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Linear Regression
Recall our linear regression model:

Y = β0 +
p∑

i=1
βiXi + ε.

Have seen how to fit this model via least squares but often preferable to use
other solutions techniques as they often result in:

1. Superior prediction accuracy, especially when p is close to N
- in fact if p > N then least squares does not yield a unique β̂
- superior prediction will result from controlling overfitting and identifying a

good bias-variance trade-off.
2. Better interpretability via the exclusion of irrelevant variables.

Will consider the following methods here:
1. Subset selection where only a subset of the independent variables are

retained.
2. Shrinkage methods where coefficients are shrunk towards zero

- typically achieved via regularization.

Cross-validation often used to select the specific model.
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Best-Subset Regression
Best subset regression proceeds according to Algorithm 6.1 from ISLR:

Feasible using leaps-and-bounds algorithm for p as large as approx 40.

See Figure 6.1 in ISLR for best-subset regressions in credit example
- best RSS decreases with k so cannot use this to select k
- instead use one of the criteria listed above.

Best-subset regression infeasible for large values of p
- forward- and backward-stepwise selection are tractable alternatives.
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Figure 6.1 from ISLR: For each possible model containing a subset of the ten predictors in the Credit data
set, the RSS and R2 are displayed. The red frontier tracks the best model for a given number of predictors,
according to RSS and R2. Though the data set contains only ten predictors, the x-axis ranges from 1 to 11,
since one of the variables is categorical and takes on three values, leading to the creation of two dummy
variables.



Forward-Stepwise Selection
Forward stepwise selection is a greedy algorithm that proceeds according to
Algorithm 6.2 from ISLR:

Much faster than best subset selection. Why?

In step 3, why can we not choose the model with the largest R2?
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Backward-Stepwise Selection
Backward stepwise selection is a greedy algorithm that proceeds according to
Algorithm 6.3 from ISLR:

Also much faster than best subset selection. Why?

Backward stepwise selection begins with the full model and sequentially drops the
least-informative predictor

- can only be used if N > p. Why?
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Subset Selection Methods
Forward-stagewise regression is a more constrained (and slower) version of
forward-stepwise regression

- see section 3.3.3 of HTF for details.

There are also hybrid approaches that consider forward and backward moves at
each step

- often using the AIC, BIC or adjusted R2 criterion to make the decision
- traditionally F -statistics were used to make these decisions but they suffer

from multiple testing issues
- an enormous problem throughout science and public policy.

Once model has been chosen it is common to print out a summary of the details
of the fitted model including estimated standard errors etc.

Question: What is the problem with this?
– the bootstrap can be useful in addressing these issues.
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Cp, AIC, BIC, and Adjusted R2

Let MSE : = RSS/N denote the fitted model’s performance on a given data set.
Then we know (why?) the training set MSE will underestimate the test set MSE.
Would therefore like to adjust the training set MSE to get a better estimate of
the test set MSE.
There are several approaches:

1. Cp applies to least-squares models and is given by

Cp := 1
N (RSS + 2pσ̂2)

Can be shown that if σ̂2 is an unbiased estimate of σ2 (and the model is
correct!) then Cp is an unbiased estimate of the test MSE.

2. The AIC (Akaike information criterion) applies to a broader range of models
that are fit via maximum likelihood estimation (MLE). In the case of the
linear regression model with Gaussian errors it is given by

AIC := 1
N σ̂2 (RSS + 2pσ̂2)

For least squares models Cp and AIC are equivalent.
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Cp, AIC, BIC, and Adjusted R2

3. BIC (Bayesian Information criterion) is derived from a Bayesian viewpoint
but results in a similar expression (for least squares models):

BIC := 1
N (RSS + log(N )pσ̂2),

Since log(N ) > 2 for N > 7, BIC penalizes models with many parameters
more than Cp does and so its use results in the selection of smaller models.

Note: Formulas for Cp, AIC and BIC tend to vary but they should all
coincide up to irrelevant constants.

4. The adjusted R2 statistics doesn’t have the theoretical justification (when
N →∞) of other criteria but is quite popular as it is intuitive. It satisfies

Adjusted R2 := 1− RSS/(N − p − 1))
TSS/(N − 1)

Note that large values of adjusted-R2 are “good”.
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Figure 6.2 from ISLR: Cp, BIC, and adjusted R2 are shown for the best models of each size for the Credit
data set (the lower frontier in Figure 6.1). Cp and BIC are estimates of test MSE. In the middle plot we see
that the BIC estimate of test error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.

While Cp, AIC, BIC, and adjusted R2 are quite popular they can be hard to apply
to more general problems.

This is not true of cross-validation which provides direct estimates of the test
MSE and is easy to apply in general.

Given speed of modern computers cross-validation now appears to be the method
of choice.
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Figure 6.3 from ISLR: For the Credit data set, three quantities are displayed for the best model containing d
predictors, for d ranging from 1 to 11. The overall best model, based on each of these quantities, is shown as
a blue cross. Left: Square root of BIC. Center: Validation set errors. Right: Cross-validation errors.

Figure 6.3 displays the BIC, validation set errors and cross-validation error on the
credit data set.
Validation errors calculated by randomly selecting 3/4 of the observations as the
training set, and the remainder as the validation set.
Cross-validation errors were computed using k = 10 folds.
All 3 approaches suggest using a model with just 3 predictors is sufficient. Why?
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Shrinkage Methods
Will focus mainly on two shrinkage methods:

1. Ridge regression where we solve:

min
β

{
1
2 ‖y− Xβ‖2 + λ · 1

2 ‖β‖
2
2

}
.

2. The Least Absolute Shrinkage and Selection Operator or Lasso solves

min
β

{
1
2 ‖y− Xβ‖2 + λ ‖β‖1

}
‖β‖1 =

n∑
j=1
|βj |

As λ increases, coefficients will abruptly drop to zero.

Question: How should we choose λ?

Note: Shrinkage methods can also be applied to classification problems!
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Ridge Regression
Ridge regression solves

β̂
R

= argmin
β

{
1
2 ‖y− Xβ‖2 + λ

2

p∑
j=1

β2
j

}

- shrinks regression coefficients towards 0 by imposing a penalty on their size
- λ is a complexity parameter that controls the amount of shrinkage.

An equivalent formulation is

β̂
R

= argmin
β

{
1
2 ‖y− Xβ‖2

}
(1)

subject to
p∑

j=1
β2

j ≤ s

It is standard (why?) to scale and standardize inputs before applying ridge
regression.
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Ridge Regression
Note β0 is generally not shrunk so that procedure does not depend on origin
chosen for Y .
To handle this and use matrix notation we can split estimation into two steps:

1. Set β̂0 = ȳ =
∑N

i=1
yi

N
2. Center the inputs so that xij → xij − x̄j .

Now estimate β1, . . . , βp using ridge regression without intercept and using
the centered xij ’s.

Dropping β0 from β, the ridge regression of step 2 therefore solves

β̂
R

= argmin
β

{
1
2 ‖y− Xβ‖2 + λ

2 β>β

}
which has solution

β̂
R

= (X>X + λI)−1X>y. (2)
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Ridge Regression
Note that β̂

R
is obtained as the solution of a least squares problem except that a

positive term, i.e. λ, has been added to the diagonal of X>X

- this makes the problem non-singular, even if X>X does not have full rank

- this was the main motivation for ridge regression when first introduced.

Ridge regression estimates can easily be obtained in a Bayesian setting

- prior distribution on each βi is independent normal N(0, τ2)

- then with λ := σ2/τ2, obtain β̂
R

as mean of posterior distribution.

Figure 6.4 from ISLR displays β̂
R

for various values of λ and ||β̂
R
λ||2/||β̂||2

- can interpret ||β̂
R
λ||2/||β̂||2 as a measure of the total shrinkage achieved

- note that we recover the least squares solution as λ→ 0.
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Ridge Regression on the Credit Data Set
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Figure 6.4 from ISLR: The standardized ridge regression coefficients are displayed for the Credit data set, as
a function of λ and ||β̂R

λ||2/||β̂λ||2.

Note that as λ increases coefficients are shrunk towards zero.
Also note that coefficients are generally non-zero for any value of λ

- so ridge regression does not result in sparse models.
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Selecting λ Via Cross-Validation
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Figure 6.12 from ISLR: Cross-validation errors that result from applying ridge regression to the Credit data
set with various value of λ. Right: The coefficient estimates as a function of λ. The vertical dashed lines
indicate the value of λ selected by cross-validation.

Using cross-validation to select λ for the Credit data set results in only a modest
amount of shrinkage.
And the cv error is relatively insensitive to choice of λ here

- so little improvement over least squares solution.
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Why Does Ridge Regression Improve Over Least Squares?
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Figure 6.5 from ISLR: Squared bias (black), variance (green), and test mean squared error (purple) for the
ridge regression predictions on a simulated data set, as a function of λ and ||β̂R

λ||2/||β̂λ||2. The horizontal
dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for
which the MSE is smallest.

Ridge regression (and Lasso) often (significantly) outperform least-squares
because it is capable (through selection of λ) of trading off a small increase in
bias for a potentially much larger decrease in variance.
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The Lasso
Recall that the Lasso solves

min
β

{
1
2 ‖y− Xβ‖2 + λ ‖β‖1

}
where ‖β‖1 :=

∑n
j=1 |βj |.

Penalizing the 1-norm ensures that coefficients will abruptly drop to zero as λ
increases – results in superior interpretability.

The Lasso can also be formulated by constraining ‖β‖1:

β̂
L

= argmin
β

{
1
2 ‖y− Xβ‖2

}
(3)

subject to
p∑

j=1
|βj | ≤ s

Unlike ridge regression, a closed-form solution is not available for the Lasso
- but it can be formulated as a convex quadratic optimization problem and is

therefore easy to solve numerically.
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Lasso on the Credit Data Set
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Figure 6.6 from ISLR: The standardized lasso coefficients on the Credit data set are shown as a function of λ
and ||β̂L

λ||1/||β̂λ||1.

Note how coefficients abruptly drop to 0 as λ increases in Figure 6.6
- contrast this with ridge regression!

Lasso results in sparse models then and can be viewed as a method for subset
selection.

21 (Section 3)



A Simulated Data Set
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Figure 6.9 from ISLR: Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the
lasso. The simulated data is similar to that in Figure 6.8, except that now only two predictors are related to
the response. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge
(dashed). Both are plotted against their R2 on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.

Figure 6.9 displays results from a simulated data set with p = 45 predictors – but
the response Y is a function of only 2 of them!
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Selecting λ Via Cross-Validation
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Figure 6.13 from ISLR: Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated
data set from Figure 6.9. Right: The corresponding lasso coefficient estimates are displayed. The vertical
dashed lines indicate the lasso fit for which the cross-validation error is smallest.

Note how the optimal λ (chosen via cross-validation) correctly identifies the
model with the 2 predictors

- contrast with least squares solution at far right of right-hand figure!
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Lasso Versus Ridge Regression

Figure 6.7 from ISLR: Contours of the error and constraint functions for the lasso (left) and ridge regression
(right). The solid blue areas are the constraint regions, |β1|+ |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red

ellipses are the contours of the RSS.

Contours of the error and constraint functions of the formulations in (1) and (3)
are displayed in Figure 6.7.
This perspective makes it clear why Lasso results in a sparse solution whereas
ridge regression does not.
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Ridge Regression Versus Lasso
The following e.g. (taken from ISLR) provides further intuition for why Lasso
results in sparse solutions and ridge regression does not. We assume:

N = p.
X is a diagonal matrix with 1’s on the diagonal.
There is no intercept term.

Least squares then solves minβ1,...,βp

∑N
j=1 (yj − βj)2

Solution is β̂j = yj .

Ridge regression solves minβ1,...,βp

∑N
j=1 (yj − βj)2 + λ

∑p
j=1 β

2
j

Can check solution is β̂R
j = yj/(1 + λ).

Lasso solves minβ1,...,βp

∑N
j=1 (yj − βj)2 + λ

∑p
j=1 |βj |

Can check solution is

β̂L
j =

 yj − λ/2, if yj > λ/2;
yj + λ/2, if yj < −λ/2;
0, if |yj | ≤ λ/2.
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Other Shrinkage Methods
Group Lasso:

min
β

{
1
2 ‖y− Xβ‖2 + λ

m∑
k=1
‖βk‖2

}
where βk are non-overlapping sub-vectors of (β1, . . . , βp)>

Induces all the coefficients in the sub-vector to go to zero
Useful when there are dummy variables in the regression.

Composite norm methods:

min
β

{
‖y− Xβ‖+ λ

m∑
k=1
‖βk‖2

}

Useful when we want to force Xβ = y.

Elastic nets:

min
β

{
1
2 ‖y− Xβ‖2 + λ

(
(1− α)1

2 ‖β‖
2
2 + α ‖β‖1

)}
26 (Section 3)



High Dimensional Problems
Traditionally problems in statistics were low-dimensional with p < N and often
p << N .
But many modern setting have p > N . For example:

1. Classical statistics might attempt to predict blood pressure as a function of
age gender and body-mass-index (BMI). Modern methods might also use
measurements for approx 500k single nucleotide polymorphisms (SNPs).

2. Online advertisers may want to predict the purchasing behavior of someone
using a search engine. Dummy variables for each of p search terms might be
included as predictors with pi = 1 if the ith term was previously searched by
the user and pi = 0 otherwise.

3. Speech recognition problems where we have speech samples for N speakers.
To represent a speech sample as a numeric vector we require very large p.

Need to be very careful in these high-dimensional settings where (unique) least
squares solutions do not even exist.
Even if p is smaller than but still close to N then similar problems still arise.
Similar observations hold true for classification problems that use classical
approaches such as LDA, QDA, logistic regression etc.
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Issues in High Dimensions
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Figure 6.22 from ISLR: Left: Least squares regression in the low-dimensional setting. Right: Least squares
regression with n = 2 observations and two parameters to be estimated (an intercept and a coefficient).

Problem in Fig. 6.22 is low dimensional but demonstrates what can go wrong
when we have too little data relative to problem dimension

- this certainly occurs when p ≈ N
- saw similar issues with the case-study in Regression I slides.

When p ≥ N least squares can fit the data perfectly and so R2 will equal 1
- but likely that massive over-fitting is taking place.
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Issues in High Dimensions
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Figure 6.23 from ISLR: On a simulated example with n = 20 training observations, features that are
completely unrelated to the outcome are added to the model. Left: The R2 increases to 1 as more features
are included. Center: The training set MSE decreases to 0 as more features are included. Right: The test set
MSE increases as more features are included.

Note that in Figure 6.23 the features are completely unrelated to the response!
Estimating test error is therefore particularly vital in these settings – but Cp, AIC
and BIC are not suitable due to difficulty in estimating σ2.
The solution is to restrict the choice of models which is exactly what subset
selection, ridge regression, lasso etc. do.
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Issues in High Dimensions
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Figure 6.24 from ISLR: The lasso was performed with n = 100 observations and three values of p, the
number of features. Of the p features, 20 were associated with the response. The boxplots show the test
MSEs that result using three different values of the tuning parameter λ in (6.7). For ease of interpretation,
rather than reporting λ, the degrees of freedom are reported; for the lasso this turns out to be simply the
number of estimated non-zero coefficients. When p = 20, the lowest test MSE was obtained with the
smallest amount of regularization. When p = 50, the lowest test MSE was achieved when there is a
substantial amount of regularization. When p = 2, 000 the lasso performed poorly regardless of the amount
of regularization, due to the fact that only 20 of the 2,000 features truly are associated with the outcome.
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Issues in High Dimensions
Note results in Figure 6.24 where only 20 features were relevant.
Degrees-of-freedom, df(λ), is reported instead of λ

- df(λ) = number of non-zero coefficient estimates in the lasso solution
- much easier to interpret!

When p = 20 or p = 50 we see the importance of choosing a good value of λ.
But we also see that lasso performed poorly when p = 2000

- because test error tends to increase with p unless the new features are
actually informative

- note the implications of this observation – there is a cost to be paid for
blindly adding new features to a model even when regularization is employed!

Multi-collinearity is clearly present in high-dimensional problems – therefore
cannot hope to identify the very best predictors

- instead hope to identify good predictors.

Note that linear models – which we have been considering – are generally popular
for high dimensional problems. Why?
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