + Variance + Bias2.
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Example: the Bias-Variance Trade-Off
Consider the following example from Bishop:

1. The “true” model to be estimated is

y(x) = sin(2πx) + ε, x ∈ [0, 1], ε ∼ N (0, c) (4)

- a very nonlinear function of x.
2. We fit a linear regression model with M = 24 Gaussian basis functions

ψj(x) := e−
1

2σ2 (x−µj)2

with µj = j
M−1 for j = 0, . . . ,M − 1 and σ = 1

M−1 .
3. Including the constant term the parameter vector β is (M + 1)× 1.
4. We will also include a regularization term so that regression problem solves

β̂ = argmin
β

N∑
j=1

(
Yj − β0 −

M∑
i=1

βiψi(xj)
)2

+ λ

2 β>β (5)
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Example: the Bias-Variance Trade-Off
5. A data-set if of the form D = {(yi , xi) : i = 1, . . . ,N}, with N = 25

- the xi ’s are sampled randomly from [0, 1]
- the yi ’s are then sampled using (4).
– so noise comes both from measurement and sampling.

6. We generate L = 100 of these data-sets.

7. The model is fit by solving (5) for each of the L data-sets and various values
of λ.

Results are displayed in Figure 3.5:

The model bias is clear from graphs in right-hand column.
The variance of individual fits is clear from graphs in left-hand column.

The bias-variance tradeoff is clear and quantified in Figure 3.6.
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Figure 3.5 from Bishop: Illustration of the dependence of bias and variance on model complexity, governed by a regularization parameter λ, using the

sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25 data points, and there are 24 Gaussian basis functions in the
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A Case Study: Overfitting with Polynomials
Overfitting is a very serious issue that needs to be handled in supervised learning
problems.
To explore overfitting in further detail we will consider two 1-dimensional
polynomial regression problems.

Problem 1

True model is y = f (x) + ε where ε is IID noise and f (x) is a 10th order
polynomial on x ∈ R.
There are n = 15 datapoints: (x1, y1), . . . , (xn, yn)

- the xi ’s were generated ∼ U (−1, 1) and then yi = f (xi) + εi where the εi ’s
were generated IID N(0, 3).

We fit 2nd and 10th order polynomials to this data via simple linear
regression, that is we regress Y on 1,X , . . . ,XJ where J = 2 or J = 10.
The results are displayed in the figure on the next slide.
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A Case Study: Overfitting with Polynomials
Question: Which regression results in a superior fit to the data?

Question: Which regression results in a superior out-of-sample or generalization
error?

Note that the set of 10th order polynomials contains the true target function,
y = f (x), whereas the set of 2nd order polynomials does not.

We might therefore expect the 10th order fit to be superior to the 2nd order fit
- but this is not the case!

Question: Why do you think the 2nd order fit does a better job here?

Question: Do you think the 2nd order fit will always be better irrespective of N ,
the number of data-points?
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A Case Study: Overfitting with Polynomials

Problem 2
True model is y = f (x) and f (x) is a 50th order polynomial on x ∈ R.
There are n = 15 datapoints: (x1, y1), . . . , (xn, yn)

- the xi ’s were generated ∼ U (−1, 1) and then yi = f (xi) so the observations
are noiseless.

We fit 2nd and 10th order polynomials to this data via simple linear
regression, that is we regress Y on 1,X , . . . ,XJ where J = 2 or J = 10.
The results are displayed in the figure on the next slide.

Commonly thought that overfitting occurs when the fitted model is too complex
relative to the true model

- but this is not the case here: clearly the 10th order regression overfits the
data but a 10th order polynomial is considerably less complex than a 50th

order polynomial.
What matters is how the model complexity matches the quantity and quality of
the data, not the (unknown) target function.
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Note: This case study is based on the case study in Section 4.1 of “Learning from Data” by
Abu-Mostafa, Magdon-Ismail and Lin.



Methods for Exploring the Bias-Variance Trade-Off and Controlling Overfitting

It is vital then to control over-fitting when performing supervised learning, i.e.
regression or classification. There are many approaches:

Subset selection where we retain only a subset of the independent variables
Shrinkage methods where coefficients are shrunk towards zero.
Regularization where we penalize large-magnitude parameters

- shrinkage often achieved via regularization

Cross-validation often used to select the specific model. Other methods include:
Bayesian models

- many shrinkage / regularization methods can be interpreted as Bayesian
models where the penalty on large-magnitude parameters becomes a prior
distribution on those parameters.

Methods that explicitly penalize the number of parameters, p, in the model
Akaike Information Criterion (AIC) = −2 ln(likelihood) + 2(p + 1)
Bayesian Information Criterion (BIC): −2 ln(likelihood) + (p + 1) ln(N )

Choose the model that minimizes the AIC or BIC
- these methods apply to models fit via MLE.

Will study most of these methods during the course!
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