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Abstract

We study the performance of a stylized supply chain where N retailers and a single producer

compete in a Cournot-Stackelberg game. At time t = 0 the retailers order a single product from

the producer and upon delivery at time τ > 0, they sell it in the retail market at a stochastic

clearance price. We assume the retailers’ profits depend on the realized path of some tradeable

stochastic process such as a foreign exchange rate, commodity price or more generally, some

tradeable economic index. Because production and delivery do not take place until time τ , the

producer offers an Fτ -measurable menu of wholesale prices to the retailers and in response the

retailers’ choose ordering quantities that are also Fτ -measurable. We also assume, however,

that the retailers are budget-constrained and are therefore limited in the number of units they

may purchase from the producer. The supply chain might therefore be more profitable if the

retailers were able to reallocate their budgets across different states of nature. In order to affect

such a reallocation, we assume the retailers are also able to trade dynamically in the financial

market. After solving for the Cournot-Stackelberg equilibrium when the retailers have identical

budgets we study: (i) the impact of hedging on the supply chain and (ii) the interaction between

hedging and retail competition on the various players including the firms themselves, the end

consumers and society as a whole. We show, for example, that given a fixed aggregate budget,

the expected profits of the producer increases with N while the aggregate expected profits of

the retailers decrease with N irrespective of whether or not hedging is possible. Perhaps more

surprisingly, we show that when the retailers can hedge there exists a level of competition, N̄ ,

that is often finite and optimal from the perspective of the consumers, the firms and society

as a whole. In contrast, when the retailers cannot hedge, these welfare measures are uniformly

increasing in N . When the retailers have non-identical budgets we solve for their Cournot game

and show how the general Cournot-Stackelberg game can be solved in certain instances.

Subject Classifications: Finance: portfolio, management. Noncooperative Games: applications.

Production: applications.

Keywords: Procurement contract, financial constraints, supply chain coordination.



1 Introduction

We study the performance of a stylized supply chain where multiple retailers and a single producer

compete in a Cournot-Stackelberg game. At time t = 0 the retailers order a single product from the

producer and upon delivery at time τ > 0, they sell it in the retail market at a stochastic clearance

price that depends on the realized path or terminal value of some observable and tradeable financial

process. Because delivery does not take place until time τ , the producer offers a menu of wholesale

prices to the retailer, one for each realization of the process up to some time, τ . The retailers’

ordering quantities can therefore also be contingent upon the realization of the process up to time

τ . Production of the good is then completed on or after time τ and profits in the supply chain are

then realized.

We also assume, however, that the retailers are budget-constrained and are therefore limited in

the number of units they may purchase from the producer. As a result, the supply chain might be

more profitable if the retailers were able to reallocate their financial resources, i.e. their budgets,

across different states. By allowing the retailers to trade dynamically in the financial markets we

enable such a reallocation of resources. The producer has no need to trade in the financial markets

as he is not budget constrained and, like the retailers, is assumed to be risk neutral.

After solving for the Cournot-Stackelberg equilibrium when the retailers have identical budgets we

study: (i) the impact of hedging on the supply chain and (ii) the interaction between hedging and

retail competition on the various players including the firms themselves, the end consumers and

society as a whole. We show, for example, that given a fixed aggregate budget, the expected profits

of the producer increases with N while the aggregate expected profits of the retailers decrease with

N irrespective of whether or not hedging is possible. Perhaps more surprisingly, we show that when

the retailers can hedge there exists a level of competition, N̄ , that is often finite and optimal from

the perspective of the consumers, the firms and society as a whole. In contrast, when the retailers

cannot hedge, these welfare measures are uniformly increasing in N . When the retailers have non-

identical budgets we solve for their Cournot game and show how the general Cournot-Stackelberg

game can be solved in certain instances. These instances include (i) the case where the budget

constraints are not binding in equilibrium and (ii) the case where all of the retailers order a strictly

positive quantity in each state of the world. In each case we find that a linear price contract is

optimal, a result that also holds for the equibudget case. Our model can easily handle variations

where, for example, the retailers are located in a different currency area to the producer or where

the retailers must pay the producer before their budgets are available.

In contributing to the work on financial hedging in supply chains, our main contributions are: (i)

solving for the Cournot-Stackelberg equilibrium when the retailers’ have identical budgets (ii) our

analysis of the interaction between hedging and retail competition on the various players including

the firms themselves, the end consumers and society as a whole and (iii) the solution of the Cournot

game in the case of non-identical budgets and the corresponding solution of the Cournot-Stackelberg

game in special instances. This latter contribution is technical in nature since solving for just the

Cournot game when the retailers have different budgets is challenging. Indeed there appears to be

relatively few instances of solutions to Cournot games in the literature where the players are not

identical.

A distinguishing feature of our model with respect to most of the literature in supply chain man-

agement is the budget constraint that we impose on the retailers’ procurement decisions. Some
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recent exceptions include Buzacott and Zhang (2004), Caldentey and Chen (2012), Caldentey and

Haugh (2009), Dada and Hu (2008), Hu and Sobel (2005), Gupta and Chen (2016), Kouvelis and

Zhao (2012), Kouvelis and Zhao (2016), Wang and Yao (2016a), Wang and Yao (2016b) and Xu

and Birge (2004); see also Part Three in Kouvelis et al. (2012). These papers generally consider

various mechanisms such as asset-backed financing or bank borrowing to mitigate the impact of

the budget constraint.

The work by Caldentey and Haugh (2009), Kouvelis and Zhao (2012) and Caldentey and Chen

(2012) are the most closely related to this paper. They all consider a two-echelon supply chain

system in which there is a single budget constrained retailer and investigate different types of

procurement contracts between the agents using a Stackelberg equilibrium concept. In Kouvelis

and Zhao (2012) the supplier offers different type of contracts designed to provide financial services

to the retailer. They analyze a set of alternative financing schemes including supplier early payment

discount, open account financing, joint supplier financing with bank, and bank financing schemes.

In a similar setting, Caldentey and Chen (2012) discuss two alternative forms of financing for the

retailer: (a) internal financing in which the supplier offers a procurement contract that allows the

retailer to pay in arrears a fraction of the procurement cost after demand is realized and (b) external

financing in which a third party financial institution offers a commercial loan to the retailer. They

conclude that in an optimally designed contract it is in the supplier’s best interest to offer financing

to the retailer and that the retailer will always prefer internal rather than external financing.

In Caldentey and Haugh (2009) the supplier offers a modified wholesale price contract to a single

budget constrained retailer and the contract is executed at a future time τ . The terms of the

contract are such that the actual wholesale price charged at time τ depends on information publicly

available at this time. Delaying the execution of the contract is important because in this model

the retailer’s demand depends in part on a financial index that the retailer and supplier can observe

through time. As a result, the retailer can dynamically trade in the financial market to adjust his

budget to make it contingent upon the evolution of the index. Their model shows how financial

markets can be used as (i) a source of public information upon which procurement contracts can

be written and (ii) as a means for financial hedging to mitigate the effects of the budget constraint.

In this paper, we therefore extend the model in Caldentey and Haugh (2009) by considering a

market with multiple retailers in Cournot competition as well as a Stackelberg leader. One of

the distinguishing features of this work is that it allows us to study the impact of hedging upon

competition in the retailers’ market. Our extended model can also easily handle variations where,

for example, the retailers are located in a different currency area to the producer or where the

retailers must pay the producer before their budgets are available.

A second related stream of research considers Cournot-Stackelberg equilibria. There is an extensive

economics literature on this topic that focuses on issues of existence and uniqueness of the Nash

equilibrium. See Okoguchi and Szidarovsky (1999) for a comprehensive review. In the context

of supply chain management, there has been some recent research that investigates the design

of efficient contracts between the supplier and the retailers. For example, Bernstein and Feder-

gruen (2003) derive a perfect coordination mechanism between the supplier and the retailers. This

mechanism takes the form of a nonlinear wholesale pricing scheme. Zhao et al. (2005) investi-

gate inventory sharing mechanisms among competing dealers in a distribution network setting. Li

(2002) studies a Cournot-Stackelberg model with asymmetric information in which the retailers are

endowed with some private information about market demand. In contrast, the model we present
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in this paper uses the public information provided by the financial markets to improve the supply

chain coordination.

There also exists a related stream of research that investigates the use of financial markets and

instruments to hedge operational risk exposure. See Boyabatli and Toktay (2004) and the survey

paper by Zhao and Huchzermeier (2015) for detailed reviews. For example, Caldentey and Haugh

(2006) consider the general problem of dynamically hedging the profits of a risk-averse corporation

when these profits are partially correlated with returns in the financial markets. Chod et al. (2009)

examine the joint impact of operational flexibility and financial hedging on a firm’s performance

and their complementarity/substitutability with the firm’s overall risk management strategy. Ding

et al. (2007) and Dong et al. (2014) examine the interaction of operational and financial decisions

from an integrated risk management standpoint. Boyabatli and Toktay (2011) analyze the effect of

capital market imperfections on a firm’s operational and financial decisions in a capacity investment

setting. Babich and Sobel (2004) propose an infinite-horizon discounted Markov decision process in

which an IPO event is treated as a stopping time. They characterize an optimal capacity-expansion

and financing policy so as to maximize the expected present value of the firm’s IPO. Babich et al.

(2012) consider how trade credit financing affects the relationships among firms in the supply chain,

supplier selection, and supply chain performance.

Finally, there is an extensive stream of research in the corporate finance literature that relates to

financial risk management and that is closely related to this paper. Of course the Modigliani-Miller

theorem (Modigliani and Miller, 1958) states that firms, in the absence of market frictions, do not

need to hedge since individual shareholders can do so themselves. In practice, however, there are

many frictions that necessitate firm hedging and it is well known (see, for example, Boyle and Boyle,

2001) that many firms do so. These frictions include taxes and the costs of financial distress (Smith

and Stulz, 1985), managerial motives (Stulz, 1984) as well as the costs associated with external

financing (Stulz, 1990, Lessard, 1991). The work of Froot et al. (1993) was particularly influential

and, building upon the earlier work of Lessard (1991), argues that the most important driver of

firm hedging are the costs associated with external financing. In a two-period model they explicitly

derive the optimal hedging strategy together with optimal financing and investing decisions for

a single firm with costly external financing. This is very much in the spirit of our paper where

the retailers are budget constrained and financial hedging allows them to mitigate the effect of

these constraints. In contrast to Froot et al. (1993), however, we do not allow for the possibility

of external financing and we do this to avoid further complicating our model. We do note that

allowing external financing in our framework should be relatively straightforward at least in the case

of homogeneous retailers with identical budgets. But because it’s costly, allowing such financing

would still leave the retailers effectively budget constrained albeit with higher effective budgets.

As a result we don’t believe that our results would change qualitatively if external financing were

permitted.

Adam et al. (2007) also assume a two-period model with firms that are identical ex-ante. They

focus on determining what percentage of the firms will hedge in a Cournot equilibrium framework.

In contrast to our work, it is therefore not the case that every firm will have an incentive to hedge

in equilibrium. For tractability reasons, they also assume external financing is not possible. In

addition to Adam et al. (2007), other more recent papers also consider firm hedging in a game-

theoretic framework. For example, Pelster (2015) considers hedging in a duopoly framework

with mean-variance preferences while Loss (2012) also considers a duopoly and concludes that the
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firms’ hedging demands decrease with the correlation between their internal funds and investment

opportunities. Liu and Parlour (2009) considers a Cournot hedging framework where players can

hedge the cash-flows from an indivisible project but not the probability of winning the project in

an auction setting. In contrast to our work, none of these papers consider a Cournot-Stackelberg

framework and they generally assume homogenous players where only very simple forms of hedging,

e.g. via forward contracts, are allowed.

The remainder of this paper is organized as follows. In Section 2 we describe our model, focussing

in particular on the supply chain, the financial markets and the contractual agreement between

the producer and the retailers. In Section 3 we describe and analyze two benchmark models: (i)

a decentralized supply chain where financial hedging is not possible and (ii) a centralized system

where all decisions are made by a central planner with the objective of maximizing the overall

supply chain’s expected profits. These benchmarks will be used as comparison points in Section

4 where we solve for the full Cournot-Stackelberg equilibrium when the retailers have identical

budgets. In Section 4 we also study the interaction between hedging and competition among the

retailers, and also consider various measures of supply chain welfare in equilibrium. We analyze the

case of non-identical retailer budgets in Section 5 and obtain explicit expressions for the retailers’

purchasing decisions in the Cournot equilibrium as a function of the producer’s price menu. In

Section 5 we also obtain the producer’s optimal price menu, i.e. the Stackelberg equilibrium, in

some interesting special cases. Motivated by these results, we also propose a class of linear wholesale

price contracts and show by way of example that it is straightforward for the producer to optimize

numerically over this class. We conclude in Section 6. Most of the proofs are contained in the

Appendix A while various extensions to the model can be found in Appendix B. These extensions

include variations where the retailers are located in a different currency area to the producer and

where the retailers must pay the producer before their budgets are available.

2 Model Description

We now describe the model in further detail. We begin with the supply chain description and then

discuss the role of the financial markets. At the end of the section we define the contract which

specifies the agreement between the producer and the retailers. Throughout this section we will

assume1 for ease of exposition that both the producer and the retailers are located in the same

currency area and that interest rates are identically zero.

2.1 The Supply Chain

We model an isolated segment of a competitive supply chain with one producer that produces a

single product and N competing retailers that face a stochastic clearance price2 for this product.

This clearance price, and the resulting cash-flow to the retailers, is realized at a fixed future time.

The retailers and producer, however, negotiate the terms of a procurement contract at time t = 0.

This contract specifies three quantities:

1In Appendix B we will relax these assumptions and still maintain the tractability of our model using change of

measure arguments.
2Similar models are discussed in detail in Section 2 of Cachon (2003). See also Lariviere and Porteus (2001).
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(i) A production time τ > 0.

(ii) A rule that specifies the size of the order, qi, chosen by the ith retailer where i = 1, . . . , N .

In general, qi will depend upon market information available at time τ .

(iii) The payment, W(qi), that the ith retailer pays to the producer for fulfilling the order. Again,

W(qi) will generally depend upon market information available at time τ .

We will restrict ourselves to transfer payments that are linear on the ordering quantity. That is,

we consider the so-called wholesale price contract where W(q) = w q and where w is the per-unit

wholesale price charged by the producer. We assume that the producer offers the same contract

to each retailer. We also assume that during the negotiation of the contract the producer acts as

a Stackelberg leader. That is, for a fixed procurement time τ , the producer moves first and at

t = 0 proposes a wholesale price menu, wτ , to which the retailers then respond by selecting their

ordering levels, qi, for i = 1, . . . , N . Note that the N retailers also compete among themselves in a

Cournot-style game to determine their optimal ordering quantities and trading strategies.

We assume that the producer has unlimited production capacity and that production takes place

at time τ with a per-unit production cost of c. We will assume that c is constant but many of

our results, however, go through when c is stochastic. The producer’s payoff as a function of the

wholesale price, wτ , and the ordering quantities, qi, is given by

ΠP|τ := (wτ − c)
N∑
i=1

qi. (1)

We assume that each retailer is restricted by a budget constraint that limits his ordering decisions.

In particular, we assume that each retailer has an initial budget, Bi, that may be used to purchase

product units from the producer. Without loss of generality, we order the retailers so that B1 ≥
B2 ≥ . . . ≥ BN and let BC :=

∑
iBi be the cumulative budget available in the retailers’ market.

We assume each of the retailers can trade in the financial markets during the time interval [0, τ ],

thereby transferring cash resources from states where they are not needed to states where they are.

As in Adam et al. (2007) we assume there is no external financing available. While of course this

is not always a realistic assumption it is often the case that external financing is very expensive.

Indeed many researchers, including the influential work of Froot et al. (1993), argue that the

main motivation for firms’ hedging activities is the high cost of external financing. Forbidding

external financing aids the tractability of our problem and we believe is not a serious limitation

since the possibility of costly external financing would still mean that firms were essentially budget

constrained, albeit with higher effective budgets than would be the case without the possibility of

external financing.

For a given set of order quantities, the ith retailer collects a random revenue at time τ . We compute

this revenue using a linear clearance price model. That is, the market price at which the retailer

sells these units is a random variable, P (Q) := Aτ − (qi +Qi−), where Aτ is a non-negative random

variable, Qi− :=
∑

j 6=i qj and Q :=
∑

j qj . The random variable Aτ models the market size that we

assume is unknown. The realization of Aτ , however, will depend on the realization of the financial

markets between times 0 and τ . The payoff of the ith retailer, as a function of wτ , and the order

quantities, then takes the form

ΠRi|τ := (Aτ − (qi +Qi−)) qi − wτ qi. (2)
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A stochastic clearance price is easily justified since in practice unsold units are generally liquidated

using secondary markets at discount prices. Therefore, we can view our clearance price as the

average selling price across all units and markets. As stated earlier, wτ and the qi’s will in general

depend upon market information available at time τ . SinceW(q), ΠP|τ and the ΠRi|τ ’s are functions

of wτ and the qi’s, these quantities will also depend upon market information available at time τ .

The linear clearance price in (2) is commonly assumed in the operations and economics literature for

reasons of tractability and estimation. It also helps ensure that the game will have a unique Nash

equilibrium. (For further details see Chapter 4 of Vives, 2001.) We also note that the assumption

of instantaneous production at time τ as well as market clearing (and realization) of profits at that

time can easily be generalized with no loss in tractability. For example, we could have assumed

there exists a “final” time T > τ with production taking place in the interval [τ, T ]. The market

size could then be represented by a random variable A which is not observed until time T and

which depends on both financial and non-financial noise. In that case, it can easily be seen that all

of our analysis will still go through and that Aτ will then equal Eτ [A], the risk-neutral expectation

of A conditional on the time τ information in the financial market.

A key aspect of our model is the dependence between the payoffs of the supply chain and returns in

the financial market. Other than assuming the existence of Aτ , we do not need to make any assump-

tions regarding the nature of this dependence. We will, however, make the following assumption.

Assumption 1 Aτ ≥ c with probability 1.

This condition ensures that for every state there is a total production level, Q ≥ 0, for which

the retailers’ expected market price exceeds the producer’s production cost. In particular, this

assumption implies that it is possible to profitably operate the supply chain in every state. Note

also that we do not assume P (Q) will be strictly positive in all states. This for example, may not

be the case when hedging is not allowed. It may be more accurate then to interpret P (Q) as a net

profit.

2.2 The Financial Market

The financial market is modeled as follows. Let Xt denote3 the time t value of a tradeable security

and let {Ft}0≤t≤τ be the filtration generated by Xt on a probability space, (Ω,F ,Q) with F = Fτ .

There is also a risk-less cash account available from which cash may be borrowed or in which cash

may be deposited. Since we have assumed zero interest rates, the time τ gain (or loss), Gτ (θ),

that results from following a self-financing4 Ft-adapted trading strategy, θt, can be represented as

a stochastic integral with respect to X. In a continuous-time setting, for example, we have

Gτ (θ) :=

∫ τ

0
θs dXs. (3)

3All of our analysis goes through if we assume Xt is a multi-dimensional price process. For ease of exposition we

will assume Xt is one-dimensional.
4A trading strategy, θs, is self-financing if cash is neither deposited with nor withdrawn from the portfolio during

the trading interval, [0, τ ]. In particular, trading gains or losses are due to changes in the values of the traded

securities. Note that θs represents the number of units of the tradeable security held at time s. The self-financing

property then implicitly defines the position at time s in the cash account. Because we have assumed interest rates

are identically zero, there is no term in (3) corresponding to gains or losses from the cash account holdings. See

Duffie (2004) for a technical definition of the self-financing property.
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We assume that Q is an equivalent martingale measure (EMM) so that discounted security prices

are Q-martingales. Since we are assuming that interest rates are identically zero, however, it is

therefore the case that Xt is a Q-martingale. Subject to integrability constraints on the set of

feasible trading strategies, we also see that Gt(θ) is a Q-martingale for every Ft-adapted self-

financing trading strategy, θt. In what follows, E[·] denotes expectation with respect to Q.

Our analysis will be simplified considerably by making a complete financial markets assumption.

In particular, let Gτ be any suitably integrable contingent claim that is Fτ -measurable. Then a

complete financial markets assumption amounts to assuming the existence of an Ft-adapted self-

financing trading strategy, θt, such that Gτ (θ) = Gτ . That is, Gτ is attainable. This assumption

is very common in the financial literature; see for example Smith and McCardle (1998). Moreover,

many incomplete financial models can be made complete by simply expanding the set of tradeable

securities. When this is not practical, we can simply assume the existence of a market-maker with

a known pricing function or pricing kernel who is willing to sell Gτ in the market-place. In this

sense, we could then claim that Gτ is indeed attainable.

Regardless of how we choose to justify it, assuming complete financial markets means that we will

never need to solve for an optimal dynamic trading strategy, θ. Instead, we will only need to

solve for an optimal contingent claim, Gτ , safe in the knowledge that any such claim is attainable.

For this reason we will drop the dependence of Gτ on θ in the remainder of the paper. The only

restriction that we will impose on any such trading gain, Gτ , is that it satisfies E[Gτ ] = G0 where

G0 is the initial amount of capital that is devoted to trading in the financial market. Without any

loss of generality we will assume G0 = 0. This assumption will be further clarified in Section 2.3.

2.3 The Flexible Procurement Contract with Financial Hedging

The final component of our model is the contractual agreement between the producer and the

retailers. We consider a variation of the traditional wholesale price contract in which the terms

of the contract are specified contingent upon the public history, Fτ , that is available at time

τ . Specifically, at time t = 0 the producer offers an Fτ -measurable wholesale price, wτ , to the

retailers. In response to this offer, the ith retailer decides on an Fτ -measurable ordering quantity5,

qi = qi(wτ ), for i = 1, . . . , N . Note that the contract itself is negotiated at time t = 0 whereas the

actual order quantities are only realized at time τ ≥ 0. Note that an alternative and equivalent

interpretation is that wτ is announced at time t = 0 and that the retailers don’t respond until time

τ .

The retailers’ order quantities at time τ are constrained by their available budgets at this time.

Besides the initial budget, Bi, the ith retailer has access to the financial markets where he can

hedge his budget constraint by purchasing at date t = 0 a contingent claim, G
(i)
τ , that is realized

at date τ and that satisfies E[G
(i)
τ ] = 0. Given an Fτ -measurable wholesale price, wτ , the retailer

purchases an Fτ -measurable contingent claim, G
(i)
τ , and selects an Fτ -measurable ordering quantity,

qi = qi(wτ ), in order to maximize the economic value of his profits. Because of his access to the

financial markets, the retailer can therefore mitigate his budget constraint so that it becomes

wτ qi ≤ Bi +G(i)
τ for all ω ∈ Ω and i = 1, . . . , N.

5There is a slight abuse of notation here and throughout the paper when we write qi = qi(wτ ). This expression

should not be interpreted as implying that qi is a function of wτ . We only require that qi be Fτ -measurable and so

a more appropriate interpretation is to say that qi = qi(wτ ) is the retailer’s response to wτ .
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Before proceeding to analyze this contract a number of further clarifying remarks are in order.

1. The model assumes a common knowledge framework in which all parameters of the model are

known to all agents. Because of the Stackelberg nature of the game, this assumption implies

that the producer knows the retailers’ budgets and the distribution of the market demand. It

also implies that the retailers know each others budgets and that all players know the retailers

can hedge in the financial markets.

2. In this model the producer does not trade in the financial markets because, being risk-neutral

and not restricted by a budget constraint, he has no incentive to do so.

3. A potentially valid criticism of this model is that, in practice, a retailer is often a small

entity and may not have the ability to trade in the financial markets. There are a number

of responses to this. First, we use the word ‘retailer’ in a loose sense so that it might in

fact represent a large entity. For example, an airline purchasing aircraft is a ‘retailer’ that

certainly does have access to the financial markets. Second, it is becoming ever cheaper and

easier for even the smallest ‘player’ to trade in the financial markets and many of them do so

routinely to hedge interest rate risk, foreign exchange rate risk etc.

4. We claimed earlier that, without loss of generality, we could assume G
(i)
0 = 0. This is clear

for the following reason. If G
(i)
0 = 0 then then the ith retailer has a terminal budget of

B
(i)
τ := Bi +G

(i)
τ with which he can purchase product units at time τ and where E[G

(i)
τ ] = 0.

If he allocated a > 0 to the trading strategy, however, then he would have a terminal budget

of B
(i)
τ = Bi − a + G

(i)
τ at time τ but now with E[G

(i)
τ ] = a. That the retailer is indifferent

between the two approaches follows from the fact any terminal budget, B
(i)
τ , that is feasible

under one modeling approach is also feasible under the other and vice-versa.

5. Another potentially valid criticism of this framework is that the class of contracts is too

complex. In particular, by only insisting that wτ is Fτ -measurable we are permitting whole-

sale price contracts that might be too complicated to implement in practice. If this is the case

then we can easily simplify the set of feasible contracts. By using appropriate conditioning

arguments, for example, it would be straightforward to impose the tighter restriction that wτ
be σ(Xτ )-measurable instead where σ(Xτ ) is the σ-algebra generated by Xτ . In section 5.2,

for example, we will consider wholesale price contracts that are linear in c and Aτ .

We complete this section with a summary of the notation and conventions that will be used through-

out the remainder of the paper. The subscripts R, P, and C are used to index quantities related

to the retailers, producer and central planner, respectively. The subscript τ is used to denote the

value of a quantity conditional on time τ information. For example, ΠP|τ is the producer’s payoff

conditional on time τ information. The expected value, E[ΠP|τ ], is simply denoted by ΠP and sim-

ilar expressions hold for the retailers and central planner. Any other notation will be introduced

as necessary.

3 Benchmarks

In this section we consider two special cases of the model that we will use as benchmarks to better

understand the effects of (i) access to financial markets and (ii) decentralization and competition
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on the overall performance of the firms as well as on the efficiency of the entire supply chain.

3.1 Decentralized Supply Chain with No Hedging

First, we consider the special case in which the retailers are not able to hedge their budget con-

straints. In this case, for a given wholesale price menu wτ set by the producer, we can determine

retailer i’s order quantity by solving the best-response optimization problem:

ΠRi(wτ ) = max
qi≥0

E [(Aτ − (qi +Qi−)− wτ ) qi] (4)

subject to wτ qi ≤ Bi, for all ω ∈ Ω. (5)

Each of the N retailers must solve this problem and our goal is to characterize the resulting Cournot

equilibrium. To this end, note that the budget constraint in (5) must be imposed pathwise since

the retailers are not able to hedge. As a result, problem (4)-(5) decouples and we can determine

the retailers’ optimal ordering strategy separately for each outcome ω ∈ Ω. Indeed, it is not hard

to see that

qi = min

{
(Aτ −Q−i − wτ )+

2
,
Bi
wτ

}
solves (4)-(5). In what follows, and without loss of optimality, we will assume that wτ ≤ Aτ for

otherwise qi = 0 for all i = 1, . . . , N and the supply chain would effectively shut down.

Let Q =
∑N

i=1 qi be the cumulative order quantity (or total output) in the retail market. Then,

one can show that in equilibrium, the optimality condition above is equivalent to

qi = min

{
Aτ −Q− wτ ,

Bi
wτ

}
. (6)

A direct consequence of (6) is that in equilibrium the order quantity of a retailer is weakly increasing

in his budget. It follows that the set of retailers can be partioned into two groups: “low budget”

and “high budget” retailers for whom the budget constraint is and is not binding, respectively.

Proposition 1 below builds on this property to solve the Cournot game among the retailers. The

following definitions will be useful in the statement of this and other results.

First, we define the sequence {Bk : k = 0, . . . , N} by

B0 =∞ and Bk := k Bk +

N∑
i=k

Bi, k = 1, . . . , N. (7)

Recall that, without loss of generality, the retailers have been ordered so that B1 ≥ B2 ≥ . . . ≥ BN .

It follows that the sequence {Bk} is also non-increasing in k. Another important property is that

Bk does not depend on B1, . . . , Bk−1. Our second definition is the (random) mapping m : R+ →
{1, 2 . . . , N + 1} given by

m(w) := max
{
k ∈ {1, 2 . . . , N + 1} : w (Aτ − w) ≤ Bk−1

}
. (8)

The practical meaning of m(w) is explained in the following result. We recall that BC =
∑

iBi is

the combined budget of all retailers.
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Proposition 1 (Cournot Equilibrium with No Hedging) Let wτ be the wholesale price menu set

by the producer. Then there is a unique equilibrium in the retailers’ market given by

qi(wτ , Bi) =

{
1

m(wτ )

[
Aτ − wτ −

∑N
i=m(wτ )

Bi
wτ

]
for i = 1, . . . ,m(wτ )− 1

Bi
wτ

for i = m(wτ ), . . . , N.

In equilibrium, only the first m(wτ )−1 retailers are not constrained by their budgets. In particular,

m(wτ ) = N + 1, i.e., none of the retailers are budget constrained, if BN ≥ wτ (Aτ − wτ )/(N + 1).

On the other hand, m(wτ ) = 1, i.e., all retailers are budget constrained, if B1 +BC < wτ (Aτ−wτ ).

Using this result, we can study the impact of the budget constraints – and in particular, the

distribution of the budgets among the retailers – on the end-consumers’ market. Towards this end,

we focus on the aggregate output Q(wτ , B1, . . . , BN ) offered by the retailers as a function of wτ
and the vector of budgets (B1, . . . , BN ), that is

Q(wτ , B1, . . . , BN ) :=

N∑
i=1

qi(wτ , Bi) =
1

m(wτ )

(m(wτ )− 1) (Aτ − wτ ) +

N∑
i=m(wτ )

Bi
wτ

 . (9)

On the one hand, Q(wτ , B1, . . . , BN ) represents the demand function that the producer faces for a

given vector of budget (B1, . . . , BN ). In addition, we can view Q(wτ , B1, . . . , BN ) as a measure of

the social welfare in the market. Indeed, given the linear demand function Pτ = Aτ −Q and linear

production costs C(Q) = cQ, the social welfare, i.e., the sum of the firms’ and end consumers’

surplus, of an output Q is equal to

S(Q) = (Aτ − c)Q−
Q2

2
. (10)

It follows that S(Q) is maximized at Q∗τ = Aτ−c or equivalently when P ∗τ = c. Since in equilibrium

both the producer and the retailers make non-negative profits, we have Pτ ≥ wτ ≥ c and so

Q(wτ , B1, . . . , BN ) ≤ Q∗τ . We conclude that both the producer and a social welfare maximizer have

the same preferences over the vector of retailers’ budgets (B1, . . . , BN ) for a fixed wτ . That is,

both prefer vectors that maximize the market output Q(wτ , B1, . . . , BN ). Below, we show that for

a given cumulative budget BC, the total output is maximized when BC is evenly distributed among

the N retailers. To formalize this observation the following intermediate result will be useful.

Proposition 2 The producer’s demand function Q(wτ , B1, . . . , BN ) satisfies

Q(wτ , B1, . . . , BN ) = min
k∈{0,1,...,N}

{
1

k + 1

[
k (Aτ − wτ ) +

N∑
i=k+1

Bi
wτ

]}
.

A trivial implication of this proposition is that Q(wτ , B1, . . . , BN ) is decreasing in wτ . On the other

hand, a possibly less obvious consequence is that

Q(wτ , B1, . . . , BN ) ≥ Q(wτ , B1 + ε, . . . , BN − ε), ∀ 0 ≤ ε ≤ BN .

That is, transferring budget from the lowest budget retailer to the highest budget retailer (weakly)

decreases the total output. This suggests that total output in the market is maximized if the total

budget is evenly distributed among the retailers. We formalize this observation in the following

result.
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Proposition 3 Let BC =
∑

iBi be the cumulative budget available for procurement in the retailers’

market and set B̄ = BC/N . Then, for a fixed wholesale price menu wτ

Q(wτ , B̄, . . . , B̄) ≥ Q(wτ , B1, . . . , BN ) ≥ Q(wτ , BC, 0, . . . , 0).

It follows that the social welfare of the system is maximized when BC is uniformly distributed among

the retailers and it is minimized when there is a single retailer that controls the entire budget BC.

We conclude this subsection by turning to the producer’s problem of determining the wholesale

price to charge. An optimal wholesale price menu solves the producer’s optimization problem

ΠP = maxwτ E
[
(wτ − c)Q(wτ , B1, . . . , BN )

]
. Similar to the retailers’ problem, we can solve this

optimization problem pathwise, that is, solving

ΠP|τ = max
wτ

(wτ − c)Q(wτ , B1, . . . , BN ). (11)

In general, there is no simple closed-form solution for the optimal wholesale price wτ in (11).

This is, however, a one-dimensional optimization problem that can be easily solved numerically.

Furthermore, for some special instances, we can use the result in Proposition 2 to efficiently solve

the producer’s optimization problem. Indeed, using the representation of Q(wτ , B1, . . . , BN ) in

Proposition 2 we have that

ΠP|τ = max
wτ∈[c,Aτ ]

min
k∈{0,1,...,N}

{
(wτ − c)
k + 1

[
k (Aτ − wτ ) +

N∑
i=k+1

Bi
wτ

]}
. (12)

The argument inside the braces in (12) is concave in wτ for all k ∈ {0, 1, . . . , N}. The minimum

over k ∈ {0, 1, . . . , N} is therefore also concave and so finding the optimal wτ in (12) is an easy

numerical task.

3.2 Centralized System

We now consider the special case in which the supply chain is controlled by a single firm – a central

planner – that decides both production and retail sales. As is customary in the supply chain

management literature, we view this vertically integrated system as a benchmark to assess the

inefficiencies of a decentralized system, in particular those arising from the double marginalization

phenomenon induced by a two-tier system, i.e., retailers acting as middlemen, and the level of

competition (or lack thereof) in the retailers’ market. In order to have a fair comparison between

our decentralized system and a vertically integrated one, we will assume that the central planner

is also budget constrained and endowed with a budget BC =
∑

iBi.

Let us first consider the case in which the central planner has access to the financial market to

hedge the budget constraint. In this setting, the central planner is interested in solving:

ΠC = max
Q≥0, Gτ

E [(Aτ −Q− c) Q] (13)

subject to cQ ≤ BC +Gτ , for all ω ∈ Ω (14)

E [Gτ ] = 0. (15)

A variation of problem (13)-(15) was studied in Caldentey and Haugh (2009). The next result

summarizes the solution.
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Proposition 4 (Central Planner’s Optimal Strategy with Hedging) The central planner’s optimal

production strategy, QC, is equal to

QC =

(
Aτ − δC

2

)+

(16)

where δC is the minimum δ ≥ c that solves

E

[
c

(
Aτ − δ

2

)+
]
≤ BC.

Also, the central planner’s optimal expected payoff satisfies ΠC = E[ΠC|τ ], where ΠC|τ is the central

planner’s payoff conditional on the information available at time τ and is given by

ΠC|τ =
(Aτ + δC − 2c) (Aτ − δC)+

4
. (17)

Note that in the absence of a budget constraint (e.g., if BC =∞) the central planner would produce

an optimal quantityQ∗τ = (Aτ−c)/2 and collect an optimal payoff Π∗C|τ = (Aτ−c)2/4. This first-best

solution is in general not feasible because of the limited budget. However, the previous proposition

reveals that it can be achieved as long as the budget constraint is satisfied in expectation, that is,

as long as E[c (Aτ − c)/2] ≤ BC. In this case, financial hedging allows the central planner to fully

circumvent the budget constraint.

Let us suppose now that the central planner has no access to the financial market. Mathematically,

this is equivalent to making Gτ = 0 in the optimization problem (13)-(15) above. Similar to our

derivation in Section 3.1, we can solve this modified optimization pathwise. The following result

summarizes this solution. (The proof is straightforward and is omitted.)

Proposition 5 (Central Planner’s Optimal Strategy without Hedging) The central planner’s op-

timal production strategy QC|τ and payoff ΠC|τ , conditional on the value Aτ at time τ , are equal

to

QC|τ = min

{
Aτ − c

2
,
BC

c

}
and ΠC|τ = (Aτ − c−QC|τ )QC|τ .

4 Identical Budgets

In this section we consider the case where all retailers have identical budgets. While not a realistic

assumption in practice, we can solve for the producer’s optimal price menu and therefore provide

a full characterization of the Cournot-Stackelberg equilibrium in this case. Moreover, we can: (i)

address questions regarding the impact of hedging on supply chain performance by comparing to

the no-hedging results in Section 3.1 (ii) identify the potential benefits for the retailers from merging

or remaining in competition and (iii) also compare the equilibrium solution to the solution of the

central planner’s problem from Section 3.2 and therefore determine the efficiency of the supply

chain when financial hedging is possible. Finally, according to Proposition 3, the equibudget case

is also important in its own right as it corresponds to a socially efficient distribution of the total

procurement budget among the retailers (at least when hedging is not possible).
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Consider then the case where each of the retailers has the same budget so that Bi = B for all

i = 1, . . . , N . For a given price menu, wτ , the ith retailer’s problem is

ΠR(wτ ) = max
qi≥0, Gτ

E [(Aτ − (qi +Qi−)− wτ ) qi] (18)

subject to wτ qi ≤ B +Gτ , for all ω ∈ Ω (19)

E [Gτ ] = 0. (20)

While the equibudget problem is a special case of the game we will study in Section 5, it is instructive

to see an alternative solution. In the equibudget case, each of the N retailers has the following

solution:

Proposition 6 (Optimal Strategy for the N Retailers in the Equibudget Case)

Let wτ be an Fτ -measurable wholesale price offered by the producer and let Qτ , X and X c be defined

as follows. Qτ := (Aτ−wτ )+

(N+1) , X := {ω ∈ Ω : B ≥ Qτ wτ} and X c := Ω − X . The following two

cases arise in the computation of the optimal ordering quantities and the financial claims:

Case 1: Suppose that E [Qτ wτ ] ≤ B. Then qi(wτ) = Qτ and there are infinitely many choices

of the optimal claim, Gτ = G
(i)
τ , for i = 1, . . . , N . One natural choice is to take

Gτ = [Qτ wτ −B] ·

{
δ if ω ∈ X
1 if ω ∈ X c

where δ :=

∫
X c [Qτ wτ −B] dQ∫
X [B −Qτ wτ ] dQ

.

In this case (possibly due to the ability to trade in the financial market), the budget constraint

is not binding for any of the N retailers.

Case 2: Suppose E [Qτwτ ] > B. Then

qi(wτ ) = q(wτ ) =
(Aτ − wτ (1 + λ))+

(N + 1)
and Gτ := q(wτ )wτ −B (21)

is optimal for each i where λ ≥ 0 solves E [q(wτ )wτ ] = B.

The manufacturer’s problem is straightforward to solve. Given the best response of the N retailers,

his problem may be formulated as

ΠP = max
wτ , λ≥0

N E
[
(wτ − c)

(Aτ − wτ (1 + λ))+

(N + 1)

]
(22)

subject to E
[
wτ

(Aτ − wτ (1 + λ))+

(N + 1)

]
≤ B. (23)

Note that the factor N outside the expectation in (22) is due to the fact that there are N retailers

and that the producer earns the same profit from each of them. Note also that there should be N

constraints in this problem, one corresponding to each of the N retailers. However, by Proposition

6, these N constraints are identical since each retailer solves the same problem. The producer’s

problem then only requires the one constraint given by (23). We can easily re-write this problem

as

ΠP = max
wτ , λ≥0

2N

N + 1
E
[
(wτ − c)

(Aτ − wτ (1 + λ))+

2

]
(24)

subject to E
[
wτ

(Aτ − wτ (1 + λ))+

2

]
≤ (N + 1)

2
B (25)
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and now it is clearly identical6 to the producer’s problem where the budget constraint has been

replaced by (N + 1)B/2 and there is just one retailer. In particular, the solution of the producer’s

problem and of the Cournot-Stackelberg game follows immediately from Proposition 7 in Caldentey

and Haugh (2009). We have the following result.

Proposition 7 (Producer’s Optimal Strategy and the Cournot-Stackelberg Solution)

Let φP be the minimum φ ≥ 1 that solves E
[(

A2
τ−(φ c)2

8

)+
]
≤ (N+1)

2 B and let δP := φP c. Then the

optimal wholesale price and ordering level for each retailer satisfy

wτ =
Aτ + δP

2
and qτ =

(Aτ − δP)+

2(N + 1)
. (26)

The players’ expected payoffs conditional on time τ information satisfy

ΠP|τ =
2N

(N + 1)

(Aτ + δP − 2c) (Aτ − δP)+

8
and ΠR|τ =

((Aτ − δP)+)2

4(N + 1)2
. (27)

As mentioned above, the solution of the Cournot-Stackelberg equilibrium in our model with multiple

symmetric retailers is similar to the one in Caldentey and Haugh (2009) with one retailer. As a

result, a number of properties of the equilibrium are the same. Here we summarize a few important

ones for completeness.

1. In equilibrium, the retailers can fully hedge away their budget constraints if and only if their

initial budget satisfies B ≥ E[(A2
τ − c2

τ )]/(4(N + 1)). On the other hand, if the retailers have

no access to the financial markets, then their budget constraint is not binding if and only if

B ≥ (A2
τ − c2

τ )/(4(N + 1)) w.p.1. It follows that if the random variable Aτ has unbounded

support, then it is not possible to completely circumvent the budget constraint in the absence

of financial hedging.

2. The producer is always better off if the N retailers have access to the financial markets. The

situation is more complicated for the retailers. In particular, the retailers may or may not

prefer having access to the financial markets in equilibrium. The relationship between c and

δP (as defined in Proposition 7) is key: if δP = c the retailers also prefer having access to the

financial markets. If c < δP, however, then their preferences can go either way.

3. Access to financial hedging can increase or decrease the total output Qτ = N qτ in the market.

4. In terms of the efficiency of the supply chain, we can compare the equilibrium in Proposition 7

to the central planner’s solution in Section 3.2 assuming the central planner has a BudgetBC =

NB. We focus on production levels (Qτ ), double marginalization (Wτ ) and the competition

penalty (Pτ ). These performance measures are defined conditional on Fτ as follows:

Qτ :=
Nqτ
qC|τ

=
N(Aτ − δP)+

(N + 1)(Aτ − δC)+
, Wτ :=

wτ
c

=
Aτ + δP

2c
, and

Pτ := 1 − ΠP|τ +N ΠR|τ

ΠC|τ
= 1 − N

(N + 1)2

[(N + 2)Aτ +NδP − 2(N + 1)c] (Aτ − δP)+

(Aτ + δC − 2c)(Aτ − δC)+
,

6The factor 2N/(N + 1) in the objective function has no bearing on the optimal λ and wτ .
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where ΠC|τ is the central planner’s profits conditional on time τ information, δC is the smallest

value (see Section 3.2 for details) of δ ≥ c such that E[c
(
Aτ−δ

2

)+
] ≤ NB, and qC|τ is the

optimal ordering quantity of the central planner.

It is interesting to note that, conditional on Fτ , the centralized supply chain is not necessarily

more efficient than the decentralized operation. For instance, we know that in some cases

δP < δC and so for all those outcomes, ω, with δP < Aτ < δC, qC|τ = 0 and qτ > 0 and

the competition penalty is minus infinity. We mention that this only occurs because of the

retailers’ ability to trade in the financial markets. If δP ≥ δC, however, then it is easy to

see that the centralized solution is always more efficient than the decentralized supply chain

so that Qτ ≤ 1 and Pτ ≥ 0. We also note that if the budget is large enough so that both

the decentralized retailers and central planner can hedge away the budget constraint then

δP = δC = c and

Qτ =
N

(N + 1)
and Pτ =

1

(N + 1)2
.

Hence, in this case, as N increases the decentralized solution approaches the centralized

solution.

4.1 Competition in the Retailers’ Market

We now investigate how the equilibrium is affected by the degree of competition in the retailers’

market, specifically by the number of retailers N . To this end, we find convenient to make explicit

the dependence of the different components of the model on N . So, for example, we will write

B(N) for the budget of a retailer or wτ (N) for the wholesale price, and so on. In order to isolate

the impact of N on the equilibrium outcome, we assume that the cumulative budget BC remains

constant as we vary N , that is, we assume that each retailer has a budget B(N) := BC/N . Thus,

our sensitivity analysis and results in this section are exclusively driven by the degree of competition

in the retailers’ market and not by an increase in the cumulative budget available as the number

of retailers grows large.

From Proposition 7, we obtain that the value of φP(N) is the minimum φ ≥ 1 that satisfies the

budget constraint

E
[(
A2
τ − (φ c)2

)+] ≤ 4BC

(
1 +

1

N

)
.

We use this inequality to determine the maximum value of N for which this budget constraint is

non binding, i.e., for which φP(N) = 1. By Assumption 1, Aτ ≥ c and so the value of this threshold

is given by

N̄ :=

⌊
4BC

(E[A2
τ − c2]− 4BC)+

⌋
. (28)

In this definition, we allow for N̄ =∞ if E[A2
τ − c2] ≤ 4BC. (The positive part in the denominator

of (28) is used to ensure that N̄ ≥ 0.)

For N ≤ N̄ the budget constraint is not binding so the equilibrium outcome is independent of N

in this region. On the other hand, for all N > N̄ the budget constraint is binding and φP(N)

is strictly increasing in N in this case. A direct implication of this and of equation (26) is that

the wholesale price wτ (N) is also constant in N ≤ N̄ and increasing in N > N̄ . Figure 1 shows

an example that compares the expected equilibrium wholesale price, E[wτ (N)], and the expected
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Figure 1: Expected wholesale price E[wτ ] as a function of the number of retailers N for the cases where the retailers

can (◦) and cannot (?) hedge their budget constraints. The demand Aτ is uniformly distributed in [1, 3], the per unit

production cost is c = 1 and the total cumulative budget is BC = 0.75.

total market output, E[Qτ (N)], with and without hedging as a function of N . It is worth noting

that in this example N̄ = 9 so that if there are nine retailers or less who can hedge then their

budget constraints are not binding and the equilibrium wholesale price is independent of N while

the market output is monotonically increasing in N . If the number of retailers is greater than

nine, however, then their budget constraints will be binding and the wholesale price and the total

market output become monotonically increasing and decreasing, respectively, in N . On the other

hand, if the retailers cannot hedge then their budget constraints are always binding independent

of N and both expected wholesale price and total output are monotonically increasing in N . The

following proposition formalizes these observations for the case in which the retailers hedge their

budget constraints.

Proposition 8 Suppose the retailers have access to the financial markets and therefore hedge their

budget constraints. Then in equilibrium:

a) The expected wholesale price E[wτ(N)] does not depend on N for N ≤ N̄ and is increasing

in N for N > N̄ .

b) Suppose that Aτ admits a smooth density f ∈ C2[0,∞) such that limx→∞ x
2 f(x) = 0. The

expected market output E[Qτ (N)] = E[N qτ (N)] is increasing in N for N ≤ N̄ and decreasing

in N for N > N̄ .

We now consider the impact of N on the firms’ expected payoff. Figure 2 displays the pro-

ducer’s expected profits ΠP(N) := E[ΠP|τ ] (left panel) and the retailers’ aggregate expected profits

N ΠR(N) := NE[ΠR|τ ] (right panel) as a function of N for the cases with and without hedging.

We see in this example that the producer’s expected profits increases with N while the retailers’

aggregate expected profits decreases with N . This is somewhat intuitive since the oligopsony power

of the retailers decreases (thereby making the producer better off) as their number increases. The

following result formalizes this intuition.
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Figure 2: Producer’s expected payoff ΠP(N) (left panel) and retailers’ aggregate expected payoff N ΠR(N) (right panel)

as a function of N for the cases with and without hedging. The parameters were as in Figure 1.

Proposition 9 Consider the equibudget case with a fixed aggregate budget BC. Then, the expected

profits of the producer increases with N while the aggregate expected profits of the retailers decrease

with N . This result is independent of whether or not the retailers have access to the financial

markets to hedge their budget constraints.

An immediate corollary of this result is that consolidations in the retail market always benefit the

retailers and hurt the producer. It is also worth emphasizing that when the retailers hedge their

budgets constraints the results in Proposition 9 hold only in expectation. On a path-by-path basis

the producer will not necessarily be better off as the number of retailers increases. In particular,

there will be some outcomes where the ordering quantity is zero under the multiple competing

retailers and strictly positive when there is a single (merged) retailer for example. The producer

will earn zero profits on such paths under the competing retailer model, but will earn strictly

positive profits under the merged retailer model.

The result in Proposition 9 raises the more general question of whether the supply chain as a whole

is better or worse off as the number of retailers increases. To investigate this question, in Figure 3

we compare the cumulative profits of the decentralized supply chain (SC) with those of a central

planner (CP) for the cases in which the retailers (or the central planner) do and do not hedge the

budget constraints. The two panels in the figure differ only in the value of the cumulative budget,

BC: in the left panel BC = 0.75 and N̄ = 9; in the right panel BC = 1.5 and N̄ =∞.

First, we note that the cumulative profits of the supply chain are higher when the retailers hedge

their budgets constraints than when they do not. Interestingly, in the left panel there is a range of

values of N for which the profits of a decentralized supply chain with hedging exceed the profits

of a central planner without hedging. It is also worth noting that the profits of the supply chain

with hedging increases in N for N ≤ N̄ and decreases for N > N̄ . This suggests that N̄ defines an

“optimal” level of competition in the retailer’s market. Furthermore, on the right panel, N̄ = ∞
and the profits of the decentralized system with hedging converge to the profits of a central planner

that also hedges the budget constraint as N →∞. The following proposition establishes this result.
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Figure 3: Expected profits for the decentralized supply chain (SC) and a central planner (CP) as a function of N for the

cases with and without hedging. The demand and production cost parameters were as in Figure 1.

Proposition 10 Suppose N̄ = ∞. Then the Cournot-Stackelberg equilibrium of the game with

equi-budget retailers is given by

wτ =
Aτ + c

2
and qτ =

Aτ − c
2 (N + 1)

, i = 1, . . . , N

and the firms’ expected payoffs are given by

ΠP(N) =
N

4(N + 1)
E
[
(Aτ − c)2

]
and ΠR(N) =

1

4(N + 1)2
E
[
(Aτ − c)2

]
.

It follows that

lim
N→∞

ΠP(N) =
1

4
E
[
(Aτ − c)2

]
= ΠC and lim

N→∞
N ×ΠR(N) = 0.

According to Proposition 10, if the cumulative budget BC if sufficiently large so that N̄ = ∞,

then the decentralized supply chain’s profits, ΠP(N) + N × ΠR(N), achieve the central planner

profits, ΠC, as competition in the retailer’s market increases, i.e., as N → ∞. Interestingly, this

supply chain efficiency is reached despite the double marginalization that persists in equilibrium as

N →∞ since wτ = (Aτ + c)/2 > c for all outcomes ω for which Aτ > c.

We conclude this section by comparing the market equilibrium with and without hedging from the

perspective of the end consumers and society as a whole. To this end, we define the consumers’

expected surplus, C(N), and the total social welfare, S(N), as a function of the number of retailers

N :

C(N) :=
E[Qτ (N)2]

2
and S(N) := C(N)+ΠP(N)+N ΠR(N) = E[(Aτ − c)Qτ (N)]− E[Qτ (N)2]

2
.

Figure 4 depicts these measures for the same numerical example of Figure 1. First, we note that the

end consumers and society as a whole are better off when retailers are able to hedge their budget

constraints. It is also interesting to note that when the retailers are able to hedge, the consumers’

19



1 5 10 15 200.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Retailers: N

Consumers’ Surplus

 

 

Hedging   
No Hedging 

1 5 10 15 200.25

0.3

0.35

0.4

0.45

0.5

Number of Retailers: N

Social Welfare

 

 

Hedging
No Hedging

Figure 4: Consumers’ expected surplus (left panel) and social welfare (right panel) as a function of N for the cases with

and without hedging. The parameters were as in Figure 1.

surplus and society welfare are maximized when N = N̄ . This is interesting as one might have

expected that consumers’ surplus would have been maximized when N = ∞, i.e., when retailers’

competition is most intense. However, when hedging is available there is a socially optimal number

of retailers (N = 9 in this example) and excessive competition in the retailers’ market can end up

hurting consumers, the supply chain and society as a whole. This is in direct contrast with the

outcome when hedging is not possible for in this case the welfare increases as N gets large. That

is, in the absence of hedging more competition in the retailers’ market is better for both consumers

and society as a whole.

In general, we have not been able to prove that N̄ is the socially optimal number of retailers, al-

though all our numerical experiments suggest that this is indeed the case. The following proposition

provides some partial support for this claim.

Proposition 11 In the equibudget case with fixed aggregate budget BC, consumers’ surplus C(N),

the firm’s cumulative profits, ΠP(N) + N ΠR(N), and the social welfare, S(N), are all strictly

increasing in N for N ≤ N̄ when the retailers hedge in the financial markets.

Hence, independently of the measure of welfare that we might adopt, i.e. consumers’, firms’ or

society’s, N̄ is a lower bound on the minimum number of retailers that should be operating in the

system from a welfare standpoint.

5 Non-Identical Budgets

In this section we study the more general case in which the retailers have different budgets and can

hedge in the financial markets. We therefore seek to extend the no-hedging results from Section

3.1 here. Our main focus will be on the solving the Cournot game played by the retailers as this is

considerably more challenging than in the equibudget case. After solving for the Cournot game we

will discuss some special cases where we can also solve for the equilibrium wholesale price contract

20



wτ . Because of its difficulty, we consider the main contribution of this section to be the solution of

the retailers’ Cournot game.

We begin by solving the Cournot game played by the retailers. Taking Qi− and the producer’s

price menu, wτ , as fixed, the ith retailer’s problem is formulated as

ΠRi(wτ ) = max
qi≥0, Gτ

E [(Aτ − (qi +Qi−)− wτ ) qi] (29)

subject to wτ qi ≤ Bi +Gτ , for all ω ∈ Ω (30)

E [Gτ ] = 0. (31)

A first key step in solving (29)-(31) is to note that we can replace the set of pathwise budget

constraints in (30) by a single average budget constraint, namely, E[wτ qi] ≤ Bi. To see this,

consider the relaxed retailer’s problem:

Π̃Ri(wτ ) = max
qi≥0

E [(Aτ − (qi +Qi−)− wτ ) qi] (32)

subject to E [wτ qi] ≤ Bi, for all ω ∈ Ω. (33)

It should be clear that the feasible region of (32)-(33) contains the feasible region of (29)-(31) and

so Π̃Ri(wτ ) ≥ ΠRi(wτ ). On the other hand, for any feasible solution qi of (32)-(33), we can set a

trading strategy such that Gτ = wτ qi − E[wτ qi]. But the pair (qi, Gτ ) is feasible for (29)-(31) and

generates the same expected payoff. It follows that Π̃Ri(wτ ) = ΠRi(wτ ) and we can safely focus

on solving the simpler optimization problem (32)-(33) to determine the Cournot equilibrium in the

retailer’s market.

Taking Qi− and the producer’s price menu, wτ , as fixed, it is straightforward to obtain

qi =
(Aτ − wτ (1 + λi)−Qi−)+

2
(34)

where λi ≥ 0 is the deterministic Lagrange multiplier corresponding to the ith retailer’s budget

constraint in (33). In particular, λi ≥ 0 is the smallest real such that E [wτ qi] ≤ Bi. Given the

ordering of the budgets, Bi, it follows that λ1 ≤ λ2 ≤ . . . ≤ λN when they are chosen optimally.

Equation (34) and the ordering of the Lagrange multipliers then implies that for each outcome

ω ∈ Ω, there is a function nτ(ω) ∈ {0, 1, . . . , N} such that qj(ω) = 0 for all j > nτ . In other words,

nτ(ω) is the number of active retailers in state ω.

Continuing to drop the dependence of random variables on ω (e.g., writing nτ for nτ(ω)), we

therefore obtain the following system of equations

qi = Aτ − wτ (1 + λi)−Q, for i = 1, . . . , nτ (35)

where Q =
∑nτ

i=1 qi. For each ω ∈ Ω, this is a system with nτ linear equations in nτ unknowns

which we can easily solve. Summing the qi’s we obtain

Q =
1

nτ + 1

[
nτAτ − wτ

nτ∑
i=1

(1 + λi)

]
. (36)

21



Substituting this value of Q in (35), and using the fact that λ1 ≤ λ2 ≤ . . . ≤ λN , we see the optimal

ordering quantities, qi for i = 1, . . . , N , satisfy

qi =

[
Aτ − wτ

(
(nτ + 1) (1 + λi)−

∑nτ
j=1(1 + λj)

)]+

(nτ + 1)
, i = 1, 2 . . . , N. (37)

To complete the characterization of the Cournot equilibrium in the retailers’ market, we must

compute the values of the Lagrange multipliers {λi, i = 1, . . . , N} as well as the random variable

nτ . For reasons that will soon become apparent, it will be convenient to replace the Lagrange

multipliers by an equivalent set of unknowns {αi, i = 1, · · ·N} that we define below.

Suppose qi(ω) = 0 in some outcome, ω. Then (34) implies Aτ − wτ (1 + λi)−Q ≤ 0 which, after

substituting for Q using (36), implies that

(1 + λi) (1 + nτ) ≥ ατ +

nτ∑
j=1

(1 + λj), (38)

where ατ := Aτ/wτ . Since Aτ is the expected maximum clearing price (corresponding to Q = 0)

and wτ is the procurement cost, we may interpret ατ −1 as the expected maximum per unit margin

of the retail market. It follows that in equilibrium the producer chooses wτ so that ατ ≥ 1. We

also note that equation (38) implies that nτ depends on ω only through the value of ατ , that is,

nτ = nτ(ατ ).

Let αi denote that value of ατ where the ith retailer moves from ordering zero to ordering a positive

quantity. Abusing notation slightly, we see7 that n(αi) = i− 1 and so (38) implies

αi = i(1 + λi) −
i−1∑
j=1

(1 + λj) for i = 1, . . . , N. (39)

Using (39) recursively, one can show that

1 + λi =
αi
i

+
i−1∑
j=1

αj
j (j + 1)

. (40)

Substituting this expression in (37), it follows that for all i = 1, . . . , N

qi = wτ

 ατ
1 + nτ

− (1 + λi) +

nτ∑
j=1

1 + λj
1 + nτ

+

= wτ

 ατ
1 + nτ

− αi
i

+

nτ∑
j=1

1 + λj
1 + nτ

−
i−1∑
j=1

αj
j (j + 1)

+

= wτ

 ατ
1 + nτ

− αi
i+ 1

+

nτ∑
j=1

1 + λj
1 + nτ

−
i∑

j=1

αj
j (j + 1)

+

= wτ

 ατ
nτ + 1

− αi
i+ 1

+

nτ∑
j=i+1

αj
j (j + 1)

+

where the last equality follows from the identity:

nτ∑
j=1

1 + λj
1 + nτ

=
1

1 + nτ

nτ∑
j=1

(
αj
j

+

j−1∑
k=1

αk
k(k + 1)

)
=

nτ∑
j=1

αj
j(j + 1)

,

7We are assuming that the N budgets are distinct so that Bk−1 > Bk. This then implies qi(αk) > 0 for all

i ≤ k − 1. The case where some budgets coincide is straightforward to handle.
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which in turns follows from (40).

It should be clear from the discussion above that

nτ = max {i ∈ {0, 1, . . . , N} such that αi ≤ ατ} (41)

and we therefore only need to derive the values of the αi’s. We have relegated this derivation

to Appendix A and we summarize the main results in Proposition 12 below. We first need the

following definition.

Definition 5.1 Let wτ be an Fτ -measurable wholesale price contract. For any B ≥ 0, we define

H(B) := inf{x ≥ 1 such that E[w2
τ (ατ − x)+] ≤ B}.

Note that H(B) is a non-increasing function in B > 0.

Proposition 12 (Cournot Equilibrium in the Retailers’ Market)

For a given Fτ -measurable wholesale price menu, wτ , the optimal ordering quantities, qi, satisfy

qi = wτ

 ατ
nτ + 1

− αi
i+ 1

+

nτ∑
j=i+1

αj
j (j + 1)

+

for all i = 1, 2, . . . , N

with the budget constraint E[wτ qi] ≤ Bi binding if αi > 1 where

αi := H(Bi) for all i = 1, 2, . . . , N, (42)

nτ := max {i ∈ {0, 1, . . . , N} such that αi ≤ ατ} , (43)

where the {Bi} are defined in equation (7).

Proof: See Appendix A.

The ordering B1 ≥ B2 ≥ · · · ≥ BN implies that qi > 0 if and only if i ≤ nτ . The parameter αi is

therefore the cutoff8 point such that the ith retailer orders a positive quantity only if ατ ≥ αi. It is

interesting to note that equation (42) implies that αi does not depend on the i−1 highest budgets,

Bj , for j = 1, . . . , i − 1. In fact αi only depends on Bi, the sum of the N − i smallest budgets

and the number of retailers, i− 1, that have a budget larger than Bi. As a result, qi only depends

on Bi, (Bi+1 + · · · + BN ) and i. In other words, the procurement decisions of small retailers are

unaffected by the size (but not the number) of larger retailers for a given wholesale price wτ . In

equilibrium, however, we expect the wholesale price wτ to depend on the entire vector of budgets.

Proposition 12 also implies that

qi − qi+1 = wτ

(
(ατ − αi)+ − (ατ − αi+1)+

i+ 1

)
, i = 1, 2, . . . , N

and this confirms our intuition that larger retailers order more than smaller ones so that qi is

non-increasing in i. This follows from the fact that H(B) is non-increasing in B which implies that

the αi’s are non-decreasing in i. Having characterized the Cournot equilibrium of the N retailers,

we can now determine the producer’s expected profits, ΠP = E[(wτ − c)Q(wτ )], for a fixed price

menu, wτ . We have the following proposition.

8This construction has similarities to the equilibrium constructions found in Golany and Rothblum (2008) and

Ledvina and Sircar (2012) who also obtain cutoff points below which firms produce and above which firms are costed

out.
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Proposition 13 (Producer’s Expected Profits)

An Fτ -measurable wholesale price menu wτ is a Stackelberg equilibrium in the producer’s market if

it maximizes the producer’s expected payoff, ΠP, given by

ΠP =

(
m− 1

m

)
E[(wτ − c) (Aτ − wτ)+] +

N∑
j=m

(
Bj
m
− c

j(j + 1)
E[(Aτ − αj wτ)+]

)
(44)

where

m = m({wτ}) := max{i ≥ 1 such that αi−1 = 1} (45)

and αi = H(Bi) (as defined in Proposition 12) with α0 := 1.

Proof: See Appendix A.

The producer’s problem is then to maximize ΠP in (44) over price menus wτ . A first important

observation regarding this problem is that it cannot be solved path-wise since the αi’s are deter-

ministic and depend implicitly in a non-trivial way on wτ through the function H(·). Note also

that m is the index of the first retailer whose budget constraint is binding9 with the understand-

ing that if m = N + 1 then all N retailers are non-binding. We can characterize those values

of m ∈ {1, . . . , N + 1} that are possible. In particular, if the producer sets wτ = Aτ then all of

the retailers are non-binding and so m = N + 1. We can also find the smallest possible value of

m, mmin say, by setting wτ = c, solving for the resulting αi’s using (42) and then taking mmin

according to (45). Assuming the Bi’s are distinct, the achievable values of m are given by the set

Mfeas := {mmin, . . . , N + 1}. This can be seen by taking wτ = γc + (1 − γ)Aτ with γ = 0 initially

and then increasing it to 1. In the process each of the values in Mfeas will be obtained.

We could use this observation to solve numerically for the producer’s optimal menu, w∗τ , by solving

a series of sub-problems. In particular we could solve for the optimal price menu subject to the

constraint that m = m∗ for each possible value of m∗ ∈Mfeas. Each of these N−m∗+2 sub-problems

could be solved numerically after discretizing the probability space. The overall optimal price menu,

w∗τ , is then simply the optimal price menu in the sub-problem whose objective function is maximal.

In an effort to be more concrete in identifying the structure of an optimal wholesale price menu,

we consider a special case in the next subsection. Specifically, we consider those instances of the

problem in which, in equilibrium, all retailers produce a positive amount in each state of the world.

Besides providing some concrete theoretical insight regarding the form of an optimal wholesale

price, this case is also of practical relevance as we expect it matches the operating condition of

most supply chains.

5.1 Special Case: nτ = N

We now consider the special case in which the Cournot-Stackelberg equilibrium is such that every

retailer produces a positive quantity pathwise, i.e. for every realization of the demand forecast Aτ .

Mathematically, this condition is equivalent to requiring that in equilibrium nτ = N a.s. in (41),

or equivalently, that αN ≤ ατ a.s. given our ranking of the retailers’ budgets.

9We say a player is binding if his budget constraint is binding in the Cournot equilibrium. Otherwise a player is

non-binding.
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A direct consequence of this condition is that Aτ ≥ αj wτ a.s. for all j = 1, . . . , N . Hence, from

Proposition 13, it follows that the producer’s optimization problem is given by

ΠP = max
wτ

(
m− 1

m

)
E[(wτ − c) (Aτ − wτ)+] +

N∑
j=m

(
Bj
m
− c

j(j + 1)
E[Aτ − αj wτ ]

)
subject to m = max{i ≥ 1 such that αi−1 = 1}.

We can further simply this optimization problem by noticing that in equilibrium an optimal wτ
satisfies wτ ≤ Aτ a.s. Indeed, for any wτ ≥ Aτ , the cumulative order quantity will be Qτ = 0 so

restricting the wholesale price to satisfy wτ ≤ Aτ is without loss of generality.

We solve the producer’s problem in two steps. First, we fix the value of m and compute an

optimal wholesale price wτ(m) under this restriction. Then, we determine the optimal solution by

maximizing over the value of m. We have relegated to Appendix A most of the technical details of

this two-step program. Here we summarize the main results beginning with the next proposition.

Proposition 14 Let ΠP(m) be the producer’s optimal expected profit under the additional con-

straint that only the first m − 1 retailers are not budged constrained in equilibrium. Then, under

the assumption nτ = N a.s., ΠP(m) solves the following optimization problem:

ΠP(m) = max
µ,σ


(
m− 1

m

)
[µE0[Aτ ] + σ σAτ + cµ− σ2 − µ2] +

N∑
j=m

c µ
(
µE0[Aτ ] + σ σAτ − Bj

)
j(j + 1)(σ2 + µ2)

+ δ(m)

subject to Bm + µ2 + σ2 < µE0[Aτ ] + σ σAτ ≤ Bm−1 + µ2 + σ2, µ ≥ 0, and σ ≥ 0,

where δ(m) :=
∑N

j=m
Bj
m −

N
N+1 cE[Aτ ] and σAτ :=

√
Var(Aτ). Furthermore, if we let µ(m) and

σ(m) denote the optimal solution of this optimization problem then the retailer’s optimal wholesale

price wτ(m) is given by

wτ(m) = µ(m) +
σ(m)

σAτ
(Aτ − E[Aτ ]).

Proof: See Appendix A.

According to Proposition 14, we can reduce the complexity of computing an optimal wholesale price

menu wτ to a sequence of optimizations in two scalars µ and σ. From the proof of Proposition 14,

µ corresponds to the mean of wτ while σ corresponds to its standard deviation. Equipped with this

result, we can complete our derivation of an optimal solution by identifying

m∗ := arg max{ΠP(m) : m = 1, . . . , N + 1}

as well as µ∗ := µ(m∗) and σ∗ := σ(m∗). From this, it follows that a candidate solution for the

optimal wholesale price is given by

w∗τ = µ∗ +
σ∗

σAτ
(Aτ − E[Aτ ]). (46)

Note that we say that w∗τ is only a candidate solution because we still need to very that our

assumption nτ = N a.s. is satisfied under the proposed w∗τ . The following result takes care of this

final step in our derivation.
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Proposition 15 If m∗ < N + 1 then a sufficient condition for the optimality of w∗τ in (46) is that(
µ∗ E[Aτ ] + σ∗ σAτ − (N + 1)BN

(µ∗)2 + (σ∗)2

) (
µ∗ +

σ∗

σAτ
(Aτ − E[Aτ ])

)
≤ Aτ a.s.

On the other hand, if m∗ = N + 1 then a sufficient condition for the optimality of w∗τ in (46) is

that

µ∗ +
σ∗

σAτ
(Aτ − E[Aτ ]) ≤ Aτ a.s.

Proof: See Appendix A.

Besides providing a mathematically tractable reformulation of the producer’s problem, Proposi-

tions 14 and 15 reveal that at optimality the optimal wholesale price is a linear function of the

demand forecast Aτ . We will use this observation to support the numerical analysis that we conduct

in the next subsection where we propose a linear wholesale price approximation for the producer’s

problem in the general case in which nτ < N .

5.2 Constant and Linear Wholesale Price Contracts

Solving for the wholesale price contract that optimizes the producer’s expected profits in Propo-

sition 13 for an arbitrary vector of budgets (B1, . . . , BN ) is a complex optimization problem in

general. But in the equi-budget case and the case where nτ = N a.s. we have seen that a whole-

sale price contract that is linear in Aτ is optimal. It is easy to see that this result also holds in

the non-equibudget case where none of the budgets are binding in equilibrium. Motivated by this

observation, we restrict ourselves in this section to the family of price contracts that are linear10

in Aτ and c. Through a numerical example we demonstrate that it is straightforward to optimize

numerically for the optimal contract within this family for an arbitrary vector of budgets. We also

note that since c is deterministic this family includes the important case of a constant wholesale

price contract. Our example will also consider the benefit (to the producer) of offering an optimal

linear contract versus an optimal constant wholesale price contract. We first discuss the constant

wholesale price contract as a special case as some additional explicit results are available in this

case.

A Constant Wholesale Price

The problem of optimizing the expected payoff in (44) is considerably more tractable if the producer

offers a constant wholesale price w̄ instead of a random menu wτ . From a practical standpoint,

this is an important special case since a constant wholesale price is also a much simpler contract to

implement. Note, however, that even with a constant wholesale price the retailers are still free to

choose Fτ -measurable responses, qτ , and to engage in financial hedging. In this case, Proposition 13

can be specialized as follows.

10Since c is a constant these contracts include the optimal contracts for the equibudget case (26) and the case (46)

where nτ = N a.s.
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Corollary 1 Under a constant wholesale price, w̄, the producer’s expected payoff is given by

ΠP =
w̄ − c
m

(m− 1) E[(Aτ − w̄)+] +
N∑
j=m

Bj
w̄

 . (47)

Let w̄∗(B1, . . . , BN ) be the constant wholesale price that maximizes ΠP as a function of the budgets

B1 ≥ B2 ≥ · · · ≥ BN . Then it follows that w̄∗(B1, . . . , BN ) ≥ w̄∗(∞, . . . ,∞) for all such budgets.

Proof: See Appendix A.

While m is a function of w̄ it is nonetheless straightforward to check that ΠP in (47) is a continuous

function of w̄. Note also that if some budget is transferred from one non-binding player to another

non-binding player and both players remain non-binding after the transfer then ΠP is unchanged.

Similarly if some budget is transferred from one binding player to another binding player and both

players remain binding after the transfer then ΠP is again unchanged. Both of these statements

follow from (47) and because it is easy to confirm that in each case the value of m is unchanged.

If some budget is transferred from a binding player to a non-binding player, however, then the

ordering of the Bi’s and the definition of the αi’s imply that both players remain binding and

non-binding, respectively, after the transfer. Therefore m remains unchanged and ΠP decreases

according to (47).

Conversely, we can increase ΠP by transferring budget from a non-binding player to a binding

player in such a way that both players remain non-binding and binding, respectively, after the

transfer. It is also possible to increase ΠP if budget is transferred from one non-binding player to

another non-binding player so that the first player becomes binding after the transfer. Note that

the statements above are consistent with the idea that the producer would like to see the budgets

spread evenly among the various retailers.

The final part of Corollary 1 asserts that it is in the producer’s best interest to increase the wholesale

price when selling to budget-constraint retailers. By doing so the producer is inducing the retailers

to reallocate their limited budgets into those states in which demand is high and for which the

retailers have the incentives to invest more of their budgets in procuring units from the producer.

As a result, the producer is able to extract a larger fraction of the retailers initial budgets.

Optimizing Over the Family of Linear Wholesale Price Contracts

We return now to linear price contracts of the form wτ = wcc + wAAτ for constants wc and wA.

The constant wholesale price contract is of course a special case corresponding to wA ≡ 0 since

c is assumed constant. Motivated by our earlier results, it seems reasonable to conjecture that

this class should contain contracts that are optimal or close to optimal for the producer. We now

demonstrate through a numerical example that it is straightforward for the producer to optimize

over (wc, wA) and therefore compute the Cournot-Stackelberg equilibrium solution for this class

of contracts. This example also highlights some of the qualitative features of the equilibrium and

in particular, how the expected profits of the producer and retailers can be very sensitive to the

volatility of the financial index.
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Example 1 We consider a simple11 additive model of the form Aτ = F (Xτ ) where Xt follows a

geometric Brownian motion with dynamics dXt = σXt dWt and where Wt is a Q-Brownian motion.

Note that since interest rates are zero, Xt must be a Q-martingale and therefore does not have a drift.

To model the dependence between the market clearance price and the process, Xt, we assume a linear

model so that F (x) = A0 +A1 x where A0 > c and A1 are positive constants. We therefore have

Aτ = A0 +A1Xτ (48)

with Ā := E[Aτ ] = A0 +A1X0. Note that with A0 > c we are assured that Assumption 1 is satisfied.

We consider a problem with N = 5 retailers with budgets given by B = [1400 1000 500 300 100].

Other problem parameters are X0 = σ = 1, τ = .5, A1 = 100, A0 = 10 and c = 7. In Figure

5 below we have plotted the producer’s expected profits ΠP as a function of wc and wA on the grid

[0, 5]× [0, 1.2]. Note that ΠP was computed numerically using the results of Proposition 13. We first
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Figure 5: Producer’s expected profits as a function of wa and wc with wτ = wcc + wAAτ . The other parameters are

N = 5 retailers, X0 = σ = 1, τ = .5, A1 = 100, A0 = 10, c = 7 and B = [1400 1000 500 300 100].

observe that ΠP is very sensitive to wA while it is less sensitive to wc. This of course is due in part to

our selected parameter values. Moreover, while not shown in the figure, it is indeed the case that ΠP

decreases to zero for sufficiently large values of wc. The behavior of ΠP as a function of wA (with wc
fixed) is perhaps more interesting: we see that ΠP initially increases in wA but eventually decreases to

zero at which point the producer earns zero profits and the supply chain has been shut down. We also

see that the producer incurs losses for values of (wc, wA) close to (0, 0) which of course is not surprising

since the producer is undercharging at these values.

For this example, we found an optimal equilibrium value of ΠP = 3, 016 with corresponding optimal

parameters w∗c = .975 and w∗A = .48. At this equilibrium solution we found that the budget constraints

11As discussed at the end of Section 2.1, this model is consistent with a more general model where the true market

size is a random variable A that is not observed until time T > τ and that can depend on both XT and non-financial

noise. For example, we could take A = F (XT ) + ε with E[ε] = 0 and ε capturing the non-financial component of the

market price uncertainty. In this case Aτ is as given in (48) and the analysis would not change.
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were binding for all but the largest retailer. It is also interesting to note that the optimal value of wA
was very close to .5 which we know to be the optimal coefficient when the budget constraints aren’t

binding. This lends further support to our consideration of linear contracts for the general problem

with non-symmetric and possibly binding budgets. Incidentally, we also solved the symmetric problem

with N = 5 retailers where each Bi = 660. In this case the total retailer budget in both problems are

identical and equal to 3, 300. In this symmetric case we found optimal producer profits of ΠP = 3, 131

corresponding to w∗c = 4.15 and w∗A = .487. In this case the (identical) budget constraints for all

five retailers were binding. We were also not surprised to see the optimal value of ΠP increases in the

symmetric case since this intuitively corresponds to a situation of increased competition among the

retailers. Note that we proved such a result in the no-hedging case of Section 3.1.

It is also interesting to compare the optimal producer profits, ΠL
P, assuming linear wholesale contracts

are available, with his optimal profits, ΠC
P, when only constant wholesale price contracts are available.

We perform this comparison as a function of σ, the volatility parameter driving the dynamics of the

financial market in Figure 6 below.
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Figure 6: Expected equilibrium profits as a function of σ for the producer and retailers: optimal linear wholesale price

contract with wτ = wcc+ wAAτ versus the optimal constant contract (with wA ≡ 0). The other parameters are N = 5

retailers, X0 = 1, τ = .5, A1 = 100, A0 = 10, c = 7 and B = [1400 1000 500 300 100].

Our first observation is that ΠL
P = ΠC

P when σ = 0. This is as expected, however, since if σ = 0

then Aτ is a constant and so the ability to offer price menus that depend on Aτ therefore has no

value. It is also interesting to note that ΠL
P also equals ΠC

P for large values of σ. This may at first

appear surprising but we must first recall that even when the producer offers a constant wholesale

price, the retailers’ ordering quantities can and will depend on Aτ = A0 + A1X0e
−σ2τ/2+σWτ . Since

Var (Aτ) = (A1X0)2
(
eσ

2τ − 1
)

increases in σ it is clear that larger values of σ imply that larger values

of A become increasingly probable. The producer can take advantage of this by charging a very large

constant wholesale price and forcing the retailers to purchase at that large price only in states where Aτ

is sufficiently large. For large values of σ the producer therefore becomes indifferent between offering

a simple constant wholesale price menu and offering a linear pricing menu. This can be seen clearly in

Figure 7 below where we again plot the producer’s expected profits as a function of wc and wA but now
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on the grid [300, 600]× [0, 1]. The parameters are identical to those of Figure 5 with the exception that

we now take σ = 2, corresponding to the largest value of σ in Figure 6. We see there is a large range

of (wc, wA) values which optimize the producer’s profits in Figure 7. Most importantly, and consistent

with our observations above, this range contains a strip of values for which wA = 0 which of course

corresponds to constant wholesale price contracts.

A similar line of reasoning also explains why ΠL
P and ΠC

P are both increasing in σ in Figure 6. This is despite

the fact that Ā = E[Aτ ] = A0 +A1X0 does not depend on σ. We note that for intermediate values of

σ the linear price contract outperforms (from the producer’s perspective) the constant wholesale price

contract by up to approximately 50%, demonstrating the potential value of such contracts. We note in

passing that the volatility σ of financial indices might typically range from 20% to 50% depending on

market conditions and the indices in question. We also note that the linear contract performs very close

to optimal for intermediate and large values of σ because in this range his expected profits are close to

3,300 which is the total budget of the retailers. (For very small values of σ the constant – and therefore

also the linear – contract is very close to optimal as there is nothing to be gained by contracting on the

financial market in that case.)
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Figure 7: Producer’s expected profits as a function of wa and wc with wτ = wcc+wAAτ . The parameters are identical

to those of Figure 5 with the exception that σ = 2 and we have changed the values of wa and wc over which the producer’s

expected profits are plotted.

In Figure 6 we have also plotted the total equilibrium profits of the retailers as a function of σ. The

first main observation is that the retailers always do better with the constant contract than with the

linear contract. This is because with a constant contract, the producer cannot force the retailers to

only order in certain highly profitable states (for the producer) and shut the supply chain down in other

less profitable states. We also note a kink in both of the retailers’ curves after which their expected

equilibrium profits start to decrease with σ. Some intuition for this (in the symmetric retailer case) is

provided by the expression in (27) for the retailers’ expected payoffs conditional on time τ information.

Since Var (Aτ) is increasing in σ we can argue (because of the positive part) that the expectation of

Aτ component in (27) will increase in σ. In contrast, the value of φP decreases in σ. The expectation

of the retailers’ equilibrium conditional profits in (27) therefore consists of two competing terms. The
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first term dominates initially which is why we see the retailers’ curves in Figure 6 increasing for smaller

values of σ. Beyond a certain point, however, the second term starts to dominate and so the retailers’

expected profits start to decrease in σ at this point.

We also mention that the results of Figure 6 were computed on a relatively coarse grid beginning at

σ = 0 and using a step-size of 0.2. It would have been easy of course to use a much finer grid but for

values of σ greater than 1, we encountered some numerical instabilities in computing the retailers’ total

equilibrium profits for both types of contracts. The main reason for this is the need to compute the

αi’s numerically and the relatively large range of (wc, wA) values which are (more or less) optimal12 for

the producer. While the producer is almost indifferent to which contract he chooses within this optimal

range, the retailers are not, so that the reported equilibrium profits of the retailers (for large values

of σ) are very sensitive to the particular solution chosen by the producer, i.e. found by the numerical

optimizer. Had we therefore chosen a finer grid for σ, we would have obtained curves for the expected

total retailer profits that were less smooth (due to the aforementioned numerical instabilities) than those

of Figure 6 for values of σ greater than 1.

On a closely related note, given that the producer appears to be indifferent to the choice of constant

or linear wholesale contracts for values of σ close to 2, one might expect the total expected retailers’

profits for the two contracts to also coincide for values of σ close to 2. We do not see this, however,

because while the producer is almost indifferent between the two contract types, he still marginally

prefers the linear contract (although this is not apparent from Figure 6) and this results (for the reasons

given earlier) in the retailers being considerably worse off than if only a constant contract was available.

6 Conclusions and Further Research

We have studied the performance of a stylized supply chain where multiple retailers and a single

producer compete in a Cournot-Stackelberg game. At time t = 0 the retailers order a single product

from the producer and upon delivery at time τ > 0, they sell it in the retail market at a stochastic

clearance price that depends on the realized path or terminal value of some observable and tradeable

financial process. Because delivery does not take place until time τ , the producer offers a menu of

wholesale prices to the retailer, one for each realization of the process up to time some time, τ . The

retailers’ ordering quantities are therefore contingent upon the realization of the process up to time

τ . Production of the good is then completed on or after time τ at which point profits in the supply

chain are also realized. We also assumed, however, that the retailers were budget-constrained and

were therefore limited in the number of units they could purchase from the producer. Because the

supply chain is potentially more profitable if the retailers can allocate their budgets across different

states we allow them to trade dynamically in the financial market.

In contributing to the work on financial hedging in supply chains, our main contributions are: (i)

solving for the Cournot-Stackelberg equilibrium when the retailers’ have identical budgets (ii) our

analysis of the interaction between hedging and retail competition on the various players including

the firms themselves, the end consumers and society as a whole and (iii) the solution of the Cournot

game in the case of non-identical budgets and the corresponding solution of the Cournot-Stackelberg

game in special instances. This latter contribution is technical in nature since solving for just the

Cournot game when the retailers have different budgets is challenging. Indeed there appears to be

12We saw precisely this phenomenon in Figure 7 for the case σ = 2.
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relatively few instances of solutions to Cournot games in the literature where the players are not

identical. However, we did identify important instances for which an analytical solution is available,

namely, the case in which the retailers all order a strictly positive quantity almost surely, and the

case in which retailers are symmetric. In both cases, the optimal wholesale price menu is linear

in the maximum expected retail price (Aτ). Motivated by this pattern, we investigate numerically

the performance of an optimal linear (in cτ and Aτ) wholesale price. Our results suggest that this

simple family of contract performs well especially when market volatility is high. (When market

volatility is low there is much less to be gained from contracting on the financial index and so

constant contract would be close to optimal in that case).

There are several possible directions for future research. First, it would be interesting to allow for

the possibility of external financing as we suspect this problem should be tractable in the equi-

budget case. It would also be of interest to identify and calibrate settings where supply chain

payoffs are strongly dependent on markets. We would then like to estimate just how much value

is provided by the financial markets in its role as (i) a source of public information upon which

contracts may be written and (ii) as a means of mitigating the retailers’ budget constraints. A

further direction is to consider alternative contracts such as 2-part tariffs for coordinating the sup-

ply chain. Of course we would still like to have these contracts be contingent upon the outcome

of the the financial markets. Other directions include amending the model to the one where the

retailers compete via strategic complements rather than via strategic substitutes which is the case

in this work. Finally, we would like to characterize the producer’s optimal price menu in the general

non-equibudget case and to see that if the optimal contract turns out to be linear in Aτ , as suspected.
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A Appendix: Proofs

Proof of Proposition 1: Let Sb ⊆ {1, . . . , N} be the subset of retailers for which the budget

constraint is binding in equilibrium. It follows that

qi =
Bi
wτ

∀i ∈ Sb.

Similarly, let Snb = {1, . . . , N} \ Sb be the set of retailers for which the budget constraint is not

binding. It follows from the first-order optimality condition for problem (4)-(5) that the order

quantity for retailer i ∈ Snb is also uniquely given by

qi = (Aτ −Q−i − wτ )/2 ∀i ∈ Snb.

If we let Q = q1 + q2 + · · ·+ qN then Q−i = Q− qi and we get

qi = Aτ −Q− wτ ∀i ∈ Snb.

Hence, retailers whose budget constraint is not binding order the same amount in equilibrium.

It follows that there exists an integer m ∈ {0, 1, . . . , N} such that Snb = {1, . . . ,m − 1} and

Sb = {m, . . . , N}.

Now, summing over i the qi, we can solve for Q as a function of m to get

Q =
1

m

[
(m− 1) (Aτ − wτ ) +

N∑
i=m

Bi
wτ

]
.

Plugging back this value of Q on the expression for qi above we get the equilibrium order for

retailer i ∈ Snb. Finally, by the definition of m as the threshold retailer whose budget is binding,

we must have Bm < wτ (Aτ − Q − wτ ) ≤ Bm−1. Plugging the value of Q above and after some

straightforward manipulations, we get that this condition is equivalent to

Bm < wτ (Aτ − wτ ) ≤ Bm−1,

where the definition of Bk is given in (7). Finally, the uniqueness of m follows now from the fact

that the sequence {Bk} is non increasing in k. �
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Proof of Proposition 2: For fixed values of wτ and B1, . . . , BN , let us define the sequence

Qk :=

{
1

k + 1

[
k (Aτ − wτ ) +

N∑
i=k+1

Bi
wτ

]}
.

From the definition of Q(wτ , B1, . . . , BN ) in (9), we need to show that Qm(wτ )−1 ≤ Qk for all

k = 0, . . . , N . We prove this by showing the following stronger result: Qk−1 ≥ Qk for k =

1, . . . ,m(wτ ) − 1 and Qk−1 ≤ Qk for k = m(wτ ), . . . , N . To see this, note that the condition

Qk−1 ≥ Qk is equivalent to

(k + 1)

[
(k − 1) (Aτ − wτ ) +

N∑
i=k

Bi
wτ

]
≥ k

[
k (Aτ − wτ ) +

N∑
i=k+1

Bi
wτ

]
.

After some straightforward manipulations, this inequality is equivalent to (under the trivial as-

sumption that wτ ≥ 0)

k Bk +
N∑
i=k

Bi ≥ wτ (Aτ − wτ ).

Finally, by the definition of m(w) in (8), this inequality is equivalent to m(wτ ) ≥ k + 1. �

Proof of Proposition 3: Let Q̄ = Q(wτ , B̄, . . . , B̄) and Q = Q(wτ , B1, . . . , BN ) be the market

total output when the retailers’ budgets are B̄ = (B̄, . . . , B̄) and B = (B1, . . . , BN ), respectively.

We want to show that Q̄ ≥ Q. To this end, we take advantage of the fact that the retailers are

symmetric under B̄ to identify two cases:

1. Budget constraints are binding under B̄: In this case, it follows trivially that

Q̄ =
BC

wτ
=

N∑
i=1

Bi
wτ
≥

N∑
i=1

qi = Q.

2. Budget constraints are not binding under B̄: In this case, it is not hard to see that

Q̄ =
N

N + 1
(Aτ − wτ ).

On the other hand, by from Proposition 1 we know that there exists an m = m(wτ ) ∈
{0, 1, . . . , N} such that

Q =
1

m+ 1

[
m (Aτ − wτ ) +

N∑
i=m+1

Bi
wτ

]
.

Now, if m = N then Q̄ and the result follows. Let us then assume that m ≤ N1. From the

definition of m in (8) it follows that

wτ (Aτ − wτ ) > Bk, for k = m+ 1, . . . , N. (A-1)
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Next, we use this condition recursively to show that

Q =
1

m+ 1

[
m (Aτ − wτ ) +

N∑
i=m+1

Bi
wτ

]

≤ 1

m+ 2

[
(m+ 1) (Aτ − wτ ) +

N∑
i=m+2

Bi
wτ

]
...

≤ 1

N + 1
[N (Aτ − wτ )] = Q̄.

We now use condition (A-1) to prove the first inequality and the others follows the same

steps. We can write the first inequality as

[(m+ 1)2 −m(m+ 1)](Aτ − wτ ) ≥ (m+ 2)
N∑

i=m+1

Bi
wτ
− (m+ 1)

N∑
i=m+2

Bi
wτ
,

which after some manipulations is equivalent to

wτ (Aτ − wτ ) ≥ (m+ 1)Bm+1 +
N∑

i=m+1

Bi.

Note that the term on the right is equal to Bm+1 and so the inequality follows from condition

(A-1). �

Proof of Proposition 6: It is straightforward to see that Qτ is each of the N retailer’s optimal

ordering level given the wholesale price menu, wτ , in the absence of a budget constraint. This

follows from a standard Cournot-style analysis in which all of the retailers, owing to their identical

budgets, order the same quantity. In order to implement this solution, each retailer would need a

budget Qτ wτ for all ω ∈ Ω. Therefore, if each retailer can generate a financial gain, Gτ , such that

Qτ wτ ≤ B+Gτ for all ω ∈ Ω then he would be able to achieve his unconstrained optimal solution.

By definition, X contains all those states for which B ≥ Qτ wτ . That is, the original budget B is

large enough to cover the optimal purchasing cost for all ω ∈ X . However, for ω ∈ X c, the initial

budget is not sufficient. The financial gain, Gτ , then allows the retailer to transfer resources from

X to X c.

Suppose the condition in Case 1 holds so that E [Qτ wτ ] ≤ B. Note that according to the definition

of Gτ in this case, we see that B + Gτ = Qτ wτ for all ω ∈ X c. For ω ∈ X , however, B + Gτ =

(1 − δ)B + δQτ wτ ≥ Qτ wτ . The inequality follows since δ ≤ 1. Gτ therefore allows the retailer

to implement the unconstrained optimal solution. The only point that remains to check is that Gτ
satisfies E[Gτ ] = 0. This follows directly from the definition of δ.

Suppose now that the condition specified in Case 2 holds. We solve the ith retailer’s optimization

problem in (18) by relaxing the gain constraint with a Lagrange multiplier, λi. We also relax the

budget constraint for each realization of X up to time τ . The corresponding multiplier for each

such realization is denoted by β(i)
τ dQ where β(i)

τ plays the role of a Radon-Nikodym derivative
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of a positive measure that is absolutely continuous with respect to Q. The first-order optimality

conditions for the relaxed version of the retailer’s problem are then given by

qi =
(Aτ − wτ (1 + β(i)

τ )−Qi−)+

2

β(i)
τ = λi, β(i)

τ

(
wτ qi −B +Gτ

)
= 0, β(i)

τ ≥ 0, and E[Gτ ] = 0.

We look for a symmetric equilibrium of the above system of equations where λi = λ and qi = q for

all i = 1, . . . , N .

It is straightforward to show that the solution given in Case 2 of the proposition satisfies these

optimality conditions; only the non-negativity of β(i)
τ needs to be checked separately. To prove

this, note that β(i)
τ = λi = λ, therefore it suffices to show that λ ≥ 0. This follows from three

observations

(a) Since 0 ≤ wτ the function E
[
wτ

(
Aτ−wτ (1+λ)

(N+1)

)+
]

is decreasing in λi.

(b) In Case 2, by hypothesis, we have

E
[
wτ

(Aτ − wτ)+

(N + 1)

]
= E [Qτ wτ ] > B

(c) Finally, we know that λ solves

E
[
wτ

(Aτ − wτ (1 + λ))+

(N + 1)

]
= B.

(a) and (b) therefore imply that we must have λ ≥ 0. �

Proof of Proposition 7: The statements regarding the producer follow immediately from

Proposition 7 in Caldentey and Haugh (2009) with the budget replaced by (N + 1)B/2 and the

objective function multiplied by 2N/(N + 1). The statements regarding the retailers are due to the

fact that the optimal value of λ in (24) is 0. This value of λ and the optimal value of wτ can then

be substituted into the expression for the optimal ordering quantity in either13 Case 1 or Case 2 of

Proposition 6. The expressions for qτ and ΠR|τ then follow immediately. �

Proof of Proposition 8: Let first us prove part (a). Suppose that N ≤ N̄ . Then, we have

δP(N) = c in Proposition 7 and so

wτ (N) =
Aτ + c

2
and Qτ (N) =

N (Aτ − c)+

2(N + 1)
.

It follows trivially that wτ (N) is constant and Qτ (N) is increasing in N , pathwise and therefore

on expectation. Turning to case (b), when N > N̄ then δP(N) > c solves the equation

E[(A2
τ − δP(N)2)+] = 4BC (N + 1)/N. (A-2)

13Both cases lead to the same value of qτ as the producer chooses the price menu in such a way that the budget is

at the cutoff point between being binding and non-binding with λ = 0.
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Since the right-hand side is decreasing in N , it follows that δP(N) is increasing in N . As a result,

the wholesale price

wτ (N) =
Aτ + δP(N)

2

is also increasing in N pathwise and therefore on expectation.

To complete the proof, we need to show that the total expected output E[Qτ (N)] is decreasing in

N when N > N̄ . To show this, we first rewrite (A-2) as follows E[Qτ (N) (Aτ + δP(N))] = 2BC or

equivalently

δP(N) +
E[Aτ Qτ (N)]

E[Qτ (N)]
=

2BC

E[Qτ (N)]
.

From this identity, and the fact that δP(N) is increasing in N , we will show that E[Qτ (N)] is

decreasing in N by showing that the term E[Aτ Qτ (N)]/E[Qτ (N)] is increasing in N . For this, we

use the the following lemma.

Lemma 1 Let A be a nonnegative random variable that admits a smooth density f ∈ C2[0,∞) such

that limx→∞ x
2 f(x) = 0. Then, the function

Ā(x) :=
E[A (A− x)+]

E[(A− x)+]

is increasing in x.

Before proving the lemma, note that E[Aτ Qτ (N)]/E[Qτ (N)] = Ā(δP(N)). Hence, since δP(N) in

increasing in N , proving the lemma will complete the proof.

Proof of the Lemma: First, let us rewrite Ā(x) as follows:

Ā(x) = x+
E[(A− x) (A− x)+]

E[(A− x)+]
= x+

∫∞
x (y − x)2 f(y) dy∫∞
x (y − x) f(y) dy

= x+

∫∞
0 y2 f(y + x) dy∫∞
0 y f(y + x) dy

.

Taking derivative with respect to x, and using the fact that f ∈ C2[0,∞) so that we can interchange

derivation and integration, we get

dĀ(x)

dx
= 1 +

(∫∞
0 y2 f ′(y + x) dy

) (∫∞
0 y f(y + x) dy

)
−
(∫∞

0 y2 f(y + x) dy
) (∫∞

0 y f ′(y + x) dy
)(∫∞

0 y f(y + x) dy
)2 .

Now using integration by parts and the assumption on f that limx→∞ x
2 f(x) = 0 we have∫ ∞

0
y2 f ′(y + x) dy = −2

∫ ∞
0

y f(y + x) dy and

∫ ∞
0

y f ′(y + x) dy = −
∫ ∞

0
f(y + x) dy.

Plugging these identities above we get

dĀ(x)

dx
= 1 +

(∫∞
0 y2 f(y + x) dy

) (∫∞
0 f(y + x) dy

)
− 2

(∫∞
0 y f(y + x) dy

)2(∫∞
0 y f(y + x) dy

)2
=

(∫∞
0 y2 f(y + x) dy

) (∫∞
0 f(y + x) dy

)
−
(∫∞

0 y f(y + x) dy
)2(∫∞

0 y f(y + x) dy
)2

=

( ∫∞
0 f(y + x) dy∫∞

0 y f(y + x) dy

)2
[∫∞

0 y2 f(y + x) dy∫∞
0 f(y + x) dy

−
(∫∞

0 y f(y + x) dy∫∞
0 f(y + x) dy

)2
]
≥ 0.
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The inequality follows by noticing that the term inside the square brackets is the equal to the

variance of a nonnegative random variable Y with density

fY (y) =
f(y + x)∫∞

0 f(z + x) dz
. �

Proof of Proposition 9: Let us consider first the case in which the retailers hedge their budget

constraints. From the solution to the producer’s problem in Proposition 7 we have that

ΠP(N) = E [(wτ (N)− c)Qτ (N)] , where wτ (N) =
Aτ + φ(N) c

2
, Qτ (N) =

N (Aτ − φ(N) c)+

2(N + 1)

and φ(N) is the minimum φ ≥ 1 such that E[(A2
τ − (φ c)2)+] ≤ 4BC (N + 1)/N .

In this solution, the fact that N is an integer is immaterial and so we will prove the monotonicty

of ΠP(N) assuming N is a continuous variable.

First, suppose that N < N̄ , then the budget constraint is not binding and φ(N) = 1. It follows

that

ΠP(N) =
N

N + 1
E
[

(Aτ − c)2

4

]
.

Hence, ΠP(N) is increasing in N when the budget constraint is strictly not binding.

Suppose now that N > N̄ and the budget constraint is strictly binding N . Then,

ΠP(N) = BC − cE[Qτ (N)].

Hence, in this case it suffices to show that E[Qτ (N)] is nonincreasing in N . To prove this, we first

note that there exists a threshold δ̄N such that

Qτ (N + 1)−Qτ (N) > 0 if and only if Aτ > δ̄N .

It is a matter of simple calculation to derive the value of δ̄N =
[
(N+1)2 φ(N+1)−N(N+2)φ(N)

]
c.

Next, let us suppose by contradiction that E[Qτ (N + 1)] > E[Qτ (N)] then multiplying both side

of the inequality by (δ̄N + φ(N + 1) c)/2 we get

E
[(

δ̄N + φ(N + 1) c

2

)
Qτ (N + 1)

]
> E

[(
δ̄N + φ(N + 1) c

2

)
Qτ (N)

]
≥ E

[(
δ̄N + φ(N) c

2

)
Qτ (N)

]
,

where the weak inequality uses the fact that φ(N + 1) ≥ φ(N). Now, let us add and subtract Aτ/2

on both side of the inequalities to get

E
[(

Aτ + φ(N + 1) c

2

)
Qτ (N + 1) +

(
δ̄N −Aτ

2

)
Qτ (N + 1)

]
> E

[(
Aτ + φ(N) c

2

)
Qτ (N) +

(
δ̄N −Aτ

2

)
Qτ (N)

]
.
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But since N > N̄ , the budget constraint is binding and

E
[(

Aτ + φ(N + 1) c

2

)
Qτ (N + 1)

]
= E

[(
Aτ + φ(N) c

2

)
Qτ (N)

]
= BC.

As a result, the previous inequality becomes

E
[(

δ̄N −Aτ

2

) [
Qτ (N + 1)−Qτ (N)

]]
> 0.

But, by the definition of δ̄N above, it follows that(
δ̄N −Aτ

2

) [
Qτ (N + 1)−Qτ (N)

]
≤ 0 w.p.1.

From this contradiction we conclude that E[Qτ (N+1)] ≤ E[Qτ (N)] and so the producer’s expected

payoff is non-decreasing in N .

Let us now turn to the cumulative payoff of the retailers. Again, from the solution in Proposition 7,

it follows that

N ×ΠR(N) =
E[Q2

τ (N)

N ]
.

Using a similar line of arguments as the one used above, we will show that N × ΠR(N) is nonin-

creasing in N . First, if the retailers’ budget constraint is not binding, i.e. N ≤ N̄ , then

E[Q2
τ (N)]

N
=

N

4(N + 1)2
E[(Aτ − c)2],

which is nonincreasing in N for N ≥ 1.

Suppose now that the retailers’ budget is binding, that is, N ≥ N̄ . Consider the incremental payoff

of the retailers as the number of retailers’ increases from N to N + 1.

Q2
τ (N + 1)

N + 1
− Q2

τ (N)

N
=

(
Qτ (N + 1)√

N + 1
+
Qτ (N)√

N

) (
Qτ (N + 1)√

N + 1
− Qτ (N)√

N

)
.

Hence, whether the retailers’ payoff increases or decreases with N depends on the sign of the last

multiplicand on the right. We will show that this term is always nonpositive. Indeed, from the

definition of Qτ (N) it follows that

Qτ (N + 1)√
N + 1

− Qτ (N)√
N

> 0 if and only if

√
N + 1

N + 2
(Aτ − δ(N + 1))+ −

√
N

N + 1
(Aτ − δ(N))+ > 0.

Since δ(N +1) ≥ δ(N), a necessary condition for this last inequality to hold is Aτ > δ(N +1). This

together with the fact that the function
√
N/(N + 1) is decreasing in N implies that

Qτ (N + 1)√
N + 1

− Qτ (N)√
N

> 0 if and only if δ(N + 1) < Aτ <

√
N

N+1δ(N)−
√
N+1
N+2 δ(N + 1)

√
N

N+1 −
√
N+1
N+2

.

Finally, using again the fact that δ(N + 1) ≥ δ(N), this last condition is equivalent to

δ(N + 1) < Aτ <

√
N

N+1δ(N)−
√
N+1
N+2 δ(N + 1)

√
N

N+1 −
√
N+1
N+2

≤ δ(N).
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We conclude that
Q2
τ (N + 1)

N + 1
− Q2

τ (N)

N
≤ 0

pathwise and therefore in expectation.

Let us consider now the case in which the retailers do not hedge their budget constraint. In this

case, the equilibrium of the game can be computed pathwise, for each value of Aτ .Furthermore,

using Proposition 1 in in Caldentey and Haugh (2009) we have that

ΠP|τ (N) =
N

N + 1

[
(Aτ + δ(N)− 2 c) (Aτ − δ(N)

4

]
and N×ΠR|τ (N) =

N

(N + 1)2

[
(A− δ(N))2

4

]
,

where

δ(N) = max

{
c,

√
A2
τ − 8

(N + 1)

N
BC

}
.

Some tedious, but straightforward calculations, show that ΠP|τ (N) is non-decreasing in N while

N ×ΠR|τ (N) is non-increasing in N . �

Proof of Proposition 10: If N̄ =∞, then φP(N) = 1 for all N ≥ 1 and the result follows from

Propostion 7. �

Proof of Proposition 11: From the definition of N̄ , it follows that φ(N) = 1 for all N ≤ N̄ .

Hence,

Qτ (N) =
N (Aτ − c)+

2(N + 1)

and so

C(N) =
N2 E[(Aτ − c)]

8 (N + 1)2
and ΠP(N) +N ΠR(N) =

N (N + 2)

4 (N + 1)2
E[(Aτ − c)2].

We conclude that both C(N) and ΠS(N) are increasing in N for N ≤ N̄ . The prof is complete by

noticing that social welfare S(N) = C(N) + ΠS(N). �

Proof of Proposition 12:

The proof of the proposition makes use of the following preliminary result.

Lemma 2 Let Vτ be an Fτ -measurable random variable then

(i+ 1) E[Vτ qi] +

N∑
j=i+1

E[Vτ qj ] =

∫
αi<ατ

Vτ (Aτ − αiwτ) dQ. (A-3)

Proof of the Lemma: From equation (39) and the fact that the λi’s are non-decreasing in i,

it is easy to see that the αi’s are also non-decreasing in i (as we would expect). We also see that

n(ατ ) = k − 1 for all ατ satisfying αk−1 ≤ ατ < αk. Setting αN+1 := ∞, we can combine these

results and (37) to write

qi =
N∑
k=i

1

k + 1

[
Aτ − wτ

(
(k + 1) (1 + λi)−

k∑
j=1

(1 + λj)
)]

11
(
ατ ∈ [αk, αk+1)

)
. (A-4)
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Letting Ωk := {ω : αk ≤ ατ < αk+1}, we see that (A-4) implies

N∑
j=i+1

E[Vτ qj ] =
N∑

j=i+1

N∑
k=j

∫
Ωk

Vτ
k + 1

[
Aτ − wτ

(
(k + 1) (1 + λj)−

k∑
s=1

(1 + λs)
)]

dQ

=
N∑

k=i+1

k∑
j=i+1

∫
Ωk

Vτ
k + 1

[
Aτ − wτ

(
(k + 1) (1 + λj)−

k∑
s=1

(1 + λs)
)]

dQ

=
N∑

k=i+1

∫
Ωk

Vτ
k + 1

(k − i)Aτ − wτ
(

(k + 1)
k∑

j=i+1

(1 + λj)− (k − i)
k∑
s=1

(1 + λs)
) dQ.

Combining this last identity and the fact that

E[Vτ qi] =
N∑
k=i

∫
Ωk

Vτ
k + 1

[
Aτ − wτ

(
(k + 1) (1 + λi)−

k∑
j=1

(1 + λj)
)]

dQ

we obtain

E[Vτ qi] +
1

i+ 1

N∑
j=i+1

E[Vτ qj ] =
N∑
k=i

∫
Ωk

Vτ
k + 1

Zik dQ (A-5)

where

Zik :=

Aτ − wτ
(

(k + 1) (1 + λi)−
k∑
j=1

(1 + λj)
)

+
(k − i)Aτ − wτ

(
(k + 1)

∑k
j=i+1(1 + λj)− (k − i)

∑k
s=1(1 + λs)

)
i+ 1

 .
and where we have used the convention

∑i
j=i+1(1 + λj) = 0. After some straightforward manipu-

lations, one can show that

Zik =
k + 1

i+ 1
(Aτ − αiwτ)

and so by the definition of Ωk we can substitute for Zik in (A-5) and obtain (A-3). �

Let us now return to the proof of Propositon 12. Let us recall that the Lagrange multipliers for

the retailers’s budget constraints {λi} and the cutoff values {αi} satisfy the relationship

1 + λi =
αi
i

+
i−1∑
j=1

αj
j (j + 1)

.

Recall also that we have ordered the retailers budget in decreasing order B1 ≥ B2 ≥ · · · ≥ BN . As

a result, if retailer’s i budget constraint is not binding then retailer’s j budget constraint is also

not binding, for all j = 1, . . . , i. It follows that if E[wτqi] < Bi then λj = 0 for all j = 1, . . . , i and

from the the previous equation we conclude that αj = 1 for all j = 1, . . . , i. Hence, if αi > 1 the

budget constraint is binding and E[wτqi] = Bi as required.

To complete the proof, we need to show that αi is given by (42). With Vτ set to wτ , Lemma 2

above implies

E[wτ qi] +
1

i+ 1

N∑
j=i+1

E[wτ qj ] =

∫
αi<ατ

wτ
i+ 1

(Aτ − αiwτ)dQ (A-6)

43



for i = 1, . . . , N . But the budget constraints for the N retailers also imply

E[wτ qi] +
1

i+ 1

N∑
j=i+1

E[wτ qj ] ≤ Bi +
1

i+ 1

N∑
j=i+1

Bj (A-7)

which, when combined with (A-6), leads to∫
αi<ατ

wτ (Aτ − αiwτ)dQ ≤ (i+ 1)Bi +

N∑
j=i+1

Bj (A-8)

for i = 1, . . . , N . We can use (A-8) sequentially to determine the αi’s. Beginning at i = N , we see

that the N th retailer’s budget constraint is equivalent to∫
αN<ατ

wτ (Aτ − αN wτ)dQ ≤ (N + 1)BN . (A-9)

The optimality condition on λi implies that it is the smallest non-negative real that satisfies the

ith budget constraint. Since the optimal λi’s are non-decreasing in i, we see from (A-7) that αi is

therefore the smallest real greater than or equal to 1 satisfying the ith budget constraint. Therefore,

beginning with i = N we can check if αN = 1 satisfies (A-9) and if it does, then we know the N th

budget constraint is not binding. If αN = 1 does not satisfy (A-9) then we set αN equal to that

value (greater than one) that makes (A-9) an equality. In particular, we obtain that the optimal

value of αN is H((N + 1)BN ), as desired.

Note that if αN = 1 then none of the budget constraints are binding. In particular, this implies

αi = 1 and λi = 0 for all i = 1, . . . N . Moreover, (42) must be satisfied for all i since it is true

for i = N and since the Bi’s are decreasing. Suppose now that the budget constraint is binding

for retailers i + 1, . . . , N and consider the ith retailer. Then the ith retailer’s budget constraint is

equivalent14 to (A-8) and we can again use precisely the same argument as before to argue that

(42) holds. �

Proof of Proposition 13: To compute the value of ΠP we will compute the expected revenue

E[wτ Q] and expected cost, cE[Q], separately. The first step is to determine those retailers that

will be using their entire budgets in the Cournot equilibrium. We know from Proposition 12 and

the definition of m in (45) that only the budget constraints of the first m− 1 retailers will not be

binding and so E[wτ qi] = Bi for i = m,m+1, . . . , N . It also follows that λ1 = λ2 = · · · = λm−1 = 1

and so (35) implies that

qi = (Aτ −Q− wτ)+ , i = 1, . . . ,m− 1. (A-10)

Using this identity we obtain

E[wτ Q] =
m−1∑
j=1

E[wτ qj ] +
N∑
j=m

E[wτ qj ]

= (m− 1)E[wτ (Aτ −Q− wτ)+] +
N∑
j=m

Bj

= (m− 1)E[wτ (Aτ − wτ)+ − wτ Q] +

N∑
j=m

Bj (A-11)

14Equivalence follows because the second terms on either side of the inequality sign in (A-7) are equal by assumption.
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where we have used the observation that (Aτ − Q − wτ)+ = (Aτ − wτ)+ − Q. This observation

follows because (i) if Aτ ≤ wτ then by (34) Q = 0 and (ii) if Q > 0 then Aτ ≥ wτ and we can argue

using (35), say, that (Aτ −Q− wτ)+ = Aτ −Q− wτ . We can now re-arrange (A-11) to obtain

E[wτ Q] =
1

m

 N∑
j=m

Bj + (m− 1)E[wτ (Aτ − wτ)+]

 . (A-12)

In order to calculate the expected cost, we can use Lemma 2 with Vτ ≡ 1 to see that for any i we

have

(i+ 1)E[qi] +
N∑

j=i+1

E[qj ] = E[(Aτ − αiwτ)+]. (A-13)

(A-13) then defines a system of N linear equations in the N unknowns, E[qi], i = 1, . . . , N . If we

let M = [Mij ] be the N ×N upper-triangular matrix defined as

Mij :=


0 if i > j

i+ 1 if i = j

1 if i < j

then it is easy to check that [M−1
ij ] = 1{j=i}/(j + 1) − 1{j>i}/(j(j + i)). The system (A-13) then

implies

N∑
i=1

E[qi] =
N∑
i=1

N∑
j=1

[M−1
ij ] E[(Aτ − αj wτ)+]

=
N∑
j=1

1

j(j + 1)
E[(Aτ − αj wτ)+] (A-14)

and so we obtain

E[cQ] =
(m− 1)c

m
E[(Aτ − wτ)+] +

N∑
j=m

c

j(j + 1)
E[(Aτ − αj wτ)+]. (A-15)

where we have used the fact that α1 = . . . = αm−1 = 1. We can now combine (A-12) and (A-15)

to obtain (44) as desired. �

Proof of Proposition 14: Suppose we fix the value of m. Using Definition 5.1 and our assump-

tion that nτ = N (a.s.), it follows that fixing the value of m is equivalent to imposing the condition

αm−1 = 1 < αm or

Bm < E[wτ (Aτ − wτ)] ≤ Bm−1.

In addition, we can calculate the value of αj for all j = m, . . . , N by solving αj = H(Bj) and using

our assumption that Aτ ≥ αj wτ (a.s.). It follows that

αj =
E[Aτ wτ ]− Bj

E[w2
τ ]

, j = m, . . . , N.
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Plugging these values of αj in (44), the producer’s problem for a fix m is given by

max
wτ

(
m− 1

m

)
E[Aτ wτ + cwτ − w2

τ − cAτ ] +
N∑
j=m

(
Bj
m
− c

j(j + 1)
E
[
Aτ −

(
E[Aτ wτ ]− Bj

E[w2
τ ]

)
wτ

])
subject to Bm < E[wτ (Aτ − wτ)] ≤ Bm−1.

To solve this optimization problem, let us first fix the value of E[w] = µ ≥ c and E[w2] = σ2 + µ2,

for some scalars µ and σ to be determined later. Then, the producer objective function can be

written as(
m− 1

m

)
[c µ−σ2−µ2]− c µ

σ2 + µ2

N∑
j=m

Bj
j(j + 1)

+

m− 1

m
+

µ

σ2 + µ2

N∑
j=m

c

j(j + 1)

 E[Aτ wτ ]+δ(m)

where δ(m) :=
∑N

j=m
Bj
m −

N
N+1 cE[Aτ ]. Since the term inside the parenthesis is non-negative, it

follows that the producer’s problem reduces to

max
wτ

E[Aτ wτ ] s.t. E[w] = µ, E[w2] = σ2 + µ2 and Bm < E[wτ (Aτ − wτ)] ≤ Bm−1. (A-16)

Lemma 3 Problem (A-16) is feasible if and only if Bm < µ (E[Aτ ] − µ) + σ (σAτ − σ), where

σAτ =
√
Var0(Aτ). If this feasibility condition is satisfied, then at optimality

E[Aτ wτ ] = min
{
µE0[Aτ ] + σ σAτ , Bm−1 + µ2 + σ2

}
.

Furthermore, if µE0[Aτ ] + σ σAτ ≤ Bm−1 + µ2 + σ2 (i.e., if an interior solution exists) then an

optimal solution is given by

wτ = µ+
σ

σAτ
(Aτ − E[Aτ ]).

Proof of Lemma 3: Consider the following relaxed version of the optimization problem A-16:

max
wτ

E[Aτ wτ ] s.t. E[w] = µ, and E[w2] = σ2 + µ2.

We can solve this problem using Lagrangian relaxation and solving for wτ pathwise. After some

straightforward calculation we get that an optimal solution is given by

wτ = µ+
σ

σAτ
(Aτ − E[Aτ ]).

Given this solution, let us check it feasibility on the original problem (A-16), that is, we need to

check the constraint Bm < E[wτ (Aτ − wτ)] ≤ Bm−1 or equivalently Bm + µ2 + σ2 < E[Aτ wτ ] ≤
Bm−1 +µ2 +σ2. Since, at optimality E[Aτ wτ ] = µE[Aτ ] +σ σAτ , we conclude that problem (A-16)

is infeasible if µE[Aτ ] + σ σAτ < Bm + µ2 + σ2. Otherwise, the optimal value is equal to

E[Aτ wτ ] = min
{
µE0[Aτ ] + σ σAτ , Bm−1 + µ2 + σ2

}
. �

Using the result in the previous lemma, we can replace the value of E[Aτ wτ ] in producer’s objective

function and solve terms of µ and σ. The following Lemma shows that at optimality an optimal µ

and σ always lead to an interior solution in the sense of Lemma 3.
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Lemma 4 At optimality, the values of µ and σ are such that

µE0[Aτ ] + σ σAτ ≤ Bm−1 + µ2 + σ2.

Proof of Lemma 4: Suppose at optimality the solution is not an interior one, that is, µE0[Aτ ] +

σ σAτ > Bm−1 + µ2 + σ2 and so

E[Aτ wτ ] = Bm−1 + µ2 + σ2.

Plugging this value in the producer’s optimization above we get

ΠP(m) =

(
m− 1

m

)
[c µ+ Bm−1] +

c µ

σ2 + µ2

N∑
j=m

Bm−1 − Bj
j(j + 1)

+
N∑
j=m

c µ

j(j + 1)
+ δ(m).

Since Bm−1 ≥ Bj for j = m, . . . , N , it follows that ΠP(m) is decreasing in σ and so at optimal-

ity we would like to set σ = 0. But for σ = 0, we would have wτ = µ (a.s.) and, as a result,

µE0[Aτ ] +σ σAτ ≤ Bm−1 +µ2 +σ2. This last inequality follows from the fact that we are assuming

that the (m− 1)th retailer is not binding and therefore E[wτ (Aτ −wτ)] ≤ Bm−1. We conclude that

at optimality, we must have µE0[Aτ ] + σ σAτ ≤ Bm−1 + µ2 + σ2. �

Finally, we can combine the results in the previous two lemmas to complete the proof of Proposi-

tion 14. �

Proof of Proposition 15: The condition nτ = N (a.s.) is equivalent to αN w
∗
τ ≤ Aτ (a.s.). The

value of αN depends on the value of m∗. If m∗ = N + 1 then we at optimality all retailers are

not budget constrained and αN = 1. On the other hand, if m∗ < N + 1 then retailer N is budget

constrained and the value of αN is given by

αN =
E[Aτ w

∗
τ ]− BN

E[(w∗τ )2]
=

(
µ∗ E[Aτ ] + σ∗ σAτ − (N + 1)BN

(µ∗)2 + (σ∗)2

)
,

where in the second equality we have used the identity BN = (N + 1)BN from equation (7). This

complete the proof. �

Proof of Corollary 1: Using the definition of αj for j ≥ m and assuming a constant w̄, we

see that the expectation E[(Aτ −αj wτ)+] in equation (44) can be replaced by ((j + 1)Bj +Bj+1 +

· · ·+BN )/w̄. The rest of the derivation of (47) follows directly after some simple calculations.

Let us now prove the second part. For notational convenience, we will write w̄∗ := w̄∗(B1, . . . , BN )

and w̄∞ := w̄∗(∞, . . . ,∞). Note that the producer payoff can be rewritten as follows

ΠP(w̄) =
m− 1

m
Π∞P (w̄) +

(
1− c

w̄

) N∑
j=m

Bj
m
, (A-17)

where Π∞P (w̄) := (w̄ − c)E[(Aτ − w̄)+] is the producer payoff when each retailers has an infinity

budget (modulo the constant (N − 1)/N). It follows that w̄∞ is the unique maximizer of Π∞P (w̄).

The uniqueness of w̄∞ follows from the fact that Π∞P (w̄) is unimodal. Hence, both Π∞P (w̄) and
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(1−c/w̄) are increasing functions of w̄ in [c, w̄∞). This observation together with the facts that m is

a piece-wise constant function of w̄ and ΠP(w̄) is a continuous function of w̄ imply that w̄∗ ≥ w̄∞.

The continuity of Π∞P (w̄) is not immediate since m is a discontinuous function of w̄. However,

checking this property is straightforward and is left to reader. �

B Appendix: Extensions

We now briefly discuss some extensions to our basic model. We consider three extensions relating

to foreign exchange risk, interest rate risk and the preferred timing of the contract.

B.1 Retailers Based in a Foreign Currency Area

We now assume that the retailers and producer are located in different currency areas and use

change-of-numeraire arguments to show that our analysis still15 goes through. Without any loss

of generality, we will assume that the retailers and producer are located in the “foreign” and

“domestic” currency areas, respectively. The exchange rate, Zt say, denotes the time t domestic

value of one unit of the foreign currency. When the producer proposes a contract, wτ , we assume

that he does so in units of the foreign currency. Moreover, in order to simplify the exposition we

will only consider here the case of identical budgets. Therefore the ith retailer pays qiwτ units of

foreign currency16 to the producer. The retailers’ problem is therefore unchanged from the problem

we considered in Section 4 if we take Q to be an EMM of a foreign investor who takes the foreign

cash account as his numeraire security. As explained in Appendix B.4, this same Q can also be

used by the producer as a domestic EMM where he takes the domestic value of the foreign cash

account as the numeraire security.

We could take our financial process, Xt, to be equivalent to Zt so that the retailers hedge their

foreign exchange risk in order to mitigate the effects of their budget constraints. This would only

make sense if Aτ and the exchange rate, Zt, were dependent. More generally, we could allow Xt

to be multi-dimensional so that it includes Zt as well as other tradeable financial processes that

influence Aτ .

The producer must convert the retailers’ payments into units of the domestic currency and he

therefore earns a per-unit profit of either (i) wτZτ − c if production costs are in units of the

domestic currency or (ii) Zτ (wτ − c) if production costs are in units of the foreign currency. Case

(i) would apply if production takes place domestically whereas case (ii) would apply if production

takes place in the foreign currency area. For ease of exposition we will assume that interest rates

in both the domestic and foreign currency areas are identically zero.

Analogously to (24) and (25) we find in the equibudget case that the producer’s problem in case

15See Ding et al. (2007) for a comprehensive review of the literature discussing exchange rate uncertainty in a

production/inventory context.
16Which is the domestic currency from the retailers’ perspective.
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(i) is given by

ΠP = max
wτ , λ≥0

Z0
2N

N + 1
E
[

(wτZτ − c)
Zτ

(Aτ − wτ (1 + λ))+

2

]
(B-18)

subject to E
[
wτ

(Aτ − wτ (1 + λ))+

2

]
≤ (N + 1)

2
B. (B-19)

Note that Zτ appears in the denominator inside the expectation in (B-18) because, as explained

above, the domestic value of the foreign cash account is the appropriate numeraire corresponding

to the EMM, Q. Since we have assumed interest rates are identically zero, the foreign value of

the foreign cash-account is identically one and so its domestic value is Zt at time t. For the same

reason, Z0 appears outside the expectation in (B-18). Solving the producer’s problem in (B-18) and

(B-19) is equivalent to solving the problem he faced earlier in this section but now with a stochastic

cost, cτ := c/Zτ . However, it can easily be seen that the proof of Proposition 7, or more to the

point, Proposition 7 in Caldentey and Haugh (2009), goes through unchanged when c is stochastic.

We therefore obtain the same result as Proposition 7 with c replaced by cτ and Q interpreted as a

foreign EMM with the domestic value of the foreign cash account as the numeraire security.

Remark: If instead case (ii) prevailed so that the producer’s per-unit profit was Zτ (wτ − c) then

the Zτ term in both the numerator and denominator of (B-18) would cancel, leaving the producer

with an identical problem to that of Section 4 albeit with different EMMs. So while the analysis

for case (ii) is identical to that of Section 4, the probability measures under which the solutions are

calculated are different.

B.2 Stochastic Interest Rates and Paying the Producer in Advance

At the end of Section 2.1 we noted that there was no loss in generality in assuming that production

did not take place until after time τ and that profits were realized at time T with the maximum

size of the market being a random variable A that depended on both XT and some non-financial

noise. We will take that interpretation here so that Aτ = Eτ [A].

We now consider the problem where the retailers’ budgets are only available at time T but that the

producer must be paid at time τ < T . Once again we only consider the case of identical budgets.

We will assume that interest rates are stochastic and no longer identically zero so that the retailers’

effective time τ budgets are also stochastic. In particular, we will assume that the Q-dynamics of

the short rate are given by the Vasicek17 model so that

drt = α(µ− rt) dt+ σdWt (B-20)

where α, µ and σ are all positive constants and Wt is a Q-Brownian motion. The short-rate, rt,

is the instantaneous continuously compounded risk-free interest rate that is earned at time t by

the ‘cash account’, i.e., cash placed in a deposit account. In particular, if $1 is placed in the cash

17See, Duffie (2004) for a description of the Vasicek model and other related results that we use in this subsection.

Note that it is not necessary to restrict ourselves to the Vasicek model. We have done so in order to simplify the

exposition but our analysis holds for more general models such as the multi-factor Gaussian and CIR processes that

are commonly employed in practice.
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account at time t then it will be worth exp
(∫ T

t rs ds
)

at time T > t. It may be shown that the

time τ value of a zero-coupon-bond with face value $1 that matures at time T > τ satisfies

ZTτ := ea(T−τ)+b(T−τ)rτ (B-21)

where a(·) and b(·) are known deterministic functions of the time-to-maturity, T − τ . In particular,

ZTτ is the appropriate discount factor for discounting a known deterministic cash flow from time T

to time τ < T .

Returning to our competitive supply chain, we assume that the retailers’ profits are realized at time

T ≥ τ . Since the producer now demands payment from the retailers at time τ when production

amounts are determined, this implies that the retailers will be forced to borrow against the capital

B that is not available until time T . As a result, the ith retailer’s effective budget at time τ is given

by

Bi(rτ ) := BiZ
T
τ = Bie

a(T−τ)+b(T−τ)rτ .

We assume that the stochastic clearance price, A−Q, depends on the financial market through the

co-dependence of the random variable A, and the financial process, Xt. To simplify the exposition,

we could assume that Xt ≡ rt but this is not necessary. If Xt is a financial process other than rt,

we simply need to redefine our definition of {Ft}0≤t≤T so that it represents the filtration generated

by Xt and rt. Before formulating the optimization problems of the retailers and the producer we

must adapt our definition of feasible Fτ -measurable financial gains, Gτ . Until this point we have

insisted that any such Gτ must satisfy E[Gτ ] = 0, assuming as before that zero initial capital is

devoted to the financial hedging strategy. This was correct when interest rates were identically zero

but now we must replace that condition with the new condition18

E [DτGτ ] = 0 (B-22)

where Dτ := exp
(
−
∫ τ

0 rs ds
)

is the stochastic discount factor. The ith retailer’s problem for a

given Fτ -measurable wholesale price, wτ , is therefore given19 by

ΠR(wτ ) = max
qi≥0, Gτ

E [DT (AT − (qi +Qi−)) qi −Dτwτqi] (B-23)

subject to wτ qi ≤ Bi(rτ ) +Gτ , for all ω ∈ Ω (B-24)

E [DτGτ ] = 0 (B-25)

and Fτ −measurability of qi. (B-26)

Note that both DT and Dτ appear in the objective function (B-23) and reflect the times at which

the retailer makes and receives payments. We also explicitly imposed the constraint that qi be Fτ -

measurable. This was necessary because of the appearance of DT in the objective function. We can

easily impose the Fτ -measurability of qi by conditioning with respect to Fτ inside the expectation

appearing in (B-23). We then obtain

E [Dτ (AD
τ − (qi +Qi−)− wτ) qi] (B-27)

as our new objective function where AD
τ := Eτ [DTA]/Dτ . With this new objective function it is no

longer necessary to explicitly impose the Fτ -measurability of qi.

18See the first paragraph of Appendix B.4 for why this is the case.
19We write AT for A to emphasize the timing of the cash-flow.
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It is still straightforward to solve for the retailers’ Cournot equilibrium. One could either solve

the problem directly as before or alternatively, we could use the change-of-numeraire method of

Section B.1 that is described in Appendix B.4. In particular, we could switch to the so-called

forward measure where the EMM, Qτ , now corresponds to taking the zero-coupon bond maturing

at time τ as the numeraire. In that case the ith retailer’s objective function in (B-27) can be

written20 as

Zτ0 EQτ [(AD
τ − (qi +Qi−)− wτ) qi] . (B-28)

We can therefore solve for the retailers’ Cournot equilibrium using our earlier analysis but with

Aτ and Q replaced by AD
τ and Qτ , respectively. Note that the constant factor, Zτ0 , in (B-28) is

the same for each retailer and therefore makes no difference to the analysis. Following the first

approach we obtain the following solution to the retailer’s problem. We omit the proof as it is very

similar to the proof of Proposition 6.

Proposition 16 (Retailers’ Optimal Strategy)

Let wτ be an Fτ -measurable wholesale price offered by the producer and define Qτ :=
(AD

τ −wτ)
+

(N+1)ZTτ
.

This is the optimal ordering quantity for each retailer in the absence of any budget constraints. The

following two cases arise:

Case 1: Suppose E [DτQτwτ ] ≤ E [DτB(rτ )] = ZT0 B. Then qi(wτ ) := qτ := Qτ for all i and

(possibly due to the ability to trade in the financial market) the budget constraints are not

binding.

Case 2: Suppose E [DτQτwτ ] > ZT0 B. Then

qi(wτ ) := qτ :=
(AD

τ − wτ (1 + λ))+

(N + 1)ZTτ
for all i = 1, . . . , N (B-29)

where λ ≥ 0 solves

E [Dτwτqτ ] = E [B(rτ )Dτ ] = ZT0 B. (B-30)

Given the retailers’ best response, the producer’s problem may now be formulated21 as

ΠP = max
wτ , λ≥0

E
[
Dτ (wτ − c)

(AD
τ − wτ (1 + λ))+

(N + 1)ZTτ

]
(B-31)

subject to E
[
Dτwτ

(AD
τ − wτ (1 + λ))+

(N + 1)ZTτ

]
≤ ZT0 B. (B-32)

The Cournot-Stackelberg equilibrium and solution of the producer’s problem in the equibudget

case is given by the following proposition. We again omit the proof of this proposition as it it very

similar to the proof of Proposition 7.

Proposition 17 (The Equilibrium Solution)

Let φP be the minimum φ ≥ 1 that satisfies E
[
Dτ

8ZTτ

(
(AD

τ )2 − (φc)2
)+] ≤ (N+1)

2 ZT0 B and let

δP := φPc. Then the optimal wholesale price and ordering level satisfy

wτ =
δP +AD

τ

2
and qτ =

(AD
τ − δP)+

2(N + 1)ZTτ
.

20The condition (B-25) can also be written in terms of Qτ as Zτ0 EQτ
0 [Gτ ] = 0, i.e., EQτ

0 [Gτ ] = 0.
21We assume here and in the foreign retailer setting that the production costs, c, are paid at time τ .
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B.3 On the Optimal Timing of the Contract

As we have seen, the financial markets add value to the supply chain by allowing the retailers to

mitigate their budget constraints via dynamic trading. The next proposition emphasizes the value

of information in a competitive supply chain. Under the assumption of zero marginal production

costs, i.e. c = 0, it states that for an Fτ1-measurable price menu, wτ , the producer is always better

off when the retailers’ orders are allowed to be contingent upon time τ2 information where τ2 > τ1.

Proposition 18 Consider two times τ1 < τ2 and let wτ be an Fτ1-measurable price menu. Con-

sider the following two scenarios: (1) the producer offers price menu wτ and the retailers choose

their Cournot-optimal Fτ1-measurable ordering quantities which is then produced at time τ1 and

(2) the producer again offers price menu wτ but the retailers now choose their Cournot-optimal

Fτ2-measurable ordering quantities which is then produced at time τ2. If cτ1 = cτ2 = 0 then the

producer always prefers scenario (2).

Proof of Proposition 18: Let mj , α
(j)
i for i = 1, . . . , N and j = 1, 2 denote the usual Cournot

optimal quantities for scenario j and retailer i. Since Eτ1 [Aτ2 ]/x = Aτ1/x for any x > 0 Jensen’s

Inequality implies

E[wτ (Aτ2/x− wτ)+] ≥ E[wτ (Aτ1/x− wτ)+]. (B-33)

After multiplying across (B-33) by x it then follows from the definition of the αi’s in (42) that

α
(2)
i ≥ α

(1)
i for i = 1, . . . , N.

This in turn implies that m2 ≤ m1. Let Π
(1)
P and Π

(2)
P denote the producer’s expected revenue in

scenarios (1) and (2) respectively. Then (A-12) implies

Π
(2)
P −Π

(1)
P =

(m1 −m2)

m1m2

N∑
j=m1

Bj +
1

m2

m1−1∑
j=m2

Bj +
(m2 − 1)

m2
E[wτ (Aτ2 − wτ)+]

− (m1 − 1)

m1
E[wτ (Aτ1 − wτ)+]

≥ (m1 −m2)

m1m2

N∑
j=m1

Bj +
1

m2

m1−1∑
j=m2

Bj +
(m2 −m1)

m1m2
E[wτ (Aτ1 − wτ)+] ((B-33) with x = 1)

=
(m1 −m2)

m1m2

 N∑
j=m1

Bj − E[wτ (Aτ1 − wτ)+]

 +
1

m2

m1−1∑
j=m2

Bj

≥ (m1 −m2)

m1m2

 N∑
j=m1

Bj − (m1 + 1)Bm1 − · · · −BN

 +
1

m2

m1−1∑
j=m2

Bj (by def. of m1)

=
(m2 −m1)

m2
Bm1 +

1

m2

m1−1∑
j=m2

Bj . (B-34)

Note that the right-hand-side of (B-34) equals zero if m1 = m2. Otherwise m2 < m1 and the

right-hand-side of (B-34) is greater than or equal to (m1−m2)(Bm2 −Bm1−1)/m2 which in turn is

non-negative. The result therefore follows. �
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B.4 Martingale Pricing with Foreign Assets

Martingale pricing theory states that the time 0 value, G0, of a security that is worth Gτ at time τ

and does not pay any intermediate cash-flows, satisfies G0/N0 = EQ[Gτ/Nτ ] where Nt is the time t

price of the numeraire security and Q is an equivalent martingale measure (EMM) associated with

that numeraire. It is common to take the cash account as the numeraire security and this is the

approach we have followed in most of this paper. With the exception of the material in Section

B.2, however, the value of the cash account at time t was always $1 since we assumed interest rates

were identically zero. We therefore had G0 = EQ[Gτ ] and since we insisted G0 = 0 we obtained

EQ[Gτ ] = 0. When interest rates are non-zero we still have N0 = 1 but now Nτ = exp
(∫ τ

0 rs ds
)

and so, for example, we have (B-22). In the main text we take Dt = N−1
t . See Duffie (2004) for a

development of martingale pricing theory.

Suppose now that there is a domestic currency and a foreign currency with Zt denoting the exchange

rate between the two currencies at time t. In particular, ZtYt is the time t domestic currency value

of a foreign asset that has a time t foreign currency value of Yt. Let B
(f)
t denote the time t value

of the foreign cash account and let Q denote the EMM of a foreign investor taking the foreign cash

account as numeraire. This implies

EQ
t

[
YT

B
(f)
T

]
=

Yt

B
(f)
t

(B-35)

for all t ≤ T and where we assume again that the asset with foreign currency value Yt at time t

does not22 pay any intermediate cash flows. But equation (B-35) can be re-written as

EQ
t

[
ZTYT

ZTB
(f)
T

]
=

ZtYt

ZtB
(f)
t

. (B-36)

Note that ZtYt is the domestic currency value of the foreign asset and ZtB
(f)
t is the domestic

currency value of the foreign cash account. Note also that if Vt is the time t price of a domestic

asset then Vt/Zt is the foreign currency value of the asset at time t. We therefore obtain by

martingale pricing that

EQ
t

[
VT /ZT

B
(f)
T

]
=

Vt/Zt

B
(f)
t

or equivalently,

EQ
t

[
VT

ZTB
(f)
T

]
=

Vt

ZtB
(f)
t

(B-37)

We can therefore conclude from (B-36) and (B-37) that Q is also the EMM of a domestic investor,

but now with the domestic value of the foreign cash account as the corresponding.

22If it did pay intermediate cash-flows between t and T then they would have to be included inside the expectation

in (B-35).
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