Assignment 5

- 1. Reproduce Figure 1 in the *Simulating Stochastic Differential Equations* lecture notes. Run your code multiple times. What do you notice?
- 2. Reproduce Figure 2 in the Simulating Stochastic Differential Equations lecture notes. (You can ignore the second-order scheme whose details were not provided in the lecture notes.) Repeat but this time simulate $\log S_t$ instead of S_t . (You can actually do everything in the same function and therefore plot four error estimates as a function of n, the number of time steps.)
- 3. Consider an n^{th} -to-default credit derivative that matures at time T and has N underlying *credits*. The payoff of this security occurs at time T and is given by

$$Payoff = \sum_{i=1}^{N} m_i \, \mathbb{1}_{\{\tau_i \le T \text{ and } \tau_i = \tau_{(n)}\}}$$

where τ_i is the default time of the i^{th} credit and $\tau_{(j)}$ is the time of the j^{th} default times (from the underlying N credits). Risk-neutral pricing (with the cash account as numeraire and with a fixed risk-free rate, r) therefore yields

$$\theta := \mathbb{E}_0^Q \left[e^{-rT} \sum_{i=1}^N m_i \, \mathbf{1}_{\{\tau_i \leq T \text{ and } \tau_i = \tau_{(n)}\}} \right]$$

as the arbitrage-free price of the security. The state of the economy is modeled via a process X_t and the default intensity for the i^{th} credit is given by $\lambda_t^i := g_i(X_t)$. Conditional on the process X_t , the default processes for the N names are independent non-homogeneous Poisson processes. That is, we are modeling the default of each credit as the first arrival in a Cox process. Moreover conditional on the path of X_t , these processes are independent. Explain carefully how you would estimate estimate θ using Monte-Carlo simulation.

4. (Pricing Knockout Put Options in a GBM World)

- (a) Write a function to compute the price of a knockout put option with strike K and barrier H < K in the Black-Scholes framework. (You can search online or in one of your textbooks to find the appropriate formula.) The specific parameters are: initial underlying price $S_0 = 100$, strike K = 90, maturity T = .5 years, dividend yield q = 0, risk-free rate r = 1%, volatility $\sigma = 50\%$ and barrier H = 80.
- (b) Write a function that simulates an Euler scheme for S_t and estimates the price of your option.

- (c) Extend your function from part (b) so that your scheme also simulates the minimum of the stock price in each discretized interval. You can do this using a suitably adjusted version of formula (24) from the *Simulating Stochastic Differential Equations* lecture notes to simulate the minimum. (Note that in Section 5.2 of the lecture notes, we assumed the barrier was greater than S_0 . In this question the barrier is less than the strike which is in turn less than S_0 .)
- (d) Now run your function to compute two price estimates of the option for n = 10, 50, 100, 250, 500and 1000 time steps and 4 million sample paths. Plot the absolute error in the estimated price on a log – log scale as a function of n. Which scheme is superior?
- (e) What type of discretization error would be present if we simulated $\log S_t$ instead of S_t ? Justify your answer.
- (f) From a simulation point of view, do you think it is easier to price a *continuously* monitored barrier option or a *discretely* monitored barrier option?

5. (Pricing Knockout Put Options Continued)

- (a) Do Exercise 8 in the Simulating Stochastic Differential Equations lecture notes.
- (b) Do Exercise 9 in the Simulating Stochastic Differential Equations lecture notes.