IEOR E4703 Monte-Carlo Simulation Martin Haugh

Due: 12.55pm Tuesday 18 April 2017

Assignment 7

1. (Conjugate Priors)

(a) Consider the following form of the Normal distribution

$$p(x \mid \mu, \kappa) = \frac{\kappa^{\frac{1}{2}}}{\sqrt{2\pi}} e^{-\frac{\kappa(x-\mu)^2}{2}}$$

where κ (the variance inverse) is called the precision parameter. Show that this distribution can be written as an Exponential Family distribution of the form

$$p(x \mid \theta_1, \theta_2) = h(x)e^{-\frac{\theta_1 x^2}{2} + \theta_2 x - \psi(\theta_1, \theta_2)}$$

Characterize h(x), (θ_1, θ_2) and the function $\psi(\theta_1, \theta_2)$.

(b) Recall that the generic conjugate prior for an exponential family distribution is given by

$$\pi(\theta_1, \theta_2) \propto e^{a_1\theta_1 + a_2\theta_2 - \gamma\psi(\theta_1, \theta_2)}.$$
(1)

Substitute your expression for (θ_1, θ_2) from part (a) to show that the conjugate prior for the Normal model is of the form

$$\pi(\kappa \mid a_0, b_0) \cdot \pi(\mu \mid \mu_0, \gamma \kappa) \propto \underbrace{\kappa^{a_0 - 1} e^{-\frac{\kappa}{b_0}}}_{\text{Gamma}(\kappa \mid a_0, b_0)} \cdot \underbrace{\kappa^{\frac{1}{2}} e^{-\frac{\gamma \kappa}{2}(\mu - \mu_0)^2}}_{\text{Normal}(\mu \mid \mu_0, \gamma \kappa)}.$$

Your expressions for a_0 , b_0 and μ_0 should be in terms of γ , a_1 and a_2 . (This prior is known as the Normal-Gamma prior.)

(c) Suppose $(\mu, \kappa) \sim \text{Normal-Gamma}(a_0, b_0, \mu_0, \gamma)$, and the likelihood of the data, x, is $p(x \mid \mu, \kappa) = \frac{\kappa^{\frac{1}{2}}}{\sqrt{2\pi}} e^{-\frac{\kappa(x-\mu)^2}{2}}$. Compute the posterior distribution after you see N IID samples $\{x_1, \ldots, x_N\}$.

2. (Order Restricted Inference)

Suppose one observes y_1, \ldots, y_N where y_i is binomially distributed with sample size n_i and probability of success p_i , for $i = 1, \ldots, N$. The p_i 's are unknown but domain specific knowledge tells us that

$$0 \le p_1 < p_2 < \dots < p_N \le 1.$$
 (2)

We therefore assume a uniform prior for (p_1, \ldots, p_N) over the space in \mathbb{R}^N defined by (2). Describe in detail an algorithm for sampling from the posterior distribution of (p_1, \ldots, p_N) given y_1, \ldots, y_N .

3. (Gibbs and the Hierarchical Normal Model)

Consider the hierarchical Normal model of Example 7 in the *MCMC and Bayesian Modeling* lecture notes. (This model is taken from Gelman et al's *Bayesian Data Analysis*.)

 (a) Write your own Gibbs sampler code in the language of your choice to sample from the posterior distribution.

Hint: To simulate $X \sim \text{Inv-}\chi^2(\nu, s^2)$ first simulate Y from the χ^2_{ν} distribution and then set $X = \nu s^2/Y$.

- (b) Implement the Gelman-Rubin diagnostic by running 4 chains from over-dispersed starting points, discarding the first 50% of samples etc.
- (c) After running your code from (a) and (b) (and checking that the convergence diagnostics are satisfied!) report posterior quantiles (at the 2.5%, 25%, 50%, 75% and 97.5% levels) for θ_1 , θ_2 , θ_3 , θ_4 , μ , σ and τ . (Figure 1 displays results from Gelman et al's *Bayesian Data Analsyis*. You should obtain similar results.)

Estimand	Posterior quantiles					\widehat{R}
	2.5%	25%	median	75%	97.5%	
θ_1	58.9	60.6	61.3	62.1	63.5	1.01
θ_2	63.9	65.3	65.9	66.6	67.7	1.01
θ_3	66.0	67.1	67.8	68.5	69.5	1.01
θ_4	59.5	60.6	61.1	61.7	62.8	1.01
μ	56.9	62.2	63.9	65.5	73.4	1.04
σ σ	1.8	2.2	2.4	2.6	3.3	1.00
τ	2.1	3.6	4.9	7.6	26.6	1.05
$\log p(\mu, \log \sigma, \log \tau y)$	-67.6	-64.3	-63.4	-62.6	-62.0	1.02
$\log p(\theta, \mu, \log \sigma, \log \tau y)$ $\log p(\theta, \mu, \log \sigma, \log \tau y)$	-70.6	-66.5	-65.1	-64.0	-62.4	1.01

Figure 1: Results for Exercise 3 from Gelman et al.'s *Bayesian Data Analysis*.

4. (Exchangeable random variables)

We say $\mathbf{X} = (X_1, \ldots, X_N)$ is a vector of *exchangeable* random variables if there exists θ and a prior PDF $\pi(\theta)$ such that

$$\mathbb{P}(\mathbf{X} = \mathbf{x}) = \int \prod_{j=1}^{N} f(x_j \mid \theta) \pi(\theta) d\theta.$$
(3)

It therefore follows from (3) that X_1, \ldots, X_N are IID with density $f(\cdot \mid \theta)$ given θ .

(a) Show that

$$\mathbb{P}(X_k = x_k \mid \mathbf{X}_{-k} = \mathbf{x}_{-k}) = \int f(x_k \mid \theta) p(\theta \mid \mathbf{X}_{-k} = \mathbf{x}_{-k}) d\theta$$

where $p(\theta \mid \mathbf{X}_{-k} = \mathbf{x}_{-k})$ denotes the posterior density of θ given \mathbf{X}_{-k} .

(b) Consider the following special case where under the prior distribution $\theta \sim \text{Beta}(\alpha, 0)$, and $f(x \mid \theta) = \text{Bernoulli}(\theta)$. Show that

$$\mathbb{P}(X_k = 1 \mid \mathbf{X}_{-k}) = \frac{\alpha + m_{-k}}{\alpha + N - 1}$$

where $m_{-k} = \sum_{j \neq k} \mathbf{1}(X_j = 1).$

(c) Continuing on from part (b), suppose the X_k 's are not observable. Instead for each X_k we observe a variable Y_k that is distributed according to the conditional distribution $g(Y \mid X)$. Let $\mathbf{Y} = (Y_1, \ldots, Y_N)$ denote the observed values of Y. Show that

$$\mathbb{P}(X_k = 1 \mid \mathbf{X}_{-k}, \mathbf{Y}) \propto g(Y_k \mid X_k = 1) \cdot \frac{\alpha + m_{-k}}{\alpha + N - 1}$$

Remark: Note that the results of this question provide all the conditional distributions that you would need for a Gibbs sampler in this important class of models.

5. (Optional! Convergence Diagnostics)

In the lecture slides we defined

$$\widehat{\operatorname{Var}}^{+}(\psi \mid \mathbf{X}) := \frac{n-1}{n}W + \frac{1}{n}B$$
(4)

where

$$B := \frac{n}{m-1} \sum_{j=1}^{m} \left(\bar{\psi}_{.j} - \bar{\psi}_{..} \right)^2$$
$$W := \frac{1}{m} \sum_{j=1}^{m} s_j^2 \quad \text{where} \quad s_j^2 := \frac{1}{n-1} \sum_{i=1}^{n} \left(\psi_{ij} - \bar{\psi}_{.j} \right)^2.$$

These definitions were based on having m chains each with n samples after discarding the burn-in samples and ψ is some scalar function of the parameters / hidden variables over which the posterior is defined. We claimed that $\widehat{\operatorname{Var}}^+(\psi \mid \mathbf{X})$ was an unbiased estimator for $\operatorname{Var}^+(\psi \mid \mathbf{X})$ under stationarity. In this question, we will justify this claim.

(a) Suppose Y_1, \ldots, Y_n is a sample from a stationary process with mean μ and autocovariance function $\gamma(h)$. Show that

$$\operatorname{Var}(\bar{Y}) = \frac{\gamma(0)}{n} R_n \tag{5}$$

where $R_n := 1 + 2 \sum_{h=1}^{n-1} \rho(h) \left(1 - \frac{h}{n}\right)$ and $\rho(h) := \gamma(h)/\gamma(0)$ is the autocorrelation function. Note that $\gamma(0) = \operatorname{Var}(Y)$. (If you don't know what the autocovariance function is try **Google**, Wikipedia or any time-series book.) Most stationary processes generated by MCMC have $\rho(h) \geq 0$ so that if we use (5) to estimate $\operatorname{Var}(Y)$ then we need to take this autocorrelation into account.

(b) Suppose now that Y follows an AR(1) process (a reasonable approximation to an MCMC process) so that $Y_n = \phi Y_{n-1} + \epsilon$. In that case it is straightforward to check that $\rho(h) = \phi^h$. Now justify the approximation

$$R_n \approx \frac{1+\phi}{1-\phi}.$$

(c) Use the identity

$$\sum_{i=1}^{n} (Y_i - \mu)^2 = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 + n(\bar{Y} - \mu)^2$$

and (5) to show that $\mathbb{E}\left[\sum_{i=1}^{n} (Y_i - \bar{Y})^2\right] = \gamma(0)(n - R_n)$. Argue then that

$$\widehat{\operatorname{Var}}(Y) := \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2 + \widehat{\gamma(0)R_n}}{n}$$

is an unbiased estimator of $\operatorname{Var}(Y)$ when $\widehat{\gamma(0)R_n}$ is an unbiased estimator of $\gamma(0)R_n$.

(d) Explain how you could construct such an unbiased estimator of $\gamma(0)R_n$ using m realizations (each of length n) of the process. Now justify (4).