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Introduction to Support Vector Machines
Support vector machines are non-probabilistic binary linear classifiers.

The use of basis functions and the kernel trick mitigates the constraint of the
SVM being a linear classifier

– in fact SVMs are particularly associated with the kernel trick.

Only a subset of data-points are required to define the SVM classifier
- these points are called support vectors.

SVMs are very popular classifiers and applications include
- text classification
- outlier detection
- face detection
- database marketing
- and many others.

SVMs are also used for multi-class classification.

Also have support vector regression.
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The Separable Case
There are two classes which are assumed (for now) to be linearly separable.

Training data x1, . . . , xn with corresponding targets, t1, . . . , tn with ti ∈ {−1, 1}.

We consider a classification rule of the form of the form

h(x) = sign
(
w>x + b

)
= sign (y(x))

where y(x) := w>x + b.

Note we can re-scale (w, b) without changing the decision boundary.

Therefore choose (w, b) so that training points closest to boundary satisfy
y(x) = ±1

- see left-hand component of Figure 7.1 from Bishop.

Let x1 be closest point from class with t1 = −1 so that w>x1 + b = −1.
And let x2 be closest point from class with t2 = 1 so that w>x2 + b = 1.
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Figure 7.1 from Bishop: The margin is defined as the perpendicular distance
between the decision boundary and the closest of the data points, as shown on
the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by
a subset of the data points, known as support vectors, which are indicated by the
circles.



Geometry of Maximizing the Margin
Recall the perpendicular distance of a point x from the hyperplane, w>x + b = 0,
is given by

|w>x + b|/||w||.

Therefore distance of closest points in each class to the classifier is 1/||w||.

An SVM seeks the maximum margin classifier that separates all the data
- seems like a good idea
- but can also be justified by statistical learning theory.

Maximizing the margin, 1/||w||, is equivalent to minimizing f(w) := 1
2w>w.

Therefore obtain the following primal problem for the separable case:

min
w,b

f(w) = 1
2w>w (1)

subject to ti
(
w>xi + b

)
≥ 1, i = 1, . . . , n (2)

Note that (2) ensures that all the training points are correctly classified.
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The Primal Problem
The primal problem is a quadratic program with linear inequality constraints

- moreover it is convex and therefore has a unique minimum.

From the problem’s geometry should be clear that only the points closest to the
boundary are required to define the optimal hyperplane

- see right-hand component of Figure 7.1 from Bishop.
- these are called the support vectors
- and will see that the solution can be expressed using only these points.

Could stop here but will go to the corresponding dual problem to fully understand
SVMs and the kernel trick.
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The Dual Problem in Separable Case
We use a Lagrange multiplier αi ≥ 0 for each constraint in (2). Lagrangian then
given by

L(w, b;α) = 1
2w>w +

n∑
i=1

αi
(
1− ti

(
w>xi + b

))
(3)

We now wish to solve for g(α) := minw,b L(w, b; α).

Note that (why?) g(α) ≤ f(w∗) where (w∗, b∗) is the optimal solution to the
primal problem.

Can therefore formulate the dual problem:

max
α≥0

g(α) (4)

Since primal problem is convex it follows that minimum of primal equals
maximum of dual problem

- i.e. g(α∗) = f(w∗) where α∗ is the optimal solution to the dual problem
- this is strong duality.
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The Dual Problem in Separable Case
To solve (4) first need to solve for g(α): the first order conditions (FOC) are

∂L

∂b
= 0 ⇒

n∑
i=1

αiti = 0

∂L

∂w = 0 ⇒ w =
n∑
i=1

αitixi (5)

The FOC are necessary and sufficient (why?) for optimality. Can substitute them
into (3) to obtain

L(w, b;α) = 1
2

n∑
i,j=1

αiαjtitjx>i xj +
n∑
i=1

αi

1− ti

 n∑
j=1

αjtjx>j xi + b


=

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjtitjx>i xj
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The Dual Problem in Separable Case
Then dual problem in the separable case reduces to

max
α≥0

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjtitjx>i xj (6)

subject to
n∑
i=1

αiti = 0 (7)

- also a convex quadratic program, but now with a single linear constraint.

The complementary slackness conditions imply that only the support vectors will
have non-zero α’s in the optimum solution.
Let α∗ be the optimal solution to the dual problem. Then (5) yields

w∗ =
n∑
i=1

α∗i tixi

and we obtain b∗ by noting that ti
(
w∗>xi + b∗

)
= 1 for any i with α∗i > 0

- so find such an i and then solve for b∗.
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The Kernel Trick
The kernel-trick is a very commonly used technique in regression, classification,
PCA etc. that allows the problem to be easily embedded in much higher
dimensional spaces and often infinite dimensional spaces

- but without having to do an infinite amount of work.
Suppose instead of using x ∈ Rm to describe the inputs we instead use a feature
map, φ(x)> ∈ RM , often with M >> m.

Then if the data is linearly separable in RM can solve the same dual problem as
(6) and (7) except we replace x>i xj with φ(xi)>φ(xj).

Can obtain corresponding optimal b∗ via

b∗ = tj −
n∑
i=1

α∗i tiφ(xi)>φ(xj) for any α∗j > 0 (8)

and, for a new data-point x, the prediction

sign
(
w∗>φ(x) + b∗

)
= sign

(
n∑
i=1

α∗i tiφ(xi)>φ(x) + b∗

)
. (9)
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A Detour on Kernels
Define the Gram matrix, K = φφ> to be the n× n matrix with

Kij := φ(xi)>φ(xj) =: k(xi, xj) (10)

For any set of points, x1, . . . , xn, the kernel matrix K is positive semi-definite so
that z>Kz ≥ 0 for all z ∈ Rn.

Definition. We say a function, k(x, x′), is a kernel if it corresponds to a scalar
product, φ(x)>φ(x′) in some feature space, RM , possibly with M =∞.

Mercer’s Theorem. A necessary and sufficient condition for a function, k(x, x′),
to be a kernel is that the corresponding Gram matrix, K, be positive
semi-definite for all possible choices of x1, . . . , xn.
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A Detour on Kernels
Key implication of theorem is possibility of implicitly defining a (possibly
infinite-dimensional) feature map, φ(·), using a kernel function k(·, ·).

Note that φ(·) is not explicitly required to state the dual problem, nor is it
required in (8) and (9)

- only k(·, ·) is required!
- a big advantage since far less work may be required to compute k(·, ·).

e.g. Let m = 2 and define k(x, x′) := (x>x′)2. Easy to check that
k(x, x′) = φ(x)>φ(x′) where

φ(x) :=
(
x2

1,
√

2x1x2, x
2
2

)
.

But calculating k(x, x′) requires O(m) (= dim(x)) work whereas calculating
φ(x)>φ(x′) requires O(M) = O(m2) work.

More generally, we could define k(x, x′) := (x>x′ + c)p

- computing it will still be O(m) but working with corresponding feature
mapping will be O(mp).
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Constructing New Kernels (Bishop)
We assume:

k1(x, x′) and k2(x, x′) are valid kernels.
c > 0 is a constant.
f(·) is any function.
q(·) is a polynomial with nonnegative coefficients.
φ(x) is a function from x to RM .
k3(·, ·) is a valid kernel in RM .
A is a symmetric positive semi-definite matrix.
xa and xb are variables (not necessarily disjoint) with x = (xa, xb).
ka and kb are valid kernel functions over their respective spaces.
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Constructing New Kernels (Bishop)
Then the following are all valid kernels:

k(x, x′) = ck1(x, x′)
k(x, x′) = f(x)k1(x, x′)f(x′) (11)
k(x, x′) = q(k1(x, x′))
k(x, x′) = exp(k1(x, x′)) (12)
k(x, x′) = k1(x, x′) + k2(x, x′)
k(x, x′) = k1(x, x′)k2(x, x′)
k(x, x′) = k3(φ(x),φ(x′))
k(x, x′) = x>Ax′

k(x, x′) = ka(xa, x′a) + kb(xb, x′b)
k(x, x′) = ka(xa, x′a)kb(xb, x′b)
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The Gaussian kernel
The Gaussian kernel is given by:

k(x, x′) = exp
(
−||x− x′||2

2σ2

)
(13)

It is a valid kernel because

exp
(
−||x− x′||2

2σ2

)
= exp

(
−x>x
2σ2

)
exp

(
x>x′
σ2

)
exp

(
−x′>x′

2σ2

)

= f(x) exp
(

x>x′
σ2

)
f(x′)

and now we can apply (11) and (12).
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Constructing Kernels for Other Objects
The kernel trick can be extended to inputs that are symbolic and not just vectors
of real numbers.

Examples of such inputs are graphs, sets, strings, and text documents.

e.g. Consider a fixed set and define the space consisting of all possible subsets of
this set. If A1 and A2 are two such subsets then let

k(A1, A2) := 2|A1∩A2|

where |A| denotes the number of subsets in A.

k(·, ·) is a valid kernel because it can be shown to correspond to an inner product
in a feature space

- so we could easily use SVMs to classify these sets.
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The Kernel-Separated Dual
Returning to SVMs, when the data is kernel-separated our dual problem becomes:

maxα≥0
∑n
i=1 αi −

1
2
∑n
i,j=1 αiαjtitjk(xi, xj)

subject to
∑n
i=1 αiti = 0.

Given a solution α∗ to the dual, can obtain corresponding optimal b∗ via

b∗ = tj −
n∑
i=1

α∗i tik(xi, xj) for any α∗j > 0

and, for a new data-point x, the prediction

sign
(
w∗>φ(x) + b∗

)
= sign

(
n∑
i=1

α∗i tik(xi, x) + b∗

)
.
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Figure 7.2 from Bishop: Example of synthetic data from two classes in two
dimensions showing contours of constant y(x) obtained from a support vector
machine having a Gaussian kernel function. Also shown are the decision
boundary, the margin boundaries, and the support vectors.

Note that the data is linearly separable in the Gaussian-kernel space but not
in the original space.



A Demo of SVM Classification with Polynomial Kernel by Udi Aharoni
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The Non-Separable Case
In general the data will be non-separable so the primal problem of (1) and (2)
will be infeasible.

Several ways to proceed: e.g. minimize the number of misclassified points, but
this is NP-hard.

Instead we allow points to violate the margin constraints and penalize accordingly
in the objective function. This yields the more general non-separable primal
problem:

min
w,ξ,b

1
2w>w + C

n∑
i=1

ξi (14)

subject to ti
(
w>xi + b

)
≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n (15)

- again a convex quadratic programming problem with linear constraints
- the penalty C usually chosen by cross-validation.
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Figure 7.3 from Bishop: Illustration of the slack variables in ξn ≥ 0. Data
points with circles around them are support vectors.

Note that the slack variables allow points to be misclassified.



The Non-Separable Dual Problem
As with the separable case, it’s more convenient to work with the dual.

Because the primal problem is convex the dual and primal have equal optimal
objective functions.

The non-separable dual problem reduces to

max
α≥0,λ≥0

∑n
i=1 αi −

1
2
∑n
i,j=1 αiαjtitjx>i xj

subject to
∑n
i=1 αiti = 0

C − αi − λi = 0, i = 1, . . . , n (16)

where λ = (λ1, . . . , λn) are Lagrange multipliers for the constraints (15)
- again a convex quadratic program with linear constraints
- the original dual plus the additional linear constraints of (16).

Can remove λ from the dual by replacing (16) with αi ≤ C for i = 1, . . . , n.
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Kernelizing the Dual
As with the separable case, we can easily apply the kernel trick to obtain the
following general non-separable dual problem:

max
α≥0

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjtitjk(xi, xj) (17)

subject to
n∑
i=1

αiti = 0 (18)

αi ≤ C, i = 1, . . . , n (19)

Given an optimal solution, α∗, can recover the SVM classifier as:

b∗ = tj −
n∑
i=1

α∗i tik(xi, xj) for any C > α∗j > 0

and, for a new data-point x, the prediction

sign
(
w∗>φ(x) + b∗

)
= sign

(
n∑
i=1

α∗i tik(xi, x) + b∗

)
. (20)
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Numerical Optimization of the SVM Problems
Since both primal and dual are convex quadratic problems we could (in theory)
solve either one using convex optimization techniques.

Traditionally we preferred to solve the dual because constraints in the dual were
easier to handle.

But standard convex optimization techniques not suitable for the dual problem
because the “Q” matrix in (17) is often too large

- training sets on the order of 20, 000 points not uncommon
- standard gradient methods would require storing a 20k × 20k matrix!

So special purpose solvers were used instead. e.g. the sequential minimization
optimization (SMO) algorithm

- which avoids the need for storing the entire Q matrix.

Remark: The kernel trick not the motivation for working with the dual since can
also implement kernels directly on the primal problem. In fact for very large-scale
problems the primal problem is now the preferred formulation and it is solved via
first-order methods – see later slides.
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Figure 7.4 from Bishop: Illustration of the ν-SVM applied to a nonseparable
data set in two dimensions. The support vectors are indicated by circles.



Comparing SVM and Logistic Loss Functions
Interesting to compare the error functions used by various classifiers.

The primal objective function of the SVM classifier may be written (why?) as

Obj. Fun. = 1
2w>w + C

n∑
i=1

ξi

≡ 1
2C ||w||

2 +
n∑
i=1

Esv(tiyi)

where
Esv(tiyi) := [1− tiyi]+ (21)

and where yi := y(xi).
The error function Esv(·) is known as the hinge error function.

It is this error function that induces the sparsity, i.e. α∗i = 0 for many i’s, in the
optimal SVM dual.

It is an approximation to the 0− 1 loss function and is compared with the loss
function used by logistic regression in Figure 7.5 from Bishop.
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Figure 7.5 from Bishop: Plot of the ‘hinge’ error function used in support
vector machines, shown in blue, along with the error function for logistic
regression, rescaled by a factor of 1/ ln(2) so that it passes through the point
(0, 1), shown in red. Also shown are the misclassification error in black and the
squared error in green.



Multiclass SVMs
SVMs are designed for binary classification but they can also be used for
multi-class problem with K classes, C1, . . . , Ck.
There are two commonly used approaches:

1. one-versus-the-rest: train K different SVM’s with the kth SVM trained on
“Ck” versus “not Ck”

not a good idea (why?) to use majority voting among the K classifiers
instead final classification usually determined by taking

y(x) = max
k

yk(x) (22)

where yk(x) is the linear classifier of kth SVM
but there are scaling problems with using (22) and the balance of the training
points in each of the K SVMs generally poor.

2. one-versus-one: train all K(K − 1)/2 two-class SVMs and then use majority
voting to obtain final classifier

a lot of computational work when K is large.

Application of SVMs to multi-class problems is ad-hoc with many limitations.
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Regression and Support Vector Machines
SVMs have also been proposed for regression – quite popular in practice.

We replace quadratic error function with an ε-insensitive error function, Eε(·):

Eε (y(x)− t) :=
{

0, if |y(x)− t| < ε
|y(x)− t| − ε, otherwise (23)

where y(x) := w>xi + b and t is the dependent variable.

Eε(·) only penalizes predictions that are more than ε away from the target
- results in sparse solutions where only a subset of the training points matter.

Regularized objective function of SVM regression then given by

C

N∑
i=1

Eε
(
w>xi + b− ti

)
+ 1

2 ||w||
2

– C can be chosen via cross-validation.
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Figure 7.6 from Bishop: Plot of an ε-insensitive error function (in red) in which the error increases linearly
with distance beyond the insensitive region. Also shown for comparison is the quadratic error function (in
green).



Regression and Support Vector Machines
Can reformulate primal regression SVM problem as

min
w,b,ξ≥0,ξ̂≥0

C

n∑
i=1

(
ξi + ξ̂i

)
+ 1

2 ||w||
2

subject to ti ≤ y(xi) + ε+ ξi (24)
ti ≥ y(xi)− ε− ξ̂i (25)

Slack variables ξ and ξ̂ non-zero only for predictions outside ε-insensitive tube.
Primal problem convex so can instead work with its dual problem

- obtained via the Lagrangian and relaxing (24), (25) and non-neg. constraints
- kernel trick can also be used with dual
- dual problem can be solved numerically to obtain a fitted function of the

form

y(x) =
n∑
i=1

(ai − âi)k(x, xi) + b

where ai’s and âi’s are Lagrange multipliers for kernel-consistent versions of
(24) and (25).
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Figure 7.7 from Bishop: Illustration of SVM regression, showing the regression curve together with the
ε-insensitive ‘tube’. Also shown are examples of the slack variables ξ and ξ̂. Points above the ε-tube have
ξ > 0 and ξ̂ = 0, points below the ε-tube have ξ = 0 and ξ̂ > 0, and points inside the ε-tube have
ξ = ξ̂ = 0.

Only points on the edge of the tube or outside the tube are support vectors.



Beyond SVMs
SVMs very popular for both classification and regression

- are also used for novelty detection.

But they do have some weaknesses
- they can only be used in an ad-hoc way for multi-class classification
- outputs of SVM classifier is a decision rather than a probability

Bishop proposes relevance vector machines (RVMs) as an alternative sparse
kernel technique for regression and classification

- a Bayesian method which produces posterior class probabilities
- can handle multi-class classification
- much slower to train than SVMs but no need for cross-validation
- evaluation of test points much faster than SVMs due to generally greater

sparsity.
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Kernels and the Primal Problem
Kernels arose naturally in the dual problem but we can also use the kernel trick
directly in the primal problem formulation.

To do this we need the concept of a reproducing kernel Hilbert space (RKHS).

Without going into too many details, a RKHS HK :
1. Is a (Hilbert) space of functions f(·)
2. Is equipped with an inner product, || · ||2HK

, corresponding to a kernel K(·, ·).

In fact there is a 1-1 correspondence between kernels and RKHS’s.

Now consider the learning problem

min
f∈HK

n∑
i=1

L(ti, f(xi)) + λ||f ||2HK
(26)

where λ is a regularization parameter that penalizes the “complexity” of f .

This is an infinite dimensional problem! But we have the following result:
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The Representer Theorem
It can be shown that the solution to (26) has the form

f(x) =
n∑
j=1

αjK(x, xj). (27)

Also, for any f of the form (27) we have

||f ||2HK
=

n∑
i=1

n∑
j=1

αiαjK(xi, xj). (28)

It follows from (27) and (28) that we can write (26) as

min
α

n∑
i=1

L(ti,Ki.α) + λα>Kα (29)

where K is the Gram matrix from (10) and Ki. is the ith row of K.

Note that (29) is a finite-dimensional problem!
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Back to SVM’s
We can now use (29) to formulate a kernelized primal SVM:

min
α,b

n∑
i=1

[1− ti(Ki.α + b)]+ + λα>Kα (30)

Recently, the approach for very large problems has been to solve (30) directly
using first-order methods and by smoothing the hinge function.

Remark: It should be clear from the RKHS formulation in (26) that the kernel
trick does not work with || · ||1 or Lasso-style norms.
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